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Abstract

In modern wireless communication systems, intersymbol interference (ISI) intro-

duced by frequency selective fading is one of the major impairments to reliable data

communication. In ISI channels, the receiver observes the superposition of multiple

delayed reflections of the transmitted signal, which will result errors in the decision

device. As the data rate increases, the effect of ISI becomes severe. To combat

ISI, equalization is usually required for symbol detectors. The optimal maximum-

likelihood sequence estimation (MLSE) based on the Viterbi algorithm (VA) may be

used to estimate the transmitted sequence in the presence of the ISI. However, the

computational complexity of the MLSE increases exponentially with the length of the

channel impulse response (CIR). Even in channels which do not exhibit significant

time dispersion, the length of the CIR will effectively increase as the sampling rate

goes higher. Thus the optimal MLSE is impractical to implement in the majority of

practical wireless applications.

This dissertation is devoted to exploring practically implementable symbol detec-

tors with near-optimal performance in wireless ISI channels. Particularly, we focus

on the design and implementation of an iterative detector based on the belief prop-

agation (BP) algorithm. The advantage of the BP detector is that its complexity

is solely dependent on the number of nonzero coefficients in the CIR, instead of the

length of the CIR. We also extend the work of BP detector design for various wireless

applications.

Firstly, we present a partial response BP (PRBP) symbol detector with near-

optimal performance for channels which have long spanning durations but sparse

multipath structure. We implement the architecture by cascading an adaptive linear
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equalizer (LE) with a BP detector. The channel is first partially equalized by the LE

to a target impulse response (TIR) with only a few nonzero coefficients remaining.

The residual ISI is then canceled by a more sophisticated BP detector. With the

cascaded LE-BP structure, the symbol detector is capable to achieve a near-optimal

error rate performance with acceptable implementation complexity. Moreover, we

present a pipeline high-throughput implementation of the detector for channel length

30 with quadrature phase-shift keying (QPSK) modulation. The detector can achieve

a maximum throughput of 206 Mb/s with an estimated core area of 3.162 mm2 using

90-nm technology node. At a target frequency of 515 MHz, the dynamic power is

about 1.096 W.

Secondly, we investigate the performance of aforementioned PRBP detector under

a more generic 3G channel rather than the sparse channel. Another suboptimal partial

response maximum-likelihood (PRML) detector is considered for comparison. Similar

to the PRBP detector, the PRML detector also employs a hybrid two-stage scheme,

in order to allow a tradeoff between performance and complexity. In simulations, we

consider a slow fading environment and use the ITU-R 3G channel models. From

the numerical results, it is shown that in frequency-selective fading wireless channels,

the PRBP detector provides superior performance over both the traditional minimum

mean squared error linear equalizer (MMSE-LE) and the PRML detector. Due to

the effect of colored noise, the PRML detector in fading wireless channels is not as

effective as it is in magnetic recording applications.

Thirdly, we extend our work to accommodate the application of Advanced Televi-

sion Systems Committee (ATSC) digital television (DTV) systems. In order to reduce

error propagation caused by the traditional decision feedback equalizer (DFE) in DTV

receiver, we present an adaptive decision feedback sparsening filter BP (DFSF-BP)
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detector, which is another form of PRBP detector. Different from the aforementioned

LE-BP structure, in the DFSF-BP scheme, the BP detector is followed by a nonlin-

ear filter called DFSF as the partial response equalizer. In the first stage, the DFSF

employs a modified feedback filter which leaves the strongest post-cursor ISI taps un-

corrected. As a result, a long ISI channel is equalized to a sparse channel having only

a small number of nonzero taps. In the second stage, the BP detector is applied to

mitigate the residual ISI. Since the channel is typically time-varying and suffers from

Doppler fading, the DFSF is adapted using the least mean square (LMS) algorithm,

such that the amplitude and the locations of the nonzero taps of the equalized sparse

channel appear to be fixed. As such, the channel appears to be static during the

second stage of equalization which consists of the BP detector. Simulation results

demonstrate that the proposed scheme outperforms the traditional DFE in symbol

error rate, under both static channels and dynamic ATSC channels.

Finally, we study the symbol detector design for cooperative communications,

which have attracted a lot of attention recently for its ability to exploit increased

spatial diversity available at distributed antennas on other nodes. A system frame-

work employing non-orthogonal amplify-and-forward half-duplex relays through ISI

channels is developed. Based on the system model, we first design and implement an

optimal maximum-likelihood detector based on the Viterbi algorithm. As the relay

period increases, the effective CIR between the source and the destination becomes

long and sparse, which makes the optimal detector impractical to implement. In

order to achieve a balance between the computational complexity and performance,

several sub-optimal detectors are proposed. We first present a multitrellis Viterbi

algorithm (MVA) based detector which decomposes the original trellis into multiple

parallel irregular sub-trellises by investigating the dependencies between the received
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symbols. Although MVA provides near-optimal performance, it is not straightfor-

ward to decompose the trellis for arbitrary ISI channels. Next, the decision feedback

sequence estimation (DFSE) based detector and BP-based detector are proposed for

cooperative ISI channels. Traditionally these two detectors are used with fixed, static

channels. In our model, however, the effective channel is periodically time-varying,

even when the component channels themselves are static. Consequently, we modify

these two detector to account for cooperative ISI channels. Through simulations in

frequency selective fading channels, we demonstrate the uncoded performance of the

DFSE detector and the BP detector when compared to the optimal MLSE detector. In

addition to quantifying the performance of these detectors, we also include an analysis

of the implementation complexity as well as a discussion on complexity/performance

tradeoffs.
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Chapter 1

Introduction

In this chapter, we first introduce background and discuss motivations of our work

in Section 1.1. The major contributions of our work are summarized in Section 1.2.

Finally the organization of this dissertation is presented in Section 1.3.

1.1 Motivations

The demand for high speed wireless applications has been increasing rapidly recently.

A major challenge for reliable high speed data transmission is the intersymbol inter-

ference (ISI) introduced by frequency selective fading. For wideband communication

systems, different frequency components of the transmitted signal experience different

attenuation, leading to distorted signals at the receiver. The ISI can span hundreds

of symbols over a typical wireless channel for high data rate application. In order

to mitigate the ISI, effective channel equalization is required for the physical layer of

symbol detectors.

Historically multi-carrier (MC) modulation [1], particularly Orthogonal Frequency
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Division Multiplexing (OFDM) scheme, has been applied to a large variety of wide-

band communication systems to efficiently combat frequency selective fading. How-

ever, MC transmissions undergo several drawbacks, such as large peak-to-average-

power ratio (PAPR), intolerance to amplifier nonlinearities, and high sensitivity to

carrier frequency offsets (CFOs) [2], which result in an increased cost of front-end

design for strict demand on power amplification and highly accurate frequency syn-

chronization.

Meanwhile, single-carrier (SC) transmissions, as a conventional scheme, is still at-

tractive for its low cost in various applications, like high-definition television (HDTV)

[3], underwater acoustic communication [4]. Equalization techniques for SC transmis-

sions, either in time domain or in frequency domain, have been studied intensively.

As a promising candidate to mitigate ISI, single-carrier frequency domain equaliza-

tion (SC-FDE) [5] inherits similar merits of OFDM systems without the high PAPR

and CFOs issues. Like other FDE schemes, in order to prevent contamination of a

block by ISI from the previous block, redundant data called cyclic prefix, is inserted

at the beginning of each block at the transmitter, and is discarded from each block

at the receiver. The length of the cyclic prefix must be at least the impulse response

span of the multipath channel, which imposes extra overhead to the bandwidth us-

age. Single-carrier time domain equalization (SC-TDE) schemes are favorable due to

the high bandwidth efficiency. Among the well-known SC-TDE schemes, maximum-

likelihood sequence estimator (MLSE) using the Viterbi algorithm [6] provides op-

timal performance to combat ISI in the presence of additive white Gaussian noise

(AWGN). However, the computational complexity of MLSE increases exponentially

with the channel length, making it impractical to implement in the majority of prac-

tical wireless applications. Suboptimal approaches with reasonable complexity, in-

2



cluding linear equalizers (LEs) and nonlinear decision feedback equalizers (DFEs) [7],

have been widely used in the past. However, the performance of LEs is unsatisfactory

due to the noise enhancement issue, while the DFEs suffer the error propagation prob-

lem. Therefore, high-performance low-complexity SC-TDEs for severe ISI channels

are highly desirable.

1.2 Summary of Contributions

We are motivated to design and implement a group of symbol detectors in time domain

for SC transmissions over wireless ISI channels. Our contributions are summarized

as follows.

• Design and implementation of a low-complexity symbol detector for sparse chan-

nels.

Sparse channels are characterized as having long multipath delay spreads but

with few nonzero coefficients. Such channels arise in a number of modern wire-

less communication applications such as underwater acoustic communications,

hilly terrain broadband wireless communications, and high-definition television

(HDTV). We present a partial response belief propagation (PRBP) based sym-

bol detector with near-optimal performance for sparse channels. The archi-

tecture is implemented by cascading an adaptive LE with the BP detector,

which enables the detector to achieve a near-optimal error rate performance

with acceptable implementation complexity. Moreover, the architecture of the

BP detector is based on a pipelined layer processing scheme, which allows high

throughput with low complexity. We implement the proposed LE-BP detector

for channel length 30 with quadrature phase-shift keying (QPSK) modulation.

3



The detector can achieve a maximum throughput of 206 Mb/s with an estimated

core area of 3.162 mm2 using 90-nm technology node. At a target frequency of

515 MHz, the dynamic power is about 1.096 W.

We emphasize our contributions on the algorithm and hardware design in the

following aspects:

– We consider the use of Least Mean Square (LMS) algorithm in the target

impulse response (TIR) calculation, as the LMS algorithm is preferred for

practical hardware implementation.

– We extend the BP algorithm in the existing literature [8] from BPSK to

M -ary modulation system. If the complexity of the same algorithm in

binary representation is x, then the computation complexity for QPSK is

x2. It is analogous to the non-binary LDPC decoder complexity problem.

– We simplify the calculation of the check-to-variable (CTV) message using

Jacobian logarithm to facilitate hardware implementation.

– We conduct extensive experimental study to evaluate the impact of TIR

structure, the number of iterations, the number of non-zero coefficients,

and the fixed-point quantization.

– To the best of our knowledge, this is the first implementation of belief

propagation symbol detector. Existing works do not consider hardware

implementation issues.

– The use of layer processing here is different than conventional LDPC de-

coding due to the fact that the channel matrix is Tœplitz and contains

floating point numbers (as opposed to LDPC decoding where the parity

check matrix is binary, and not Tœplitz). We modify the BP algorithm

4



in a novel way that exploits this structure. The architecture is different

from LDPC decoder because the channel matrix is time varying and the

actual computation is different. Also, most of the LDPC work are focused

on binary and this detector is focused on QPSK (or non-binary). The

computation is so complex such that we have to use serialized architecture

to make the area/power under the budget.

– To balance the tradeoff between the hardware efficiency and error per-

formance, we study the choosing of the implementation parameters, e.g.

the length of the prefilter, the number of nonzero taps, the number of

iterations, by simulations.

• Performance study of the PRBP detector over frequency-selective fading chan-

nels.

We study the performance of the aforementioned PRBP detector under a more

generic 3G channel rather than the sparse channel. Another suboptimal par-

tial response maximum-likelihood (PRML) detector, which has been shown to

be effective in high-density magnetic recording applications, is considered for

comparison. Similar to the PRBP detector, the PRML detector also employs

a hybrid two-stage scheme, in order to allow a tradeoff between performance

and complexity. The first stage of the PRML detector is a linear filter which

transforms the original channel to a very short channel. The residual ISI is then

cancelled in the second stage using the MLSE. In simulations, we consider a slow

fading environment and use the ITU-R 3G channel models. From the numeri-

cal results, it is shown that in frequency-selective fading wireless channels, the

PRBP detector provides superior performance over both the traditional mini-
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mum mean squared error linear equalizer (MMSE-LE) and the PRML detector.

We emphasize our contributions in the following aspects:

– The performance of the PRBP detector in realistic wireless channels is

illustrated for the first time, while in previous works, the performance

simulation is limited to either a simple 3-tap/5-tap equipower slow fading

channel or underwater acoustic channels.

– In order to provide reference for the PRBP detector design for 3G wireless

applications, we also discuss several implementation issues on the PRBP

detector.

– Through simulations, we show that the PRML detector is not as useful as

it is in high density magnetic recording applications, since the spectrum

of the TIR does not always well match that of the CIR, which introduces

increased colored noise for the MLSE at the second stage.

• Hybrid DFSF-BP detector for ATSC DTV receivers.

We extend our work to accommodate the application of ATSC DTV systems.

In order to reduce error propagation caused by the traditional decision feedback

equalizer (DFE) in DTV receiver, we present a hybrid BP based detector, con-

sisting of an adaptive decision feedback sparsening filter (DFSF) as the partial

response equalizer, and the BP detector. In the first stage, the DFSF employs

a modified feedback filter which leaves the strongest post-cursor ISI taps uncor-

rected. As a result, a long ISI channel is equalized to a sparse channel having

only a small number of nonzero taps. In the second stage, the BP detector is

applied to mitigate the residual ISI.

We emphasize our contributions in the following aspects:
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– Our idea is conceived from the scheme in [9], though the major difference

from previous work is that our scheme targets 8-VSB-based ATSC DTV

systems and is suitable for channels that experience Doppler fading; [9]

only considers static channels and BPSK modulation.

– Besides the multipath fading, Doppler fading is another distortion effects

of the ATSC channel. To tackle the Doppler fading, the DFSF is adapted

using the LMS algorithm, such that the amplitude and the locations of the

nonzero taps of the equalized sparse channel appear to be fixed. As such,

the channel appears to be static during the second stage of equalization

which consists of the BP detector.

