1,218 research outputs found

    Distributed video coding for wireless video sensor networks: a review of the state-of-the-art architectures

    Get PDF
    Distributed video coding (DVC) is a relatively new video coding architecture originated from two fundamental theorems namely, Slepian–Wolf and Wyner–Ziv. Recent research developments have made DVC attractive for applications in the emerging domain of wireless video sensor networks (WVSNs). This paper reviews the state-of-the-art DVC architectures with a focus on understanding their opportunities and gaps in addressing the operational requirements and application needs of WVSNs

    Applications of satellite technology to broadband ISDN networks

    Get PDF
    Two satellite architectures for delivering broadband integrated services digital network (B-ISDN) service are evaluated. The first is assumed integral to an existing terrestrial network, and provides complementary services such as interconnects to remote nodes as well as high-rate multicast and broadcast service. The interconnects are at a 155 Mbs rate and are shown as being met with a nonregenerative multibeam satellite having 10-1.5 degree spots. The second satellite architecture focuses on providing private B-ISDN networks as well as acting as a gateway to the public network. This is conceived as being provided by a regenerative multibeam satellite with on-board ATM (asynchronous transfer mode) processing payload. With up to 800 Mbs offered, higher satellite EIRP is required. This is accomplished with 12-0.4 degree hopping beams, covering a total of 110 dwell positions. It is estimated the space segment capital cost for architecture one would be about 190Mwhereasthesecondarchitecturewouldbeabout190M whereas the second architecture would be about 250M. The net user cost is given for a variety of scenarios, but the cost for 155 Mbs services is shown to be about $15-22/minute for 25 percent system utilization

    Proceedings of the Second International Mobile Satellite Conference (IMSC 1990)

    Get PDF
    Presented here are the proceedings of the Second International Mobile Satellite Conference (IMSC), held June 17-20, 1990 in Ottawa, Canada. Topics covered include future mobile satellite communications concepts, aeronautical applications, modulation and coding, propagation and experimental systems, mobile terminal equipment, network architecture and control, regulatory and policy considerations, vehicle antennas, and speech compression

    An Object-Oriented Model for Extensible Concurrent Systems: the Composition-Filters Approach

    Get PDF
    Applying the object-oriented paradigm for the development of large and complex software systems offers several advantages, of which increased extensibility and reusability are the most prominent ones. The object-oriented model is also quite suitable for modeling concurrent systems. However, it appears that extensibility and reusability of concurrent applications is far from trivial. The problems that arise, the so-called inheritance anomalies are analyzed and presented in this paper. A set of requirements for extensible concurrent languages is formulated. As a solution to the identified problems, an extension to the object-oriented model is presented; composition filters. Composition filters capture messages and can express certain constraints and operations on these messages, for example buffering. In this paper we explain the composition filters approach, demonstrate its expressive power through a number of examples and show that composition filters do not suffer from the inheritance anomalies and fulfill the requirements that were established