– We assess the error performance of the proposed scheme by simulation un-

der static/dynamic ATSC DTV channel models. Simulation results show

that the proposed detector outperforms the traditional DFE in both static

and dynamic environments.

• Symbol detector design for cooperative communications.

Cooperative communications have attracted a lot of attention recently for its

ability to exploit increased spatial diversity available at distributed antennas

on other nodes. However, limited research has yet been conducted into the

implementation issues of relaying and cooperation. We investigate design and

implementation of optimal and sub-optimal detectors for half-duplex relays in

frequency selective fading channels encountered in practice.

We emphasize our contributions in the following aspects:

– A system framework employing non-orthogonal amplify-and-forward half-

duplex relays through ISI channels is developed.
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– Based on the system model, we design and implement an optimal MLSE

detector based on the Viterbi algorithm.

– In order to achieve a balance between the computational complexity and

performance, several sub-optimal detectors are proposed. We first present

a multitrellis Viterbi algorithm (MVA) based detector which decomposes

the original trellis into multiple parallel irregular sub-trellises by investi-

gating the dependencies between the received symbols.

– The decision feedback sequence estimation (DFSE) based detector and BP

detector are proposed for cooperative ISI channels. Traditionally these two

detectors are used with fixed, static channels. In our model, however, the

effective channel is periodically time-varying, even when the component

channels themselves are static. Consequently, we modify these two detector

to account for cooperative ISI channels.

– Through simulations in frequency selective fading channels, we demon-

strate the uncoded performance of the DFSE detector and the BP detector

when compared to the optimal MLSE detector.

– In addition to quantifying the performance of these detectors, we also

include an analysis of the implementation complexity as well as a discussion

on complexity/performance tradeoffs.

1.3 Outline

This dissertation is organized as follows.

Chapter 2 presents the design and implementation of the PRBP detector for sparse

channels. We first introduce related literatures on sparse channel symbol detectors,
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and give the communication system model. The algorithms for the PRE and BP

detector are described, and then the overall architecture and individual blocks are

discussed in details. Finally we show the simulation performance and implementation

results.

Chapter 3 compares the performance of the PRBP detector with the PRML de-

tector under ITU-R 3G channel models. The PRML detector is briefly introduced

first. Numerical results are given afterwards. The performance of the traditional

MMSE-LE is also given as the benchmark. We conclude with discussions on several

implementation issues.

Chapter 4 presents the DFSF-BP detector for ATSC DTV receivers. We first

introduce the background of the ATSC DTV systems, and present the the system

model for time-varying channels. The algorithm of DFSF-BP detector is given, and

the performance of the proposed detector is evaluated in both static and dynamic

ATSC channels.

Chapter 5 shows several symbol detectors for cooperative communications in ISI

channels. The background of cooperative communications is introduced. After devel-

oping a system model for the case of AF relays in ISI channels, we first present the

optimal MLSE detector. Next we propose the MVA detector, the DFSE detector, and

the BP detector to deal with the periodically time-varying and sparse cooperative ISI

channels. At last, we demonstrate the uncoded performance of the DFSE detector

and the BP detector in frequency selective fading channels, and we also include an

analysis of the implementation complexity.

Chapter 6 draws the conclusions and discusses open issues.
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Chapter 2

Belief Propagation Based Detector

for Sparse Channels

In this chapter, we present the design and implementation of a partial response belief

propagation (PRBP) detector for communication channels which have long spanning

durations but sparse multipath structure. The architecture of the PRBP detector

is implemented by cascading a partial response equalizer (an adaptive LE) with a

BP detector, which enables the detector to achieve a near-optimal error rate per-

formance with acceptable implementation complexity. The chapter is organized as

follows. Related work on detectors for sparse channels is introduced in Section 2.1. In

Section 2.2, we gives the communication system model in consideration. The design

of the partial response equalizer is described in Section 2.3.1. The factor graph rep-

resentation and BP algorithm are described in Section 2.3.2 and the implementation

of the symbol detector is given in Section 2.4. We show the simulation performance

and implementation results in Section 2.5 and Section 2.6, followed by conclusions in

Section 2.7.
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2.1 Introduction

Sparse channels are characterized as having long multipath delay spreads but with

few nonzero coefficients. Such channels arise in a number of modern wireless com-

munication applications. For instance, in underwater acoustic communications, the

intersymbol interference (ISI) can span several hundreds of symbols but the multipath

structure is usually very sparse [4]. In hilly terrain broadband wireless communica-

tions [10] and high-definition television (HDTV) [3], the delay profile also exhibits a

sparse channel impulse response (CIR).

In these applications, ISI is one of the major impairments to reliable symbol

detection. The optimal maximum-likelihood (ML) detector based on the Viterbi

algorithm (VA) may be used to estimate the transmitted sequence in the presence

of the ISI [7]. However, the computational complexity of the ML detector increases

exponentially with the delay spread of the channel. Thus, the optimal ML detector is

impractical for sparse channels whose delay spread is usually very long. Near-optimal

detectors for sparse channels have been investigated by several researchers. The

parallel trellis Viterbi algorithm (PTVA) [11] reformulated the original single trellis

into a set of independent trellises which could operate in parallel and have much less

complexity. The PTVA requires that the sparse channel have equi-spaced coefficients,

however, which often cannot be satisfied in practice. Although a generalized PTVA

is proposed in [11] to address general sparse channels, optimal performance can be

guaranteed only if the CIR is well matched to an equi-spaced structure. A near-

optimal detector based on a multitrellis Viterbi algorithm (MVA) [12] was proposed

which decomposes the trellis into multiple irregular sub-trellises by investigating the

dependencies between the received symbols. It was shown that the complexity does
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not depend on the channel length but only on the number of nonzero coefficients.

However, the trellis decomposition is not straightforward for a general sparse channel.

Decision feedback sequence estimation (DFSE) [13, 14], which is a popular scheme

for long ISI channels, can also be an alternative for sparse channels. However, it

only yields high performance if the CIR is minimum-phase. The whole system could

be unstable, if a prefilter is used in front of the DFSE to transform the CIR to

its minimum-phase equivalent. In a recent work, iterative belief propagation (BP)

detectors have been proposed for ISI channels [8, 15, 16]. It has been shown in [15]

that, for an uncoded system, the BP detector achieves near-optimal performance

over frequency selective ISI channels. Furthermore, the BP detector has a complexity

which only depends on the number of nonzero channel coefficients, and thus is very

suited for sparse channels.

The BP algorithm, also known as the message passing algorithm or sum-product

algorithm, has been widely used for iterative decoding of low-density parity-check

(LDPC) codes [17], and its implementation has been well studied in [18–22]. How-

ever, the implementation of a BP detector for ISI channels is remarkably different

from the LDPC decoder in the following aspects. Firstly, LDPC codes are usually

designed to have a structure that facilitates node processing in parallel and reduces

the complexity of message passing during the iterative decoding process; an example

of such structured codes is quasi-cyclic (QC) LDPC codes. In the case of LDPC

decoding, the structured parity check matrix consists of purely binary values and it

is effectively a constant matrix. For BP-based symbol detection in ISI channels, the

analogous Tœplitz channel matrix is not constrained to the binary numbers, is not a

fixed constant, and can even be time-varying. Consequently, it is difficult to exploit

parallelism in the BP detector, and one must resort to serial processing. Secondly,
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the calculation of messages passing between nodes is significantly more complex for

symbol detection than for LDPC decoding. In fact, the complexity of the BP de-

tector increases exponentially with the number of nonzero channel coefficients which

makes it impractical to implement BP detectors even for sparse channels where the

number of nonzero coefficients is on the order of 10. One solution to permit the use

of near-optimal BP detectors is to first pass the received signal through a partial

response equalizer (PRE) [8] which equalizes the original sparse channel to an even

more sparse channel with fewer nonzero coefficients. This permits the design effort

of the BP detector to be greatly mitigated while maintaining near-optimal perfor-

mance [8]. Thirdly, the channel matrix for the BP detector is Tœplitz and therefore

has a banded structure which simplifies the wire routing for the message passing.

By investigating the aforementioned differences, we present an implementation of

an efficient symbol detector for sparse channels as in Fig. 2.1. The symbol detector

consists of two blocks: the PRE in the form of an adaptive LE, and the BP detector.

In the PRE, the channel is first partially equalized to a target impulse response

(TIR) which is designed to have only a small, fixed number of nonzero coefficients.

The coefficients of PRE and TIR are obtained based on the minimum mean squared

error (MMSE) criterion, which is designed adaptively using the Least Mean Square

(LMS) algorithm. Once the coefficients of the PRE and TIR are computed, the partial

equalization is carried out by a finite impulse response (FIR) filter, and the residual

ISI is eliminated by the BP detector.

The architecture of the BP detector is based on a pipelined layer processing

scheme, which allows high throughput with low complexity. The BP detector is

also designed to be reconfigurable so that it can adapt to time-varying ISI channels.

Since the complexity of the BP detector merely scales with the number of nonzero

13



channel coefficients, we limit the nonzero coefficients of the TIR to keep a reasonable

complexity of the BP block. Note that a system designer can specify the TIR to be

sparse even when the original CIR is not sparse; as pointed out in [8], this implies

that the symbol detector is general enough to work even for non-sparse channels. We

implement the proposed symbol detector for quadrature phase-shift keying (QPSK)

modulation. We consider a sparse channel with 30 coefficients, a PRE with 100 coef-

ficients, and a TIR designed to have 3 nonzero coefficients. The BP detector operates

on 1024 signal samples for 5 iterations per frame. The target frequency for synthesis

is set as 515 MHz, for an equivalent throughput of 206 Mb/s. The synthesized re-

sult shows an estimated area of 3.162 mm2 in TSMC 90-nm technology, and a total

dynamic power of 1.096 W.

2.2 System Model

We first introduce some notations for the description of the communication system.

Assume that a length N sequence of M -ary symbols x[k] ∈ {a0, a1, ..., aM−1} is trans-

mitted through a complex ISI channel whose equivalent discrete-time CIR [23] is

described as h = [h[0], h[1], ..., h[Lh− 1]]T , where Lh is the length of the CIR. Letting

Dh be the number of nonzero coefficients of h, then Dh � Lh for sparse channels.

The received signal sample at time instant k can be expressed as

y[k] =

Lh−1∑
i=0

h[i]x[k − i] + w[k],

where w[k] is complex additive white Gaussian noise (AWGN) with noise power σ2.

At the receiver, the symbol detector consists of two cascaded components: an
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Figure 2.1: System model of the partial response belief propagation detector.

adaptive PRE denoted by f , and a BP detector. The system model is shown in

Fig. 2.1. The goal of the adaptive PRE is to equalize the original CIR h to a TIR

g which has fewer nonzero coefficients, thus making second stage detection via be-

lief propagation computationally efficient. The adaptive PRE and BP detector are

discussed in detail in the next section.

2.3 Design of the Symbol Detector

2.3.1 Partial Response Equalizer

The PRE equalizes the channel to a sparse TIR, and is designed by jointly finding the

set of PRE and TIR coefficients which minimize the mean squared error (MSE). The

PRE is implemented as a finite impulse response (FIR) filter whose coefficients are

f = [f [0], f [1], ..., f [Lf −1]]T where Lf is the chosen length of the PRE. Conventional

wisdom for classical equalizer design [7] dictates that the equalizer length should be

approximately 5 times the channel length Lh. Here, however, the PRE has more

degrees of freedom since it does not need to equalize the channel to a single spike.

As we will show empirically in Section 2.5, an equalizer length of about 3 times the
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channel length (i.e. choosing Lf ≈ 3Lh) seems sufficient in practice.

We denote the TIR by g = [g[0], g[1], ..., g[Lg − 1]]T where Lg is the length of the

TIR, and denote the nonzero version of the TIR by g′ = [g[l1], g[l2], . . . , g[lDg ]]T where

Dg is the number of nonzero coefficients. Choosing Dg in the sparse TIR g is a tradeoff

between error-rate performance and detector complexity. When Dg is smaller, the

complexity of the BP detector is reduced but the overall error-rate performance is

degraded. A larger value of Dg adds complexity to the BP detector but also leads

to better error-rate performance. In general, the nonzero coefficients of g are chosen

so that Dg ≤ Dh � Lh. We note that the case of Dg = 1 corresponds to classical

equalization (in which case the BP detector can be reduced to a memoryless slicer),

while the choice of Dg = Dh corresponds to a full-blown BP detector. The locations

of these nonzero coefficients in the TIR must be also placed properly. There are

Lg-choose-Dg possible sets of locations, and several approaches have been proposed

[24,25] for choosing the locations to optimize various criteria. For simplicity we adopt

the approach in [8] which chooses the locations of the nonzero coefficients of the TIR

to coincide with the dominant arrivals in the CIR. We note that this approach assumes

that the receiver has some knowledge of the channel h, though it need not know the

CIR precisely.

The nonzero coefficients in the TIR as well as the PRE coefficients are then cal-

culated jointly using the MMSE criterion [26], which causes the combined response

of the CIR and PRE to approximate the TIR. Direct computation of the MMSE

solution of the PRE and TIR involves solving a generalized eigen-decomposition and

requires full knowledge of the channel h. In order to make the implementation fea-

sible, the PRE can be designed adaptively. In [8], the recursive least squares (RLS)

algorithm was employed. Here, we follow the approach of [26] by employing two least
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Algorithm 2.1 LMS algorithm for PRE design .
Parameters:
TIR at time n: gn = [gn[0], gn[1], . . . , gn[Lg − 1]]T

Indices of nonzero coefficients of the TIR: l1, l2, ...lDg

Nonzero version of the TIR at time n:
g′n = [gn[l1], gn[l2], . . . , gn[lDg ]]T :
PRE at time n: fn = [fn[0], fn[1], . . . , fn[Lf − 1]]T

Step size for TIR updating: µg
Step size for PRE updating: µf
Received symbols vector at time n:
y(n) = [y[n], y[n− 1], ..., y[n− Lf + 1]]T

Transmitted symbols vector at time n:
x(n) = [x[n− l1], x[n− l2], ..., x[n− lDg ]]T

Initialization:
Set the middle element of f0 to 1, and set the first element of g′0 to 1.

Computation:
For n = 0, 1, ..., compute

1. en = fn
Ty(n)− g′n

Tx(n)

2. fn+1 = fn − µfy(n)Hen

3. g′n+1 = g′n + µgx(n)Hen

4. Normalize g′n+1

mean squares (LMS) algorithms in tandem to jointly calculate the PRE and TIR.

While this algorithm does not require knowledge of h, it does require the availability

of known training data. The dual LMS algorithm is summarized in Algorithm 2.1.

Since only the nonzero coefficients are updated in each iteration, the TIR can be

represented by the nonzero values in g′ and their locations l1, l2, ..., lDg . After the

convergence of the LMS algorithm, the PRE output signal at time n is z[n] = fTy(n)

which in the absence of noise is ideally equal to g′Tx(n).
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Rm→n(i) = log

∑
∀x(m):x[n]=ai

exp

{
−|z[m]−g′Tx(m)|2

2σ2 +
∑

j∈N (m)\n
Qj→m(ψ−1(x[j]))

}
∑

∀x(m):x[n]=a0

exp

{
−|z[m]−g′Tx(m)|2

2σ2 +
∑

j∈N (m)\n
Qj→m(ψ−1(x[j]))

}
(2.1)

≈ max
∀x(m):x[n]=ai

−
∣∣z[m]− g′Tx(m)

∣∣2
2σ2

+
∑

j∈N (m)\n

Qj→m(ψ−1(x[j]))


− max
∀x(m):x[n]=a0

−
∣∣z[m]− g′Tx(m)

∣∣2
2σ2

+
∑

j∈N (m)\n

Qj→m(ψ−1(x[j]))

 ,

i = 0, 1, ...,M − 1. (2.2)

2.3.2 Belief Propagation Detection Algorithm

The residual ISI of PRE output is further mitigated by a near-optimal BP detector,

based on the factor graph [17] which represents the input-output relationship of an

ISI channel. Fig. 2.2 shows the factor graph of a simple example with channel impulse

response of [h[0], 0, h[2]]T . In the factor graph, channel input symbols x[0], x[1], ... are

represented by the circles on the top ( known as variable nodes or bit nodes), and the

channel output signals y[0], y[1], ... are denoted by the squares at the bottom (known

as check nodes or function nodes). The connections (edges) between variable nodes

and check nodes represent dependencies between input and output. For example, y[3]

is connected to x[1] and x[3], since y[3] = h[0]x[3] + h[2]x[1] + w[3] in the example.

The BP algorithm is also referred to as a two-phase message passing or sum-

product algorithm, in which check-to-variable (CTV) and variable-to-check (VTC)

messages are transmitted along the edges to update each other iteratively. During

the first phase, the CTV message is computed at the check nodes based on the known
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Figure 2.2: Factor graph of an example channel [h[0], 0, h[2]]T .

channel coefficients and the a priori probability information from the variable nodes.

The updated message is then passed from each check node to its connected variable

nodes. During the second phase, the variable nodes update their a priori information

and send it back to their connected check nodes. The same procedure is repeated

iteratively. After several iterations, the variable nodes are accumulated with sufficient

likelihood information and a hard decision can be made for each input symbol. The

operations of the BP algorithm in log-likelihood ratio (LLR) domain are summarized

as follows. Note that since the PRE has been applied, we assume that the sparse

channel is the TIR g (whose nonzero version is g′), and channel input and output at

time n are x[n] and z[n], respectively.

2.3.2.1 Calculating CTV messages

The extrinsic message from check node m to variable node n is computed as (2.1)

if the two nodes are connected, where x(m) = [x[m− l1], x[m− l2], . . . , x[m− lDg ]]T

is the data vector and Qj→m is the a priori information from variable node j for

check node m, and N (m) is the set of variable nodes connected with check node

m. We use the mapping function ψ : {0, 1, ...M − 1} → {a0, a1, ..., aM−1} to denote
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the modulation on the M -ary constellation, and the demapping function is expressed

as ψ−1 : {a0, a1, ..., aM−1} → {0, 1, ...M − 1}. The nonlinear log-sum-exponential

function in (2.1) could be implemented with look-up tables (LUTs), but it is not

desirable because the LUTs would require a large size memory. As a good approxi-

mation, the calculation in (2.1) can be simplified as (2.2) by Jacobian logarithm with

negligible performance loss [27]. Note that for M -ary modulation, there are M − 1

LLRs Rm→n(1), Rm→n(2), ...Rm→n(M − 1) need to be calculated from check node m

to variable node n, and Rm→n(0) = 0 by (2.2).

2.3.2.2 Calculating VTC messages

After receiving the updated extrinsic message from the check nodes, the variable nodes

update the a priori information for the next iteration. The a priori information at

variable node n for check node m is calculated as

Qn→m(i) =
∑

j∈M(n)\m

Rj→n(i), i = 0, 1, ...,M − 1, (2.3)

where M(n) is the set of check nodes connected with variable node n. Note that for

M -ary modulation, there are M − 1 LLRs Qn→m(1), Qn→m(2), ..., Qn→m(M − 1) need

to be obtained from variable node n to check node m, and Qn→m(0) = 0 by (2.1) and

(2.3). Then we go back to the first step for the next iteration.

2.3.2.3 Summing up and decision

After iterating the above two steps for several times, the accumulated LLRs for vari-

able node n are
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Λn(i) =
∑

j∈M(n)

Rj→n(i), i = 0, 1, ...,M − 1. (2.4)

By comparing these LLR sums, an estimate of the transmitted symbol sequence x[n]

can be made by

x̂[n] = ψ(arg
i

max Λn[i]), i = 0, 1, ...,M − 1.

2.4 Architecture of the Symbol Detector

2.4.1 Overall Architecture of the PRBP Detector

In this section, we present a low-complexity high-throughput architecture of the pro-

posed symbol detector. The overall system architecture of the proposed sparse channel

detector is shown in Fig. 2.3. The LMS block runs the adaptive algorithm to obtain

the PRE coefficients f and TIR coefficients g. Since the BP algorithm processes sym-

bol detection frame by frame, a serial-to-parallel (S/P) converter is placed before the

BP block to buffer N symbols where N is the frame length.

We further assume that the coherence time of the channel is sufficiently large so

that the channel can be considered static during each frame of N symbol periods.

Consequently, the LMS algorithm only needs to be carried out once per frame. We

use a digital signal processor (DSP) to process the LMS update calculation for several

reasons. Since the PRE length Lf can be very long, an ASIC implementation would

consume excessive circuit area. A DSP is also more accurate for recursive algorithms

if floating-point is used. In addition, the LMS adaptation is only performed once per

block of training sequence and a regular DSP or embedded processor is sufficient to

handle the computation. Thus, a DSP provides an efficient solution for LMS block
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Figure 2.3: Architecture of the PRBP symbol detector.

as in Figure 3.

For high data rate application, we suggest the implementation of both PRE and

BP algorithms in an FPGA or a customized ASIC. Since the length of the PRE is

usually large, a circuit implementation can exploit pipelining and parallelism for the

large filter. As the BP detection algorithm is very complex, a customized circuit

implementation is the best solution to achieve high throughput. The architectures of

the PRE and BP blocks are discussed in the following subsections.

2.4.2 PRE as a Folded FIR Filter

The folded FIR filter architecture is selected as an efficient implementation of the

PRE block. Since the BP block is the most complex and limits the overall detector

throughput, the PRE is designed such that the filter output matches the input rate

requirement of the BP block. For each frame, the BP detector takes N samples

and processes for nit iterations, before outputs the detected symbols. Considering

the pipelined layer processing architecture, which will be discussed in Section 2.4.3,

applied to the BP detector, it takes N × nit cycles to process one frame of received

symbols. The function of the S/P block is to buffer the next frame while the current

frame is being processed, thus the PRE block only needs to output one sample per
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nit clock cycles. For area efficiency, we implement a partly serial FIR filter using the

folding technique [28]. The folding factor of the FIR filter is nit, that is, one multiplier-

accumulator (MAC) is allocated for nit filter coefficients. Hence, the number of MACs

used in the PRE is dLf/nite. The block diagram of the folded filter design is given in

Fig. 2.4.

Given the symbol detector running at frequency f and the number of BP iterations

nit, we can estimate a throughput of f/nit symbol per second. For M -ary modulation,

the bit rate is

Throughput(bps) = (f/nit) log2M (2.5)

2.4.3 Pipelined Architecture for Layer Processing

Prior to the discussion of the hardware architecture for the BP detector, we first

give the Tœplitz channel matrix which shows dependency between the input and

output. As an example, Fig. 2.5 show the matrix for a channel with only three

nonzero coefficients. The channel matrix is similar to parity-check matrix in quasi-

cyclic LDPC codes. Each check node corresponds to a column index, and its related

variable nodes corresponds to the row indices. The architecture design for a BP

detector can be referenced to the existing LDPC decoder design [18–22]. Here we

adopt a sequential BP algorithm, which is performed in a way that each check node

and its connected variable nodes are treated as a layer. Within each layer processing,

we update the LLRs from the check node (e.g. check node m) to its neighboring

variable nodes N (m), and then update the accumulated LLRs associated to these

variable nodes. These updated messages are then used in the next layer processing. As

an illustration, the sequential BP processing is shown in Fig. 2.6. Previous studies [29]

also showed that layered BP algorithm improves the convergence speed by reducing
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Figure 2.4: Block diagram of the PRE folded filter design.
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Figure 2.5: Tœplitz channel matrix vs. parity-check matrix.

the number of iterations.

However, there are major differences between the BP detection algorithm and

LDPC decoding algorithm. The structure of detector channel matrix is time-varying,

while LDPC parity-check matrix is usually fixed. In LDPC decoders, the struc-

tured property of the parity-check matrix can be decomposed into cyclic permutation

submatrices, which allows for tradeoff between hardware complexity and decoding

throughput using the partially parallel architecture [20, 22]. In contrast, the paral-

lelism is difficult to exploit for the BP detector since the channel matrices are different

frame by frame. If multiple layers are processed simultaneously, it is possible that

one variable node will receive the updated messages from different check nodes, then

the memory writing conflict will occur.

Another major difference between the BP detection algorithm and LDPC de-

coding algorithm is in the calculation of CTV messages. The calculation for the

BP detector operates in the Euclidean space. While for LDPC decoding, it oper-

ates in GF(2). Therefore, CTV calculation are much more complicated in a BP
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current layer next layer

Figure 2.6: An illustration of sequential BP processing.

detector. Recalling that the number of nonzero coefficients is Dg and the mod-

ulation order is M , there are Dg elements in x(m) and hence MDg instance of{
−|z[m]−g′Tx(m)|2

2σ2 +
∑

j∈N (m)\n
Qj→m(ψ−1(x[j]))

}
need to be calculated in order to ob-

tain the LLRs passing from a check node to its connected variable nodes. If each

instance requires 3 multiplications, there are 3MDg multiplications required for 1

CTV LLR calculation. Given that each layer updates the messages sequentially,

computing resource can be reused such that the total number of multipliers is

nmult = 3MDg . (2.6)

In a typical case, for example, Dg = 3, and M = 4 (QPSK), we need to allocate

3×43 = 192 multipliers to calculate the CTV LLRs. For the practical implementation

of a BP detector, the parameters M and Dg should be reasonably small. Since the

number of multipliers is exponential with respect to the constellation size M, the BP

detector approach is typically suited for lower-order QAM systems, such as BPSK

and QPSK modulations.
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The problem in the sequential BP algorithm is that each layer processing takes

a long time to execute due to the computational complexity according to (2.2). The

long processing latency for each layer results in a very low throughput rate. The

bottleneck can be overcome by pipelining the layer processing unit. For layered

processing scheme, the messages on the m-th layer are updated first, and messages

on the (m+ 1)-th layer are processed next. The two successive layer processings can

be pipelined without problem as there is no dependency. Note that the independence

between layers can be easily satisfied for sparse channels since the nonzero coefficients

are often widely separated. It is also observed from the channel matrix that the

maximum depth of the pipeline is equal to the shortest distance between the locations

of any two adjacent nonzero coefficients.

2.4.4 Cache-Memory Architecture for the BP Detector

The overall architecture of the BP detector is shown in Fig. 2.7. The BP detector

mainly consists of a layer processing unit (LPU) responsible for layer message update,

the LLR sum memory and CTV message memory which are used to store the belief

propagation messages, a cache which is a temporary storage for the LLRs of the nodes

currently being processed, and a decision unit for estimating the input symbols. Note

that control signals on each blocks are omitted for clearness.

The LPU is the core computing unit executing message updating expressed in

(2.2), (2.3) and (2.4). We note that the VTC messages Q used in (2.2) can be

obtained by LLR sum Λ and CTV messages R, i.e.