    Algorithms for propagation-aware underwater ranging and localization

    Get PDF
    Mención Internacional en el título de doctorWhile oceans occupy most of our planet, their exploration and conservation are one of the crucial research problems of modern time. Underwater localization stands among the key issues on the way to the proper inspection and monitoring of this significant part of our world. In this thesis, we investigate and tackle different challenges related to underwater ranging and localization. In particular, we focus on algorithms that consider underwater acoustic channel properties. This group of algorithms utilizes additional information about the environment and its impact on acoustic signal propagation, in order to improve the accuracy of location estimates, or to achieve a reduced complexity, or a reduced amount of resources (e.g., anchor nodes) compared to traditional algorithms. First, we tackle the problem of passive range estimation using the differences in the times of arrival of multipath replicas of a transmitted acoustic signal. This is a costand energy- effective algorithm that can be used for the localization of autonomous underwater vehicles (AUVs), and utilizes information about signal propagation. We study the accuracy of this method in the simplified case of constant sound speed profile (SSP) and compare it to a more realistic case with various non-constant SSP. We also propose an auxiliary quantity called effective sound speed. This quantity, when modeling acoustic propagation via ray models, takes into account the difference between rectilinear and non-rectilinear sound ray paths. According to our evaluation, this offers improved range estimation results with respect to standard algorithms that consider the actual value of the speed of sound. We then propose an algorithm suitable for the non-invasive tracking of AUVs or vocalizing marine animals, using only a single receiver. This algorithm evaluates the underwater acoustic channel impulse response differences induced by a diverse sea bottom profile, and proposes a computationally- and energy-efficient solution for passive localization. Finally, we propose another algorithm to solve the issue of 3D acoustic localization and tracking of marine fauna. To reach the expected degree of accuracy, more sensors are often required than are available in typical commercial off-the-shelf (COTS) phased arrays found, e.g., in ultra short baseline (USBL) systems. Direct combination of multiple COTS arrays may be constrained by array body elements, and lead to breaking the optimal array element spacing, or the desired array layout. Thus, the application of state-of-the-art direction of arrival (DoA) estimation algorithms may not be possible. We propose a solution for passive 3D localization and tracking using a wideband acoustic array of arbitrary shape, and validate the algorithm in multiple experiments, involving both active and passive targets.Part of the research in this thesis has been supported by the EU H2020 program under project SYMBIOSIS (G.A. no. 773753).This work has been supported by IMDEA Networks InstitutePrograma de Doctorado en Ingeniería Telemática por la Universidad Carlos III de MadridPresidente: Paul Daniel Mitchell.- Secretario: Antonio Fernández Anta.- Vocal: Santiago Zazo Bell

    MSAT-X: A technical introduction and status report

    Get PDF
    A technical introduction and status report for the Mobile Satellite Experiment (MSAT-X) program is presented. The concepts of a Mobile Satellite System (MSS) and its unique challenges are introduced. MSAT-X's role and objectives are delineated with focus on its achievements. An outline of MSS design philosophy is followed by a presentation and analysis of the MSAT-X results, which are cast in a broader context of an MSS. The current phase of MSAT-X has focused notably on the ground segment of MSS. The accomplishments in the four critical technology areas of vehicle antennas, modem and mobile terminal design, speech coding, and networking are presented. A concise evolutionary trace is incorporated in each area to elucidate the rationale leading to the current design choices. The findings in the area of propagation channel modeling are also summarized and their impact on system design discussed. To facilitate the assessment of the MSAT-X results, technology and subsystem recommendations are also included and integrated with a quantitative first-generation MSS design

    Design and Implementation of Belief Propagation Symbol Detectors for Wireless Intersymbol Interference Channels