Qn→m(i) = Λn(i)−Rm→n(i), i = 0, 1, ...,M − 1
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according to (2.3) and (2.4). In order to minimize the hardware cost, we only store

and update Λ instead of Q since the memory for Q is about Dg times as large as the

memory for Λ. In each layer processing, the LPU first calculates the VTC messages

Q needed in (2.2), and then update the CTV messages R and LLR sums Λ. The

architecture of LPU is given in Fig. 2.8. The calculation of

max

−
∣∣z[m]− g′Tx(m)

∣∣2
2σ2

+
∑

j∈N (m)\n

Qj→m(ψ−1(x[j]))

 ,∀x(m) : x[n] = ai

is carried out in M square blocks for i = 0, 1, ...,M − 1 respectively. The architecture

for each square block is shown in the dashed box. Since there are MDg−1 different

cases of x(m), MDg−1 branches are implemented for each case. A pipeline architecture

is implemented in the LPU design such that it can take a new signal input every clock

cycle.

The updated R from LPU are stored back into the CTV message memory, and

they will be fetched from the memory in next iteration. There are (M − 1) LLRs for

each connection, and thus (M − 1)NDg LLRs for the entire factor graph. The size of

CTV message memory is (M − 1)NDg · qR where qR is the word length of the CTV

LLR.

The cache is a register bank only containing the accumulated LLRs of Lh variable

nodes being processed. This is similar to a “sliding window” that only needs to fetch

one new LLR from the Λ memory when LPU moves to process the next layer. The

updated Λ from LPU consists of Dg sets of LLRs corresponding to Dg connected

variable nodes, which is illustrated in Fig 2.6. The updated Λ may be used for the

following layer processing in a short time. For efficient memory operations, they are

written back to the cache to replace the old values. Only the Λ related to the leftmost
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Figure 2.7: Overall architecture of the BP detector.

variable node will be used in the next iteration, and they are stored back to the Λ

memory.

The LLR sum memory is used to store the content of Λ. There are (M − 1) LLRs

for each variable nodes. Thus the size of the LLR sum memory is (M−1)N ·qΛ where

qΛ is the word length of the LLR sum.

Particularly if the number of iterations is reached, the updated Λ from the LPU

do not need to store back to the cache or memory. They will be delivered directly to

the decision block for symbol decision and output.

2.4.5 Interconnect Network

The interconnect network between the memory units and the LPU is determined by

the channel matrix. Since the structure of channel matrix becomes trivial after the

PRE, memory access control and interconnection network in the BP detector are
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much simpler than LDPC decoder. Given the TIR g′ = [g[l1], g[l2], . . . , g[lDg ]]T , the

m-th layer is associated with the (m − l1)-th, (m − l2)-th, . . . , and (m − lDg)-th

variable nodes, i.e. N (m) = {m − l1,m − l2, . . . ,m − lDg}. When the sample z[m]

is in process in the LPU, Rm→(m−l1), Rm→(m−l2), . . . , Rm→(m−lDg ) are loaded from the

CTV memory, and Λm−l1 ,Λm−l2 , . . . ,Λm−lDg
are loaded from the LLR sum cache.

For the next layer process, the read/write addresses for the memories are updated

automatically by an increment of 1.

In practice, the sparse channel h may vary from time to time, and so do its

corresponding TIR g in both values and locations of coefficients. The BP detector

can easily adapt to time-varying channels just by changing the coefficients in LPUs

and write/read addresses of the memories accordingly.

2.5 Simulation Results and Error Performance

The performance of the proposed symbol detector is evaluated by simulations in terms

of symbol error rate (SER) versus signal-to-noise ratio per bit Eb/N0. In particular,

we consider a sparse channel with Lh = 30 taps, which is shown in Fig. 2.9. The effect

of the transmitter pulse shaping and the receiver matched filter has been included in

the channel model. QPSK modulation is selected, so that M = 4, and the transmitted

symbol has unit power. Each time the BP detector processes one frame with 1024

symbols.

Fig. 2.10 shows the performance for different length of PRE Lf , where nit = 5

iterations of message passing are applied and the number of nonzero coefficients in the

TIR is Dg = 3. As expected, the performance improves with longer Lf , though the

performance improvement is minimal once the length reaches Lf = 3Lh. Recall, the
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Figure 2.9: Sparse channel coefficients for the experimental setup.

complexity of LMS and PRE will also increase with Lf . In our implementation, the

length of the PRE is chosen as Lf = 100 ≈ 3Lh, and the number of MACs consumed

by the PRE is dLf/nite = 20. Considering the complex filter for QPSK modulation,

the number of multipliers is 20× 4 = 80.

Fig. 2.11 shows the performance for different number of nonzero coefficients in

TIR, where nit = 5 iterations of message passing are applied. To evaluate the effec-

tiveness of the symbol detector, we provide the performance of full BP detector with

Dg = 8 and the linear equalizer with memoryless slicer for comparison. At a SER of

10−5, the detector exhibits performance 5.5 dB better than the linear equalizer when

Dg = 8, 4 dB better when Dg = 4, around 3.5 dB better when Dg = 3, and 1 dB

better when Dg = 2. As discussed in Section 2.4.3, the complexity of BP detector

increases exponentially with Dg. By (2.6) the multiplier utilization is 48, 192, 768,

and 196608 for Dg = 2, Dg = 3, Dg = 4, and Dg = 8 respectively. Thus in our
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Figure 2.10: SER performance of the PRBP detector for different length of PRE Lf .

implementation example, we use Dg = 3 to ensure a good complexity/performance

tradeoff.

Fig. 2.12 shows the effect of different number of BP iterations, where the TIR

has Dg = 3 nonzero coefficients. We can see that the performance improvement is

marginal when nit is larger than 5. Since more iterations means more computing time

and thus lower throughput, we suggest using nit = 5 in practice.

2.6 Detector Implementation Results

The detector implementation in ASIC includes two main modules - the PRE block

and BP block. The same set of parameters as in Section 2.5 are applied for hardware

implementation: the channel length is 30; the number of nonzero taps in TIR is

3; the number of iterations in BP detection is 5. The pipelined layered processing
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Figure 2.13: SER performance of the PRBP detector for different fixed-point word
lengths.

architecture as described in Section 2.4.3 is adopted. The cache-memory architecture

presented in Section 2.4.4 is also implemented to store and transfer messages efficiently

in the BP detector.

Fixed point quantization is evaluated for the received signals and the belief prop-

agation messages. Fig. 2.13 shows the symbol error rates for different fixed point

quantization. For 8-bit word length, the fixed point performance is 0.2 dB away from

the floating point result at a SER of 10−4. The SER performance for 7-bit word

length is about 1 dB worse than the floating point result. Hereby, we apply 8 bits

word length quantization in this implementation.

The LMS block is implemented on a TI TMS320C6748 DSP, which operates at

456 MHz. The result shows that 10,779 clock cycles are needed for each calculation in

Algorithm 2.1. Assuming that 300 received samples are required for PRE calculation,
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the PRE and TIR information can be obtained within 7.09 ms.

The proposed symbol detector is implemented with TSMC 90-nm technology and

synthesized by Synopsys Design Compiler. The synthesis result shows that the maxi-

mum clock frequency is up to 515 MHz, the core area is 3.162 mm2, and the estimated

dynamic power is 1.096 W. The overall throughput is about 206 Mb/s calculated by

(2.5).

With respect to the implementation complexity, we compare the hardware resource

utilization for three schemes in Table 2.1: the proposed detector, the ML detector,

and the MMSE equalizer. Complex received signal and complex channel coefficients

are considered. For comparison purpose, the ML detector is implemented based on

the classic Viterbi algorithm. As the implementation of Viterbi-based decoder has

been well studied [30–33], we simply extend the classic architecture to the Viterbi-

based detector by calculating the Euclidean distance instead of Hamming distance for

branch metric calculation. Four banks of memory are used for pipelined output, and

the depth for each bank is equal to the traceback length, which is chosen as 5Lh in this

table. For the MMSE equalizer, we consider a fully parallel FIR filter implementation

using multipliers and adders. The latencies for different schemes are compared. The

decision delay is estimated as (Lf + Lh)/2 for the MMSE equalizer and the PRE.

The latency of the ML detector depends on the traceback scheme. We estimate

the latency as twice of the traceback length, i.e. 10Lh. Table 2.2 shows the actual

number of multipliers, adders, comparators and memory use in our implementation

of the proposed detector. Since direct implementation of a Viterbi-based ML detector

for channel length of 30 is astonishedly expensive in computations and not practical,

we omit the listing of resource usage of the ML detector in Table 2.2.

Due to the iterative nature of the BP algorithm, the PRBP detector has the draw-

37



Detector scheme PRBP detector MMSE equalizer

Multiplier 272 400

Adder 491 400

Comparator 180 —

Memory (KBytes) 10 —

Throughput (bit/s) 0.4f 2f

Latency (cycles) 5445 65

Table 2.2: Comparison of hardware complexity of different detector implementations.

backs of longer processing latency and reduced throughput. However, it demonstrates

much improved error performance with affordable complexity. For the parallel im-

plementation, the complexity of an MMSE equalizer is about the same as the BP

detector, but its performance is about 3.5 dB worse at SER of 10−5 than that of

the BP detector (Dg = 3, nit = 5 ) which is significant in practical communication

systems.

For comparison purpose, the PRBP detector is also implemented on the C6748

DSP processor. For one symbol output, it cost an average of 1,442 cycles, which leads

to a throughput of 632.5 Kb/s only. The comparison of the ASIC and DSP implemen-

tations are given in Table 2.3. The technology, core voltage, and power consumption

of the DSP are provided in [34,35]. It is shown that the ASIC implementation of the

PRBP detector has significantly higher throughput than the DSP implementation.

2.7 Conclusions

For symbol detection under sparse channels, the optimal maximum-likelihood se-

quence estimator is impractical due to its prohibitively high complexity, while the
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ASIC DSP

Technology 90 nm 65 nm

Core Voltage 1 V 1.3 V

Power 1.096 W 0.66 W

Throughput 206 Mb/s 632.5 Kb/s

Table 2.3: Comparison of the ASIC and DSP implementations.

MMSE linear equalizer is incapable to provide a superior performance. To trade off

between the performance and complexity, we investigated the design of a near-optimal

PRBP detector for sparse channels. This two-stage detector consists of the PRE and

BP detector. The PRE first equalize the sparse channel to a target impulse response

which has a limited number of nonzero channel coefficients. Next the residual ISI

is eliminated by the BP detector whose complexity depends merely on the number

of nonzero channel coefficients. By exploiting the characteristic of sparse channels,

a pipelined layer processing scheme is adopted in the BP detector to achieve high

throughput. The PRBP detector was implemented with TSMC 90-nm technology

for the first time. The implementation result showed a maximum throughput of 206

Mb/s, with an area of 3.162 mm2, and a total dynamic power of 1.096 W.
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Chapter 3

Performance of the BP-Based

Detector for 3G Channels

In Chapter 2, we present an implementable PRBP detector for sparse channels. Note

that a system designer can specify the TIR to be sparse even when the original CIR is

not sparse, which implies that the PRBP detector is general enough to work even for

non-sparse channels. In this chapter, we study the performance of the PRBP detector

under more generic ISI channels. The performance of another two-stage detector, the

partial response maximum-likelihood (PRML) detector, is also assessed for compar-

ison. The chapter is organized as follows. In Section 3.1, we first introduce related

background of symbol detectors that we will investigate in this chapter. The PRML

detector is briefly described in Section 3.2. Section 3.3 shows detailed simulation re-

sults, along with several remarks on the implementation issues. Finally, conclusions

are presented in Section 3.4.
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3.1 Introduction

In this chapter, we compare the performance of the PRBP detector with an alternative

implementable PRML detector [26,36–40]. Both detectors employ a hybrid two-stage

scheme, and allow a tradeoff between performance and complexity. PRML detectors

have demonstrated superior error-rate performance over classical equalization meth-

ods. In particular, these PRML techniques have shown to be effective in high-density

magnetic recording applications. Instead of removing all the ISI components from the

received signal, the PRML detector first conditions the long channel using a channel

shortening filter (CSF) which shortens the effective CIR to a TIR. A Viterbi-based

MLSE detector with reduced states is applied after the channel shortening. Note

that, since the CSF does not approximate an all-pass filter, the prefiltering will lead

to colored noise depending on the given CIR. This will subsequently degrade the error

performance of the second stage of the PRML detector, since the performance of the

MLSE detector is optimal only under white noise [39].

We study the performance of the two aforementioned two-stage symbol detec-

tors: the PRML detector and the PRBP detector, under frequency-selective fading

wireless channels. The performance of the traditional minimum mean squared error

based linear equalizer (MMSE-LE) is also given as the benchmark. ITU-R 3G chan-

nel models [41] with slow fading are considered in our simulation. Numerical results

show that in the experimental 3G channels, the PRBP detector provides superior

performance over the PRML detector and the MMSE-LE. The performance of the

PRBP in realistic wireless channels is illustrated for the first time, while in previ-

ous works [8], the performance simulation is limited to either a simple 3-tap/5-tap

equipower slow fading channel or underwater acoustic channels. In order to provide
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reference for the PRBP detector design for 3G wireless applications, we also discuss

several implementation issues on the PRBP detector. Moreover, through simulations,

we show that the PRML detector is not as useful in wireless fading channels as it

is in high density magnetic recording channels since the spectrum of the TIR is not

always well-matched to that of the CIR, and this introduces increased colored noise

for the MLSE in the second stage.

3.2 Partial Response Maximum-Likelihood (PRML)

Detector

Fig. 3.1 shows the system model of the PRML detector. The received signal y[k]

is first processed by a prefilter f which performs partial equalization. In the second

stage, a symbol detector is applied to mitigate the residual ISI components. Note

that this system model of the PRML detector is very similar to that of the PRBP

detector as shown in Fig. 2.1. For the PRML detector, the TIR g is a shortened

version of the CIR, while for the PRBP detector, the TIR g is a sparse version of

the CIR; in both cases, the TIR has a small number of nonzero entries. When the

TIR is chosen to have a single nonzero tap, the prefilter f is equivalent to a linear

equalizer. In that case, a simple memoryless slicer can optimally be employed as the

symbol detector to output the estimated symbol x̂[k].

For PRML detectors, the prefilter f serves as a CSF which shortens the CIR to

a reasonably short TIR, so that a conventional Viterbi-based MLSE detector can be

applied to eliminate the residual ISI. We adopt a widely used approach to design the

TIR and the CSF, which is to jointly minimize the MSE between the CSF output and

the TIR output under a unit-energy constraint [26]. In order to facilitate a practical
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Figure 3.1: System model of the partial response maximum-likelihood detector.

implementation, the TIR and the CSF can be optimized using adaptive algorithms

such as the least mean square (LMS) algorithm. After the convergence of the adaptive

algorithm, the combined response of the CIR and the CSF approximates the TIR

which contains Lg � Lh taps. Therefore, the complexity of the Viterbi detector can

be significantly reduced.

Since the CSF is not an all-pass filter, it can lead to colored noise, and the effect

of the colored noise can become severe when the spectra of the CIR and the TIR

are not well matched [39]. In certain wireless environments, the CIR appears to be

very long and sparse (see Fig. 3.2). Since the TIR taps are required to be contiguous

for the PRML detector, the corresponding CSF can lead to severe colored noise for

the second stage MLSE. As a result, the performance of the whole detector may be

affected, since the classical MLSE is optimum only for white noise.
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3.3 Numerical Results and Remarks

3.3.1 Simulation Parameters

We evaluate the performance of the discussed detectors for frequency-selective fading

channels in terms of SER versus SNR per bit Eb/N0. We assume that the channel

information is perfectly known at the receiver, and the channel coding is not taken into

account. The modulation scheme is quadrature phase-shift keying (QPSK), so that

M = 4. A sequence of N = 1024 symbols are processed each time. We assume that

the SRRC pulse shaping filter is employed at both the transmitting and receiving ends.

The duration time of pulse waveform is truncated to [−2/f, 2/f ] with a roll-off factor

0.25, where f = 50 MHz is the symbol rate. We simulate over 200 independent fading

realizations using the ITU-R 3G channel model. Four channel profiles (Table 3.1)

are considered. Given the simulation parameters above, the example CIR for each

channel profile is shown in Fig. 3.2.

3.3.2 Simulation Results

The performance of the PRML detector and the PRBP detector is given in Figs. 3.3

through 3.6 for different channel profiles. In all cases, the length of the TIR is 3 for

the PRML detector. Moreover, the number of nonzero taps of the TIR is 3 for the

PRBP detector, where 5 iterations of message passing are applied. The MMSE-LE

performance curve is also given as a reference. The prefilter length Lf is chosen as

5Lh, which is sufficiently large according to the conventional wisdom for classical

equalizer design [42].

As can be seen from the simulation results, the PRBP detector universally out-

performs the other two candidates. Particularly, with a very long CIR, for example,
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Figure 3.2: Example CIR for ITU-R 3G channel profiles.
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Figure 3.3: SER performance of detectors under consideration under ITU-R 3G indoor
office, channel A.

indoor/outdoor channel B, the performance gain is significant. At a SER of 10−4, the

PRBP detector exhibits performance 3.5 dB better than the MMSE-LE under indoor

office channel B, and 2 dB better under outdoor to indoor and pedestrian channel

B. It is also worthwhile to mention that, although the PRML detector is effective in

high-density magnetic recording, it does not show any superiority over the MMSE-LE

scheme in 3G fading channels, due to the effect of colored noise.

3.3.3 Remarks

According to Section 2.3.2, the overall complexity of the PRBP detector depends on

the length of the prefilter and the number of nonzero taps of the TIR. Larger filter

lengths generally give better performance, but also increase complexity as measured

by the number of multiplications and additions. Fig. 3.7 shows the performance of the
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Figure 3.4: SER performance of detectors under consideration under ITU-R 3G indoor
office, channel B.
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Figure 3.5: SER performance of detectors under consideration under ITU-R 3G out-
door to indoor and pedestrian, channel A.
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Figure 3.6: SER performance of detectors under consideration under ITU-R 3G out-
door to indoor and pedestrian, channel B.

PRBP detector with different prefilter lengths under ITU-R 3G indoor office, channel

A. It can be seen that a filter length of about 3 times the channel length (i.e. choosing

Lf ≈ 3Lh) is sufficient in practice for this case. Further increase of the filter length

only gives marginal performance improvement.

Moreover, the performance of the PRBP detector improves as the number of

nonzero taps in the TIR grows. Fig. 3.8 illustrates the performance of the PRBP

detector with different amounts of nonzero taps in the TIR for ITU-R 3G indoor

office, channel A. We suggest a minimum of 3 nonzero taps in the TIR for the PRBP

detector in order to achieve performance that begins to outperform a conventional

MMSE-LE. On the other hand, it is advisable to limit the number of nonzero taps in

the TIR in order to make the BP detector implementable.
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Figure 3.7: SER performance of the PRBP detector with different length of the
prefilter under ITU-R 3G indoor office, channel A.

3.4 Conclusions

We reviewed two feasible two-stage hybrid detectors, including the partial response

maximum-likelihood detector and the partial response belief propagation detector.

ITU-R 3G channel models with slow fading were considered in our simulation. From

the numerical results, the PRBP detector showed an advantage in error rate perfor-

mance over the PRML detector and the traditional minimum mean squared error

based linear equalizer. Useful remarks on implementation issues were given to pro-

vide guidance for the PRBP detector design in 3G wireless applications. Moreover,

we showed that in the experimental 3G channels, the PRML detector is not as ef-

fective as it is in high density magnetic recording applications, due to the spectrum

mismatch between the channel impulse response and the target impulse response,

which leads to performance degradation of the second stage equalization.
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Chapter 4

DFSF-BP Detector for ATSC

Channels

In this chapter, we present a hybrid DFSF-BP detector for ATSC DTV receivers. The

DFSF-BP detector is in a category of PRBP detector. Different from the BP-based

detector introduced in Chapter 2 and Chapter 3, the DFSF-BP detector employs a

non-linear filter, the decision feedback sparsening filter (DFSF), as the partial re-

sponse equalizer. By combining the non-linear filter with the BP detector, the error

propagation encountered in the traditional DFE based detector can be effectively

reduced. The chapter is organized as follows. The background of the ATSC DTV

systems is introduced in Section 4.1. Section 4.2 gives the system model for time-

varying channels. The proposed detector is described in Section 4.3. We show the

simulation performance in Section 4.4, followed by conclusions in Section 4.5.
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4.1 Introduction

In Advanced Television Systems Committee (ATSC) digital television (DTV) systems

[43], terrestrial channels often suffer from strong multipath distortion. The duration

of the CIR can span hundreds of symbol periods. The long and large pre-cursors and

post-cursors of the channel impose great challenges to performing reliable equalization

of the 8-vestigial sideband (VSB) signals. To combat the severe ISI by the multipath

channel, decision feedback equalizers [44–46] are commonly used in DTV receivers.

It is well known that DFEs undergo error propagation which results in bursty errors.

When the symbol decisions from the slicer output are incorrect, the feedback filter fails

to subtract off accurate residual ISI from the feedforward filter output. The incorrect

decisions exacerbate the ISI when large post-cursors are present in the combined

response of the channel and feedforward equalizer since the largest taps in the feedback

path will contribute the most unintended ISI.

In order to reduce error propagation, a DFSF combined with a BP detector was

proposed in [9]. First, the DFSF conditions the channel to a sparse channel with

only a few nonzero taps, the number of which is specified by the system designer.

By setting the largest taps in the feedback path to zero, residual ISI is intentionally

present at the output of the DFSF. By specifically zeroing the largest taps in the

feedback filter (corresponding to the taps that contribute the most ISI), there is less

chance of introducing unintended ISI in the event of symbol decision errors. In the

next stage of the receiver, the residual sparse ISI is compensated by the BP detector,

which provides near-optimal error performance, with the complexity depending on

the number of system designer-specified nonzero taps in the effective channel. This

BP detector has been shown to be effective and feasible for a sparse channel with
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only a few nonzero taps [47,48].

In this chapter, we present a hybrid DFSF-BP equalization scheme for DTV re-

ceivers. Our idea is conceived from the scheme in [9], though the major difference

from previous work is that our scheme targets 8-VSB-based ATSC DTV systems

and is suitable for channels that experience Doppler fading; [9] only considers static

channels and BPSK modulation. In our proposed scheme, the DFSF is designed to

adapt to the time-varying channel using the least mean square (LMS) algorithm,

such that the channel can be assumed to be fixed after the DFSF processing. Thus

the second-stage BP detector can benefit from the fixed channel by reducing the im-

plementation complexity. We assess the error performance of the proposed scheme

by simulation under static/dynamic ATSC DTV channel models. Simulation results

show that the proposed scheme outperforms the traditional DFE in both static and

dynamic environments.

4.2 System Model

The system model is shown in Fig. 4.1. Since the focus of this chapter is the equal-

ization scheme, channel coding/decoding blocks are omitted for simplicity. We as-

sume that the data symbols x[k] are Reed-Solomon (RS)-encoded, interleaved, and

trellis-encoded symbols, drawn i.i.d. from the 8 level pulse amplitude modulation con-

stellation (±1,±3,±5,±7) [43]. The data symbols x[k], with a variance of σ2
x, are

transmitted through an ISI channel at a symbol rate of 10.76 MHz.

We assume that a SRRC filter is applied as the transmitter filter. The received

signal is processed by a matched filter, and then sampled at the symbol rate. The

equivalent discrete-time CIR at time k which includes the effects of pulse shaping is
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DFSF

Figure 4.1: System model of the DFSF-BP detector.

described as hk = [hk[0], hk[1], ..., hk[Lh − 1]]T , where Lh is the channel length. The

received signal at time k can be expressed as

y[k] =

Lh−1∑
i=0

hk[i]x[k − i] + w[k],

where w[k] is additive white Gaussian noise with variance σ2
n.

The DFSF consists of two parts: a regular DFE and a modified feedback filter g̃k.

In the DFE, the feedforward filter and the feedback filter are denoted as fk and gk,

respectively. Note that since the channel hk is time-varying, the filters are also time

dependent. The filters fk, gk, and g̃k have discrete finite impulse responses, which are

expressed as fk = [fk[0], fk[1], ..., fk[Lf − 1]]T , gk = [gk[0], gk[1], ..., gk[Lg − 1]]T , and

g̃k = [g̃k[0], g̃k[1], ..., g̃k[Lg̃ − 1]]T . The input signal for the slicer is given by

z[k] =

Lf−1∑
i=0

fk[i]y[k − i] +

Lg−1∑
i=0

gk[i]x̂[k − i− 1],

where x̂[k] is the tentative decisions from the slicer. The modified feedback filter only
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suppresses partial ISI using the tentative decisions. The output signal of the DFSF

is

z̃[k] =

Lf−1∑
i=0

fk[i]y[k − i] +

Lg−1∑
i=0

g̃k[i]x̂[k − i− 1]. (4.1)

Assuming that the tentative decisions are correct, x̂[k] is the delayed version of

symbol input x[k]. Then (4.1) can be simplified as

z̃[k] =
Lc−1∑
i=0

ck[i]x[k − i] + n[k],

where ck[i] contains the coefficients of the combined response of the CIR and DFSF

at time k, and n[k] is the DFSF output noise. We denote the combined response of

the CIR and DFSF as ck with the channel length Lc. The system designer chooses

the desired number of nonzero taps D in ck, and the modified feedback filter g̃k is

obtained from gk by setting its (D − 1) largest taps to zero.

In the second stage, the BP detector will compensate for the D nonzero taps.

Since the complexity of the BP detector depends the number of nonzero taps of the

CIR, we can trade performance for complexity of the overall equalization scheme

by choosing different values of D. With small values of D, most ISI is canceled by

the DFSF, and thus the burden on the complexity of the BP detector is reduced.

However, it is more likely that the unintended ISI is introduced in the feedback loop,

which will cause error propagation. A extreme case is to choose D = 1 in which

case the DFSF is equivalent to the regular DFE, and the BP detector is reduced to

a slicer. To minimize the incorrect feedback of ISI components, the system designer

can increase the value of D so that more ISI components are processed by the near-

optimal BP detector. On the other hand, since the complexity of the BP detector

increases exponentially with the nonzero taps of the CIR, D should be constrained
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to a small enough value that permits practical implementation.

4.3 DFSF-BP Detector

In DTV systems, the channel typically experiences Doppler fading [46]. In [9], the

channel is assumed to be fixed and known perfectly to the receiver, and without

modification the DFSF-BP scheme of [9] cannot be directly applied here. We now

extend the DFSF-BP equalization scheme to an adaptive implementation suitable for

use in time-varying channels. Recall that the receiver under consideration is a two-

stage receiver, where in the first stage an equalizer partially equalizes the channel,

and the residual ISI is compensated by a belief propagation detector in the second

stage.

The equalizer operates in two modes: (A) a startup mode, where the DFSF taps

are initialized based on training data or other channel sounding techniques, and (B) a

tracking mode where the DFSF adapts to the time-varying channel using a decision-

directed approach. We make the assumption that the channel is approximately static

during the startup mode, and as such we can directly apply the results of [9] to

initialize the DFSF taps.

4.3.1 Startup Mode

We adopt the minimum mean-squared error (MMSE) criterion to design the feedfor-

ward filter fk, the feedback filter gk, the modified feedback filter g̃k. Here we assume

that the channel is approximately static over a block of length Lf . The filters fk

and gk are designed to have coefficients given by the classical MMSE-DFE which has
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solution

fk = σ2
x

(
σ2
xHk(ILc −ΣTΣ)HT

k + σ2
nILf

)−1
Hke, (4.2)

gk = −ΣHT
k fk, (4.3)

where Hk is the channel convolution matrix denoted as

Hk =


hk[0] hk[1] ... hk[Lh−1] 0 0 ...