    Get PDF
    In modern wireless communication systems, intersymbol interference (ISI) introduced by frequency selective fading is one of the major impairments to reliable data communication. In ISI channels, the receiver observes the superposition of multiple delayed reflections of the transmitted signal, which will result errors in the decision device. As the data rate increases, the effect of ISI becomes severe. To combat ISI, equalization is usually required for symbol detectors. The optimal maximum-likelihood sequence estimation (MLSE) based on the Viterbi algorithm (VA) may be used to estimate the transmitted sequence in the presence of the ISI. However, the computational complexity of the MLSE increases exponentially with the length of the channel impulse response (CIR). Even in channels which do not exhibit significant time dispersion, the length of the CIR will effectively increase as the sampling rate goes higher. Thus the optimal MLSE is impractical to implement in the majority of practical wireless applications. This dissertation is devoted to exploring practically implementable symbol detectors with near-optimal performance in wireless ISI channels. Particularly, we focus on the design and implementation of an iterative detector based on the belief propagation (BP) algorithm. The advantage of the BP detector is that its complexity is solely dependent on the number of nonzero coefficients in the CIR, instead of the length of the CIR. We also extend the work of BP detector design for various wireless applications. Firstly, we present a partial response BP (PRBP) symbol detector with near-optimal performance for channels which have long spanning durations but sparse multipath structure. We implement the architecture by cascading an adaptive linear equalizer (LE) with a BP detector. The channel is first partially equalized by the LE to a target impulse response (TIR) with only a few nonzero coefficients remaining. The residual ISI is then canceled by a more sophisticated BP detector. With the cascaded LE-BP structure, the symbol detector is capable to achieve a near-optimal error rate performance with acceptable implementation complexity. Moreover, we present a pipeline high-throughput implementation of the detector for channel length 30 with quadrature phase-shift keying (QPSK) modulation. The detector can achieve a maximum throughput of 206 Mb/s with an estimated core area of 3.162 mm^{2} using 90-nm technology node. At a target frequency of 515 MHz, the dynamic power is about 1.096 W. Secondly, we investigate the performance of aforementioned PRBP detector under a more generic 3G channel rather than the sparse channel. Another suboptimal partial response maximum-likelihood (PRML) detector is considered for comparison. Similar to the PRBP detector, the PRML detector also employs a hybrid two-stage scheme, in order to allow a tradeoff between performance and complexity. In simulations, we consider a slow fading environment and use the ITU-R 3G channel models. From the numerical results, it is shown that in frequency-selective fading wireless channels, the PRBP detector provides superior performance over both the traditional minimum mean squared error linear equalizer (MMSE-LE) and the PRML detector. Due to the effect of colored noise, the PRML detector in fading wireless channels is not as effective as it is in magnetic recording applications. Thirdly, we extend our work to accommodate the application of Advanced Television Systems Committee (ATSC) digital television (DTV) systems. In order to reduce error propagation caused by the traditional decision feedback equalizer (DFE) in DTV receiver, we present an adaptive decision feedback sparsening filter BP (DFSF-BP) detector, which is another form of PRBP detector. Different from the aforementioned LE-BP structure, in the DFSF-BP scheme, the BP detector is followed by a nonlinear filter called DFSF as the partial response equalizer. In the first stage, the DFSF employs a modified feedback filter which leaves the strongest post-cursor ISI taps uncorrected. As a result, a long ISI channel is equalized to a sparse channel having only a small number of nonzero taps. In the second stage, the BP detector is applied to mitigate the residual ISI. Since the channel is typically time-varying and suffers from Doppler fading, the DFSF is adapted using the least mean square (LMS) algorithm, such that the amplitude and the locations of the nonzero taps of the equalized sparse channel appear to be fixed. As such, the channel appears to be static during the second stage of equalization which consists of the BP detector. Simulation results demonstrate that the proposed scheme outperforms the traditional DFE in symbol error rate, under both static channels and dynamic ATSC channels. Finally, we study the symbol detector design for cooperative communications, which have attracted a lot of attention recently for its ability to exploit increased spatial diversity available at distributed antennas on other nodes. A system framework employing non-orthogonal amplify-and-forward half-duplex relays through ISI channels is developed. Based on the system model, we first design and implement an optimal maximum-likelihood detector based on the Viterbi algorithm. As the relay period increases, the effective CIR between the source and the destination becomes long and sparse, which makes the optimal detector impractical to implement. In order to achieve a balance between the computational complexity and performance, several sub-optimal detectors are proposed. We first present a multitrellis Viterbi algorithm (MVA) based detector which decomposes the original trellis into multiple parallel irregular sub-trellises by investigating the dependencies between the received symbols. Although MVA provides near-optimal performance, it is not straightforward to decompose the trellis for arbitrary ISI channels. Next, the decision feedback sequence estimation (DFSE) based detector and BP-based detector are proposed for cooperative ISI channels. Traditionally these two detectors are used with fixed, static channels. In our model, however, the effective channel is periodically time-varying, even when the component channels themselves are static. Consequently, we modify these two detector to account for cooperative ISI channels. Through simulations in frequency selective fading channels, we demonstrate the uncoded performance of the DFSE detector and the BP detector when compared to the optimal MLSE detector. In addition to quantifying the performance of these detectors, we also include an analysis of the implementation complexity as well as a discussion on complexity/performance tradeoffs
    • …
    corecore