0 hk[0] hk[1] ... hk[Lh−1] 0 ...

...
... ... ... ... ...

0
0 ... 0 hk[0] hk[1] ... hk[Lh−1]

 ,
and

Σ = [0Lg×(∆+1) ILg 0Lg×(Lh+Lf−Lg−∆−2)],

and

e =

0, . . . , 0︸ ︷︷ ︸
∆

, 1, 0, . . . , 0︸ ︷︷ ︸
Lf+Lh−∆−2


T

,

where ∆ is the decision delay of the DFE slicer. Next, g̃k is chosen to be equal to gk

but with the (D − 1) largest taps set to zero to mitigate the effects of errors out of

the symbol slicer. Consequently, the coefficients of the combined response of the CIR

and DFSF ck can be calculated as

ck[i] = hk[i] ? fk[i] + g̃k[i−∆− 1], (4.4)

where (?) denotes the convolution operation. We note that, under the assumption of

correct decisions at the output of the slicer, ck corresponds to an impulse response

with D nonzero coefficients.
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To compute the initial MMSE equalizer settings at the start of transmission, we

make the assumption that the receiver either has knowledge of the initial channel

coefficients and can compute the initial equalizer setting via (4.2) and (4.3); alterna-

tively, the receiver may use training data and a trained algorithm like LMS to directly

adapt the equalizer coefficients fk, gk, and g̃k to the initial MMSE solution.

Finally, we make the assumption that the startup mode is completed at time

k = 0, so f0 and g0 are the MMSE-DFE coefficients. Furthermore, g̃0 is a zeroed

version of g0, and the initial combined response c0 can be computed via (4.4).

4.3.2 Tracking Mode

We now develop an approach for using the DFSF with time-varying channels that

experience Doppler. One approach we could employ is to continuously adapt (using,

for example, decision-directed LMS) the coefficients fk, gk, and g̃k to track the MMSE

solution at time k for any channel hk. Then, however, the effective channel ck observed

by the BP detector would also be time-varying since the intentional residual ISI terms

(i.e. those taps which get zeroed in g̃k) change in both amplitude and location as the

channel changes. Such a time-varying effective channel would lead to a BP detector

which is significantly more complicated than a more conventional static BP detector.

Consequently, instead of adapting fk, gk, and g̃k to track the MMSE solution, we

adapt them so the combined effective response ck appears static to the BP detector.

That is, we design an algorithm to adapt fk, gk, and g̃k so that the combined re-

sponse is equal to the initial combined response c0 in the MMSE sense. As such, the

equalizer coefficients will coincide with the MMSE-DFE setting at startup, and will

then gradually drift away from that setting as the channel changes and the equalizer

adjusts to maintain a static effective channel.
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As the channel changes significantly, the feedback filter g̃k may have taps that

grow large in attempt to keep the combined response equal to c0. Recall that our

motivation for using the hybrid DFSF-BP scheme is to mitigate error propagation by

keeping taps in the feedback path small, and relying on the more sophisticated BP

algorithm to compensate for the significant ISI terms. Consequently, it may prove

beneficial to periodically reset the DFSF if the channel drifts to a situation resulting

in large taps in g̃k, which can be accomplished by repeating the startup procedure.

Once the initial fk, gk, and g̃k are obtained, we adapt the DFSF to the chan-

nel using the LMS algorithm in decision-directed mode. The decision-directed LMS

(DD-LMS) algorithm for DFSF is listed in Algorithm 4.1. As mentioned above, the

adaptive DFSF tracks the time-varying channel and keeps the combined response of

the CIR and DFSF ck fixed from the perspective of the BP detector, which explains

the presence of c0 in the error term ẽ[k] used in updating g̃k. By adapting the DFSF

to maintain a static combined response, the implementation of the BP detector is

drastically simplified.

In the second stage, we adopt an iterative equalizer based on the BP algorithm,

which has been widely used for iterative decoding of low-density parity-check (LDPC)

codes [17]. Although the complexity of the BP detector increases only with the

number of nonzero channel coefficients, the direct implementation of the BP detector

is still impractical due to the prohibitively high complexity even for sparse channels

where the number of nonzero coefficients is on the order of 10 [47]. To make use

of the near-optimal BP detector, the number of nonzero taps D must be limited to

a small number. This permits the design effort of the BP detector to be greatly

mitigated while maintaining near-optimal performance. Since the algorithm and the

implementation of the BP detector have been elaborated in Chapter 2, we will not
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Algorithm 4.1 DD-LMS algorithm for DFSF design.
Parameters:
Feedforward filter coefficients at time k: fk
Feedback filter coefficients at time k: gk
Modified feedback filter coefficients at time k: g̃k
Combined response of the CIR and DFSF at time k: ck
Received data vectors at time k:
yk = [y[k], y[k − 1], . . . , y[k − Lf + 1]]T

Tentative decisions at time k:
x̂k,Lg = [x̂[k], x̂[k − 1], . . . , x̂[k − Lg + 1]]T

x̂k,Lc = [x̂[k], x̂[k − 1], . . . , x̂[k − Lc + 1]]T

Step size for updating fk: µf
Step size for updating gk: µg
Step size for updating g̃k: µg̃
Decision-directed error at time k: e[k]
Error between the actual DFSF output and the expected DFSF output at time k: ẽ[k]

Startup mode:
Set the initial coefficients f0 and g0 using (4.2) and (4.3).
Set the initial coefficients g̃0 to g0 but with the (D − 1) largest taps set to zero.
Set the initial coefficients c0 using (4.4).

Tracking mode:
Update the coefficients at each time instant:

fk+1 = fk − µfe[k]yk

gk+1 = gk − µge[k]x̂k−1,Lg

g̃k+1 = g̃k − µg̃ẽ[k]x̂k−1,Lg ,

where

e[k] = fTk yk + gTk x̂k−1,Lg − x̂[k]

ẽ[k] = fTk yk + g̃Tk x̂k−1,Lg − cT0 x̂k,Lc .
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discuss the details in this chapter.

4.4 Numerical Results and Remarks

The performance of the proposed detector is evaluated by simulations in terms of

SER versus signal-to-noise ratio per bit Eb/N0. The static channel profile used for

the simulation is Brazil A channel and Brazil C channel which are the severe indoor

channel used for the Laboratory Test in Brazil, and the dynamic channel profile is

CRC channel #4. The channel profile details [46] are listed in Table 4.1. Note that

the attenuation of Path 5 of the CRC Dynamic #4 channel is denoted as threshold

of visibility (TOV). We set the attenuation of Path 5 to 3 dB for different Doppler

shifts [49]. According to the ATSC DTV standard, the symbol rate is 10.76 MHz and

the roll-off factor of the pulse shaping filter is 11.5%. The performance of a classical

MMSE linear equalizer (LE) and classical DFE is also simulated to compare with

the proposed detector. The LE employs an FIR with 800 taps. The DFE consists

of 400 feedforward taps and 400 feedback taps. The filter lengths for the DFSF are

Lf = Lg = Lg̃ = 400, and the updating steps are µf = µg = µg̃ = 10−5. The

combined response of the CIR and DFSF ck contains D = 3 nonzero taps. The

number of iterations in BP detection is 5.

We first assess the proposed detector in static ATSC channels. Fig. 4.2 and Fig. 4.3

show the SER performance for Brazil A and Brazil C channel respectively. It is shown

that at a SER of 10−5, the proposed detector exhibits performance about 1 dB better

than the traditional DFE for both channels.

The SER performance for dynamic channel is shown in Fig. 4.4 and Fig. 4.5,

for Doppler shift fd = 1 Hz and fd = 5 Hz, respectively. We can see that the
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Figure 4.2: SER performance of the DFSF-BP detector in Brazil A channel

proposed detector can successfully track the channel changes in both cases. It is also

demonstrated that the proposed detector provides around 1 dB performance gain over

the DFE at a SER of 10−5.

4.5 Conclusions

We presented a hybrid detector for ATSC DTV systems in order to reduce the er-

ror propagation effect encountered in traditional DFE based receivers, where a large

amount of undesirable ISI can be introduced from the feedback filter by incorrect

tentative decisions in the DFE. In our scheme we first used a decision feedback spars-

ening filter (DFSF) to equalize the time-varying channel to a static sparse channel

with only a few nonzero taps. Then a near-optimal BP detector was adopted to

further compensate the residual ISI. Since the DFSF uses a modified feedback filter
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Figure 4.3: SER performance of the DFSF-BP detector in Brazil C channel
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Figure 4.4: SER performance of the DFSF-BP detector in CRC #4 channel with 1Hz
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Figure 4.5: SER performance of the DFSF-BP detector in CRC #4 channel with 5Hz
Doppler shift

which only cancels the ISI from less significant taps, and leaves the ISI from the dom-

inant taps for the BP detector, there is less chance to introduce unintended ISI in the

feedback loop, and thus the impact of error propagation to the overall system is re-

duced. To address the Doppler shift effect in the practical ATSC channels, the DFSF

was designed adaptively using the LMS algorithm to track the time-varying channel.

The simulation results under both static and dynamic channels demonstrated that

the proposed scheme outperforms the traditional DFE in terms of symbol error rate.
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Chapter 5

Symbol Detectors for Cooperative

Communications

In this chapter, we study the detector design for cooperative communications in

ISI channels. The background of cooperative communications is introduced in Sec-

tion 5.1. A novel system framework employing non-orthogonal amplify-and-forward

half-duplex relays through ISI channels is described in Section 5.2. We first consider

an optimal detector that consists of a whitening filter and a MLSE in Section 5.3,

which, however, has practical issues of high complexity if the relay period is long.

Next we study three other feasible detectors to deal with long relay period. Sec-

tion 5.4 presents a multitrellis Viterbi algorithm (MVA) based detector that reduces

the complexity significantly but still achieves near optimal performance. Two alter-

natives which are more practically implementable, decision feedback sequence esti-

mation (DFSE) based detector and BP-based detector, are shown in Section 5.5 and

Section 5.6 respectively. Simulation results and complexity/performance analysis are

given in Section 5.7, followed by the conclusions in Section 5.8.
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5.1 Introduction

Historically, multipath fading has been combated by using time and frequency diver-

sity techniques. In the last fifteen years, results in information theory have shown

that spatial diversity can yield significant gains in the spectral efficiency and power

efficiency of point-to-point multiple-antenna communication (MIMO) systems [50,51].

The transition from theory to practice has largely taken place with MIMO technol-

ogy, as many modern consumer wireless standards exploit MIMO technology. To

realize such gains, however, it is necessary that each of the paths between transmit

and receive antennas is uncorrelated. For such an assumption to be valid, it is typi-

cally required that the antenna elements are spaced at least a half carrier wavelength

apart [52], and perhaps even more in environments with minimal scattering. In many

scenarios, however, it may not be practical for size-constrained nodes to have even

two antennas with sufficient spacing between them. Furthermore, for each antenna

that is added to the node, a complete RF front end must be added. There may be

cost and power constraints that preclude the inclusion of multiple antennas, as the

RF portion of a communications system often accounts for the majority of the cost

and power.

More recently, cooperative diversity [53,54] and relay networks [55] have attracted

a lot of attention for their ability to exploit increased spatial diversity available at

distributed antennas on other nodes in the system. By intelligent cooperation among

nodes in the network which may only have a single antenna, a virtual multiple antenna

system can be formed. Indeed, information theoretic results demonstrate that some

of the loss associated with using only a single antenna can be recuperated by using

intelligent cooperation among distributed nodes [56, 57].
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While communication via cooperative relays has seen a lot of active research inter-

est in recent years, most of the existing work has largely come from the information

theory and coding communities. While there are a few exceptions, e.g. [58, 59], little

research has yet been conducted into the implementation issues of relaying and coop-

eration. As such, the majority of works in the field of cooperative diversity assume

that receivers employ optimal detectors.

In this chapter, we set out to investigate detector design for half-duplex relays

in frequency selective fading channels encountered in practice. While a variety of

forwarding protocols have been previously proposed, we will consider amplify-and-

forward (AF) for its simplicity and reduced implementation costs. Frequency selective

fading channels are an inevitable impairment in wideband communication systems,

and such channels cause the receiver to observe the superposition of multiple delayed

reflections of the transmitted signal, resulting in ISI. Even in channels which do

not exhibit significant time dispersion, the non-orthogonal AF relay itself effectively

introduces ISI since the destination observes a superposition of the source and relayed

signals. As our focus is on the complexity of the detector itself, we do not treat the

performance gains possible with relays as this has been demonstrated elsewhere [60].

Similarly, with our focus on the complexity of detector implementation, we do not

address the problem of channel estimation, and thus consider the optimistic case

where the detector has perfect channel knowledge.

5.2 Cooperative Communication System Model

A basic model of a three-node relay system model is shown in Fig. 5.1. Both source

and relay can be considered as mobile users, and each has only one antenna. The
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Figure 5.1: System model with one half-duplex relay.

source is attempting to send a message to the destination. Due to the broadcast

nature of wireless communications, however, the relay receives transmissions from

the source that are intended for the destination; therefore, the relay can assist by for-

warding additional copies of these transmissions to the destination. Since the channels

from source and relay to destination are statistically independent, the three-node co-

operative communication scheme effectively forms spatial diversity. We consider a

system where a source transmits a continuous stream of data to a destination, and a

simplistic AF relay assists the source by amplifying and forwarding the data to the

destination. We do not assume the relay has performed any synchronization with the

destination, and so the relay forwards information to the destination in an open-loop

fashion.

Relays have mainly two types: full duplex relays that can transmit and receive

simultaneously, and half-duplex relays that can either transmit or receive in any

time slot. Since full duplex relays are difficult to implement due to self interference
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which occurs when both transmit and receive operations are in the same band, half-

duplex is considered more practical for cooperative communication systems. In our

system model, the half-duplex relay period T is a parameter which defines the frame

structure where the relay receives for T symbol periods, and then transmits for T

symbol periods. The relay repeats these two tasks alternately. The source and relay

are assumed to transmit on the same channel, employing the so-called non-orthogonal

amplify-forward protocol (NAF) [60].

The source sends the symbols x = [x[0], x[1], . . . x[N − 1]]T ∈ CN at a symbol rate

of f , where N is the number of transmitted symbols. We assume that a SRRC filter

with the impulse response hTx(t) is applied as the transmitter filter. The received

signal is processed by a matched filter with the impulse response hRx(t) = hTx(−t),

and then sampled at the symbol rate of f . The equivalent discrete-time channel

impulse responses [23] which include the effect of pulse shaping are denoted by

hsd, hsr, hrd for the source-destination, source-relay, and relay-destination channels,

respectively, and they have corresponding channel lengths Lsd, Lsr and Lrd (e.g.

hsd = [hsd[0], hsd[1], . . . , hsd[Lsd − 1]]T ). The signals wr and wd are complex AWGN

at the relay and the destination with variances σ2
r and σ2

d, respectively.

The destination receives the superposition of the two signals from the source and

the relay, and the received signal can be expressed as

y = ysd + yrd + wd

where ysd ∈ CN+Lsd−1 is the contribution from the source and yrd ∈ CN+Lsr+Lrd−2 is

the contribution from the relay.

We first consider the source-destination link. The contribution from source to
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destination is written as

ysd = Hsdx (5.1)

where Hsd ∈ C(N+Lsd−1)×N is the complex Tplitz channel convolution matrix whose

entries are defined by

[Hsd]i,j =


hsd[i− j] 0 ≤ i− j ≤ Lsd − 1

0 otherwise

where 1 ≤ i ≤ N + Lsd − 1 and 1 ≤ j ≤ N , i.e.

Hsd =


hsd[0] 0 0 0 0 0
hsd[1] hsd[0] 0 0 0 0
hsd[2] hsd[1] hsd[0] 0 0 0

...
... ... ... ... ...

hsd[Lsd−1] ··· hsd[1] hsd[0] 0
0 hsd[Lsd−1] ··· hsd[1] hsd[0] ···
...

...
...

...

 .

For the source-relay-destination link, the corresponding contribution is given by

yrd = Hrdxr

= HrdΓyr

= HrdΓ(Hsrx + wr). (5.2)

The Tplitz channel matrices Hrd ∈ C(N+Lsr+Lrd−2)×(N+Lsr−1) and Hsr ∈ C(N+Lsr−1)×N

are defined in the same way as Hsd, yr ∈ CN+Lsr−1 is the signal received by the relay,

xr ∈ CN+Lsr−1 is the signal transmitted from the relay, and Γ ∈ C(N+Lsr−1)×(N+Lsr−1)

is a fixed matrix described below. Note that for the matrix dimensions to be com-

patible, we require that Lsd = Lsr + Lrd − 1; if this is not satisfied, we can append
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zeros to the appropriate matrix without loss of generality. The function of Γ is to

impose the half-duplex constraint by selecting groups of T symbols from yr (receiv-

ing), scaling these symbols by a factor β (amplifying), and then delaying the scaled

symbols of yr for transmission in the next T symbol block (forwarding). The value of

β is typically chosen to satisfy an average power constraint at the relay by choosing

β =
√

Pr

‖hsr‖2Ps+σ2
r

where Ps and Pr are the source power and relay power respectively.

The constant matrix Γ is given by

Γ , β I(N+Lsr−1
2T ) ⊗

0T×T 0T×T

IT×T 0T×T

 (5.3)

where ⊗ denotes Kronecker product. Here we implicitly require that N + Lsr − 1 be

divisible by 2T . As an example, when T = 2, the signals received and transmitted

by the relay are shown in Fig. 5.2, where the first eight time periods are considered,

and the shadow indicates time period where the relay cannot receive because it is

transmitting, or vice versa. For this example,

Γ = β I2 ⊗



0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0


= β


0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

 (5.4)

such that xr = Γyr as in Fig. 5.2.
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Relay received signal

Relay transmitted signal

Figure 5.2: Signals received and transmitted by the relay when T = 2

From (5.5), (5.1) and (5.2), the received signal at the destination is expressed as

y =

from source︷ ︸︸ ︷
Hsdx +

from relay︷ ︸︸ ︷
HrdΓ(Hsrx + wr) +wd

= (Hsd + HrdΓHsr)︸ ︷︷ ︸
,H̃

x + (HrdΓwr + wd)︸ ︷︷ ︸
,w̃

(5.5)

where w̃ ∼ CN (0, σ2
dI +σ2

rHrdΓΓHHH
rd). Note that w̃ is colored, not white, since the

AWGN on the source-relay link is amplified-and-forwarded over the relay-destination

ISI channel which colors the noise. Additionally, from (5.3) and (5.4), we see that

the relay matrix Γ has a repetitive structure with a period of 2T . Accordingly, the

channel matrix H̃ shows the same structure as Γ. Consequently H̃ can be interpreted

as a periodically time-varying FIR channel which consists of 2T sets of different

channel coefficients. In summary, equation (5.5) allows us to describe the input-

output behavior of the system with a linear equation. While the constituent channels

themselves are not time-varying, the effective impulse response of the overall system

is indeed time-varying due to the on/off behavior of the relay.

5.3 Maximum-Likelihood Detector

Assuming that receivers can acquire perfect channel knowledge, MLSE can be em-

ployed to combat the ISI by searching for the minimum Euclidean distance between
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Figure 5.3: Block diagram of the proposed ML detector.

observed signal and any given transmitted signals [6]. The Viterbi algorithm [61] is

an efficient technique for solving the minimum distance problem, and its implementa-

tion has been investigated extensively [30–33, 62]. The traditional Viterbi algorithm

as proposed in [61] is directly applicable only to time-invariant channels. A modified

Viterbi detector is proposed to address the periodically time-varying effective channel

induced by the half-duplex relay. Furthermore, since the minimum Euclidean distance

is not optimal in the presence of colored Gaussian noise, we employ a whitening filter

before detection, which is optimal as shown in [6]. The block diagram of our design

is given in Fig. 5.3.

To whiten the noise, spectral factorization of the composite noise covariance must

be performed. We factor the noise covariance matrix as:

GGH = σ2
dI + σ2

rHrdΓΓHHH
rd (5.6)

which can be accomplished by taking G to be the Cholesky factorization of the

covariance. We note that the Cholesky factorization is not the only such factorization

G, as the factorization in (5.6) is not unique. By filtering the received signal with

G−1 (i.e. by forming G−1y), the noise becomes whitened since the covariance of the
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filtered noise G−1w̃ is given by

E
[
(G−1w̃)(G−1w̃)H

]
= (G−1)E[w̃w̃H ](G−1)H

= (G−1G)(G−1G)H

= I.

We note that noise covariance matrix in (5.6) is positive definite, so the inverse of G

always exists. Ignoring end effects (or, equivalently, taking the block length N →∞),

G−1 follows the same repetitive structure as Γ, and thus also exhibits the periodically

time-varying property.

After applying the whitening filter to the received signal (5.5), the whitening filter

output becomes

yg =

Heff︷ ︸︸ ︷
G−1H̃ x +

weff︷ ︸︸ ︷
G−1w̃

= Heffx + weff (5.7)

where weff is now white Gaussian noise. Note that the effective whitened chan-

nel matrix Heff maintains the periodically time-varying property due to the similar

structures of G−1 and H̃.

The structure of the effective channel matrix Heff is given in Fig. 5.4 where we

see that the matrix has a block Tplitz structure with rows repeating every multiple

of 2T . It defines 2T sets of effective channel coefficients as h0, h1, . . . , h2T−1, where

h0 = [h0[0], h0[1], ..., h0[L− 1]]T , h1 = [h1[0], h1[1], ..., h1[L− 1]]T , . . . , and L is the

effective channel length. The effective length L may be significantly extended by the

delay introduced by the relay, as well as the group delay introduced by the whitening
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filter. We can determine the lower bound of the effective channel length in terms of

the constituent channel lengths and the relay period as

L ≥ max(Lsd, Lsr + Lrd + T − 1). (5.8)

At time n, the corresponding coefficients of the periodically time-varying effective

channel are

hn = hmod(n,2T ) ∈ {h0,h1, . . . ,h2T−1}, n = 0, 1, . . .

where mod(·) is the modulus. The ideal output of the whitening filter at time n is

then given by

s[n] =
L−1∑
i=0

hn[i]x[n− i], n = 0, 1, . . .

which is simply the convolution of the source symbols with the periodically time-

varying channel coefficients. Thus, the system model for relay-aided transmission

through ISI channels reduces to a classical MLSE problem, with the additional twist

that the effective channel is periodically time-varying. As the true output is of course

corrupted by AWGN, the maximum likelihood detector for estimating the source

symbols x from (5.7) can be accomplished most efficiently with the Viterbi algorithm.

For the branch metric unit (BMU) in Fig. 5.3, the branch metrics along the trellis

path are not only related to state transitions but also the current time instant. The

branch metric calculation is modified as

λ̃[n] = |yg[n]− s̃[n]|2 , n = 0, 1, . . .

where yg[n] is the signal from the whitening filter at the time instant n, s̃[n] and λ̃[n]

are the estimated output signal and the corresponding branch metric the time instant
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n, respectively.

The add-compare-select (ACS) unit in Fig. 5.3 recursively computes path metrics

and decision bits,

Λ(j)[n] = min
i

(Λ(i)[n− 1] + λ̃(i,j)[n]), n = 0, 1, . . .

where Λ(j)[n] denotes the path metric at state j at the time instant n, and λ̃(i,j)[n]

is the branch metric from state i to state j at instant n. The path metrics for each

state are updated for the next iteration, and the decision indicating the survivor path

for state j is recorded and retrieved from the survivor-path memory unit (SMU) in

order to estimate the transmitted symbols along the final survivor path.

Similar to the traditional MLSE, the implementation cost of the ML detector for

relay networks increases exponentially with respect to the effective channel length.

Furthermore, the overhead of the proposed detector when compared with the tra-

ditional MLSE comprises the whitening filter, the multiplexers in the BMU, and

additional control logic to account for the periodically time-varying effective chan-

nel [63]. As indicated in (5.8), the effective channel length increases with the relay

period T . In cooperative relay systems, the relay period T is likely chosen to be

very long, possibly spanning hundreds of symbols, so that the relay is not required

to switch frequently between transmit and receive modes. When the relay period T

is large, however, an implementation of the Viterbi algorithm based optimal detector

becomes not practical.

We simulate the bit error rate (BER) performance of the ML detector with the fol-

lowing parameters: the transmitted BPSK signal consists of i.i.d. unit-power symbols

x[n] = {±1}, the relay transmitting power is Pr = 1. The SNR values Eb/N
(d)
o = 1/σ2

d
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and Eb/N
(r)
o = 1/σ2

r denote bit-energy-to-noise ratio for the destination and the re-

lay, respectively. Unless otherwise specified, we assumed Eb/N
(r)
o = Eb/N

(d)
o + 10dB,

which represents a scenario where the source-relay link is better, on average, than the

source-destination link.

We assume the SRRC pulse shaping filter is employed at both the transmitting

and receiving ends. The SRRC filter is truncated to [−2/f, 2/f ] with a roll-off factor

0.5, where f = 5 MHz is the symbol rate. We simulate over 200 fading realizations

in the ITU-R 3G indoor office test environment [41] with 6 independent channel

paths. The time delay relative to the first path is [0, 50, 110, 170, 290, 310](ns), and

the average power relative to the strongest path is [0,−3,−10,−18,−26,−32](dB).

As a practical matter, it is possible for the whitening filter to be quite long, depending

on the noise covariance matrix. In these simulations, we truncate the whitening filter

to have L = max(Lsd, Lsr + Lrd + T − 1) taps.

We consider the effect of the number of independent paths on system performance.

While additional ISI is often viewed as an impairment to reliable communication,

the additional fading paths result in increased diversity, and hence increased BER

performance through the cooperative relay. This effect is observed in Fig. 5.5, where

we consider three cases. Specifically, we truncate the ITU-R 3G indoor office channel

so that it only uses either the first two paths, the first three paths, or all the six paths.

We note that the BER performance with respect to Eb/N
(d)
o improves as the number

of independent paths increases.

We next consider the effect of the relay cooperation period T . Recall that the relay

receives T symbols, and then amplifies and retransmits those T symbols. As shown

in Fig. 5.6 for an uncoded system, better performance is obtained when choosing a

smaller relay period. If the relay period T is much larger than the channel delay
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Figure 5.5: BER performance of the ML detector for different channel length.

spread, the diversity technique of using cooperative relays becomes less effective since

there is almost no overlap between the symbols directly received from the source and

forwarded by the relay.

The effect of the whitening filter is illustrated in Fig. 5.7 where T = 3. As we

expect, the BER performance with the whitening filter is better than the performance

without it. It is also observed that if the noise on the source-relay link is small relative

to the noise on the source-destination link so that σd � σr, the whitening filter does

little to help. The reason for this is that the noise looks approximately white when

the noise on the source-destination link dominates since σ2
dI + σ2

rHrdΓΓHHH
rd ≈ σ2

dI.

Thus, in situations where the source-relay link is particularly good, it may be possible

to reduce complexity without much performance penalty by removing the whitening

filter.
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Figure 5.6: BER performance of the ML detector for different relay period T .
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Figure 5.8: Effective channel impulse response in non-ISI channels during relay re-
ception.

5.4 MVA Detector for Long Relay Periods

Consider the practical effect of the relay period T in a simplified relay network with

only AWGN channels and no ISI so that L{sd,sr,rd} = 1. When the relay is in the re-

ceiving period, the destination only receives the signal from the source. The channel

impulse response at the destination is shown in Fig. 5.8. After T time instants, the

relay begins to forward the copy of the signal to the destination. The effective chan-

nel impulse response as seen at the destination during relay transmission is depicted

in Fig. 5.9. We observe that the relay actually introduces ISI even in the non-ISI

channels, and the effective channel impulse response alternates between that shown

in Fig. 5.8 and Fig. 5.9. Also, large values of T will increase the number of zero coef-

ficients in the channel impulse response, which makes the effective channels become

sparse.

Viterbi algorithms for sparse channels have been investigated by several inde-

pendent researchers. The parallel trellis Viterbi algorithm (PTVA) proposed in [11]
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Figure 5.9: Effective channel impulse response in non-ISI channels during relay trans-
mission.

reformulated the original single trellis into a set of independent trellises. These in-

dependent trellises operate in parallel and have less overall complexity than a single

trellis. The PTVA requires that the sparse channel have equi-spaced coefficients,

however, which usually cannot be satisfied in practice. Although a generalized PTVA

is given to deal with general sparse channels, its performance loss is remarkable if the

channel taps are not well-approximately by an equi-spaced structure.

A multitrellis Viterbi algorithm (MVA) was proposed in [12] for near-optimal

detection in sparse ISI channels. For the MVA, the complexity does not depend on

the channel impulse response length but only on the number of non-zero coefficients.

In order to process the sparse time-varying channels for relay networks, the MVA is

modified and incorporated in our MVA-based ML detector.

To illustrate the operation of the MVA, we begin by considering an example.

Assume hn ∈ {h0,h1, . . . ,h2T−1} has only a few non-zero coefficients, e.g. hn[i] 6= 0

for i = 0, K, L− 1, (0 < K < L− 1). The ideal (noiseless) output signal at the time
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n is given by

s[n] = hn[0]x[n] + hn[K]x[n−K] + hn[L− 1]x[n− L+ 1].

When x[0] is to be estimated, we can see that x[0] is needed in s[0], s[K], s[L−1].

Next, in s[K], a new symbol x[K] appears and it is also needed in s[L − 1] and

s[2K]. In this way, we record all the output signals and symbols related with x[0]

in Table 5.1, and we use the notation of f(·) to indicate the dependency of outputs

on input symbols and channels. Note that some output signals and symbols are not

needed when x[0] is under detection; for example, if K 6= 1, there is no need to record

s[1], since x[1], x[1 −K], x[2 − L] in s[1] do not affect the estimation of x[0]. With

the traceback length Ltb = 3(L − 1), for example, the estimation of x[0] depends on

x[K], x[L− 1], x[2K], x[K + L− 1], x[2L− 2] by a non-instantaneous relationship ,

assuming that x[n], n < 0 are known.

We note that some related symbols appear only once in the first column, e.g.

x[L − 1 − K], and do not need to be recorded. Its value can be determined by an

instant decision given by

x̂[L− 1−K] = arg min
x̃[L−1−K]

|yg[L− 1]− s̃[L− 1]|

where s̃[L−1] = f(hL−1, x[L−1], x̃[L−1−K], x[0]), and x[L−1] and x[0] are known

for a given state.

When two or more symbols are determined by the instant decision, e.g. x[3K]

and x[3K − L+1] in s[3K], the estimation is given by
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Table 5.2: State definition (x[0] under estimation).
Related time instant State definition

0 [x[0]]

K [x[K], x[0]]

L− 1 [x[L− 1], x[K]]

2K [x[2K], x[L− 1], x[K]]

K + L− 1 [x[K + L− 1], x[2K], x[L− 1]]

2L− 2 [x[2L− 2], x[L− 1 +K], x[2K]]

3K [x[2L− 2], x[L− 1 +K], x[2K]]

2K + L− 1 [x[2L− 2], x[L− 1 +K], x[2K]]

K + 2L− 2 [x[2L− 2], x[L− 1 +K], x[2K]]

{x̂[3K], x̂[3K − L+1]} = arg min
x̃[3K],x̃[3K−L+1]

|yg[3K]− s̃[3K]|

where s̃[3K] = f(h3K , x̃[3K], x[2K], x̃[3K − L+1]), and x[2K] is known for a given

state.

The definition of state depends only on the related time instant. By the list of

related symbols, the state definition is derived and given in Table 5.2. Note that the

state definition excludes the symbols assumed to be known, i.e. x[−K], x[−L + 1],

x[K − L+ 1], and the symbols that can be determined by the instant decision.

From Table 5.1 and 5.2, it is observed that the corresponding trellis shrinks in two

dimensions, which leads to a significant reduction in computational complexity. Fur-

thermore, the process of traceback is faster, since for some instant given the current

state, the previous state can be obtained immediately without survivor path deci-

sions. There are two categories for these instant tracebacks. First, the previous state

definition is a subset of the current state definition. For example, the state at instant

2K is defined as [x[2K], x[L− 1], x[K]], while the previous state [x[L− 1], x[K]] at

the instant L − 1 can be obtained from the current state without the help of the
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survivor path decision. Second, the state definition is the same for the current and

previous state. For example, considering the instants K+2L−1, 2K+L−1, 3K and

2L− 2, we can bypass the traceback from K + 2L− 2 to 2L− 2. Once the start state

at the instant K + 2L − 2 is available, we can begin to traceback from the instant

2L− 2 at the same state.

When subsequent symbols are under detection, the structure of the trellis remains

the same, except that the branch metric calculation for the first several instants are

slightly different, since the initial symbols (e.g. x[−K], x[−L + 1], x[K − L + 1]

for x[0]) have been estimated. The available estimated symbols will be used in the

calculation of output signal s[n] when needed.

Due to the reduced-size trellis, the detector can be realized by utilizing Ltb trellises

working in parallel to increase the throughput. The received signals yg[n] are filled

in the Ltb trellises sequentially. At the instant Ltb − 1, the first trellis is full and

x[0] is estimated. At the instant Ltb, the received signal yg[Ltb] is ready to fill in the

first trellis, and also, x[1] is available from the second trellis. Notice that these trellis

are similar in structure, however, the channel coefficients used in the branch metric

calculation are not the same at different instants. For example, in the first trellis,

h0,hK ,hL−1, . . . ,hK+2L−2 are used in sequence for each step, while in the second

trellis, h1,hK+1,hL, . . . ,hK+2L−1 are used for each step. The corresponding channel

coefficients for the received signals yg[n] are hmod(n,2T ) ∈ {h0,h1, . . . ,h2T−1}.

For general Viterbi detectors in M -ary modulation systems, complex multipli-

cations dominate the computational cost. There are ML−1 states and each state

corresponds to M complex multiplications for branch metric calculation. Then the

estimated total computational cost is ML. For the proposed MVA detector in the

sparse channel with 3 nonzero coefficients, there are M3 states at most, and the
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corresponding computational cost for each trellis is M4. Thus the estimated total

computational cost for MVA detector is LtbM
4. Furthermore, survivor path decisions

are recorded in the SMU which requires a significant amount of memory. The memory

cost in bits for the general Viterbi detector is LtbM
L−1 log2M . For the proposed MVA

detector, we do not need to record the survivor path decisions for all Ltb instants.

Assuming that only L′tb (< Ltb) instants are considered in each trellis, the memory

size for each trellis is L′tbM
3 log2M .

In general, the complexity of Viterbi detector is in O(ML), where L is the channel

length. In comparison, the complexity of the MVA detector does not depend on

the channel length but on the number of nonzero coefficients. When instantaneous

decisions are made appropriately so that the symbol dependency table simplifies [12],

the computing and memory resource required for the MVA detector is in O(ML′),

where L′ is the number of non-zeros coefficients. Therefore, the MVA detector is a

better solution for sparse channels.

To simulate the BER performance of the MVA-based detector, we set the chan-

nel length L{sd,rd} = 1, Lsr = 2, so that each effective channel hn has 3 non-zero

coefficients and Table 5.1 can be applied directly. Without loss of generality, we as-

sume that each coefficient is i.i.d. as CN (0, 1). The performance is given in Fig. 5.10

with T = 3 and Fig. 5.11 with T = 5. It is shown that performance loss from the

MVA-based detector is negligible, as was claimed previously in [12].

For the MVA-based detector, if the dependencies are appropriately simplified, it

was shown that the complexity does not depend on the length of the effective CIR

but only on the number of non-zero coefficients. However, the simplification of the

dependencies is not straightforward for an effective CIR with an arbitrary structure

of non-zero tap coefficients. Also, irregular sub-trellises increase the implementation
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Figure 5.10: BER performance of the MVA-based detector T = 3.
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Figure 5.11: BER performance of the MVA-based detector T = 5.
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overhead compared to a regular trellis as in traditional MLSE. Therefore, the MVA-

based detector is not a strong candidate for cooperative ISI channels.

5.5 DFSE-Based Detector

In [13,14], DFSE is proposed to incorporate the decision feedback mechanism within

the calculation of branch metric directly in the Viterbi detector to enhance the reli-

ability of the feedback decision.

In the trellis of DFSE, each state provides only partial information about the

actual state of the channel. The states describe all possible values taken on by a small

number µ < L of previous inputs. The required residual information is provided by

a built-in decision feedback in branch metric computations. The traditional DFSE

is modified and incorporated in the scenario of cooperative communications. In the

branch metric calculation, the ideal received signal at time n is given by

s[n] =

µ−1∑
i=0

hn[i]x[n− i] +
L−1∑
i=µ

hn[i]x̃[n− i]︸ ︷︷ ︸
Residual ISI

(5.9)

where (x[n], . . . , x[n−µ+1]) in the first sum are determined by the state in the trellis,

and (x̃[n−µ], . . . , x̃[n−L+1]) in the second sum are the estimate of the partial state

extracted from the survivor path leading to that state. This estimate is used to cancel

ISI from symbols greater than µ symbol periods in the past. The residual ISI from

the remaining L− µ symbols is canceled by the per-survivor decision feedback [64].

Note that (5.9) is modified to tackle the time-varying channel. The coefficients

adopted by the decision feedback filter also change with a period of 2T . The com-

plexity can be managed by varying µ, the number of ISI symbol used in the trellis.
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Figure 5.12: Block diagram of the proposed DFSE detector.

If µ = L, the algorithm is equivalent to Viterbi algorithm; if µ = 1, the algorithm re-

duces to the zero-forcing DFE. Choosing appropriate µ enables the DFSE to achieve

a good tradeoff between performance and complexity.

The block diagram is shown in Fig. 5.12. The branch metric calculation unit

calculates the Euclidean distance between the received signal and estimated signal

along the trellis path. Then the add-compare-select unit recursively computes path

metrics and decision bits. The path metric for each state is updated for the next

iteration, and the decision indicating the survivor path are recorded and retrieved

from the the survivor-path memory unit in order to estimate the transmitted symbols.

In the meanwhile, the survivor path information leading to each state is extracted

and feed back to the branch metric calculation unit.

The complex multipliers used in branch metric calculation and residual ISI calcu-

lation dominate the whole computational complexity. Consider a cooperative com-

munication system using BPSK modulation. In the branch metric calculation, the

number of states is 2µ−1, and there are 2 branch metric calculations for each state.

Thus the number of complex multipliers used in branch metric calculation is 2µ.

For the residual ISI calculation, there is a (L − µ)-length decision feedback filter

for each possible state transition, requiring (L − µ)2µ complex multipliers. The to-
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tal computational complexity with respect to the number of complex multipliers is

(L− µ+ 1)2µ ∼ O(2µ).

5.6 Belief Propagation-Based Detector

DFSE can be applied as a suboptimal detector scheme for a wide class of long ISI

channel in cooperative systems. However, it is interesting to point out that a large

relay period T makes the effective CIR become sparse, which motivates us to consider

using the BP detector as an alternative solution .

Unlike the factor graph of fixed channels, since the effective CIR in cooperative

communication is periodically time-varying, the connections along the factor graph

do not maintain the same pattern. Accordingly, the calculation of extrinsic informa-

tion must adopt different coefficients depending on the node index n, i.e. the channel

coefficients used in (2.2) are hn = hmod(n,2T ) ∈ {h0,h1, . . . ,h2T−1}, which are peri-

odically time-varying. The implementation of the BP detector for the fixed channel

coefficients has been elaborated in Section 2.4. We only need to send hn instead of

g′ to the LPU (Fig. 2.8) to adapt for the cooperative ISI channels.

5.7 Simulation Results

We simulate the BER performance of the DFSE detector and BP detector with the

following parameters: the transmitted BPSK signal consists of i.i.d. unit-power sym-

bols x[n] = {±1}, the relay transmission power is Pr = 1, and the symbol frame

length N = 500. The SNR values Eb/N
(d)
o = 1/σ2

d and Eb/N
(r)
o = 1/σ2

r denote bit-

energy-to-noise ratio for the destination and the relay, respectively. Unless otherwise
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specified, we assume Eb/N
(r)
o = Eb/N

(d)
o + 10 dB, which represents a scenario where

the source-relay link is of higher quality, on average, than the source-destination link.

We consider Rayleigh fading channels with L{sd,sr,rd} = 2, and each coefficient is a

zero-mean complex Gaussian random variable with unit average power. The individ-

ual channel coefficients are assumed to be statistically independent.

For the DFSE detector, µ = 2 and µ = 4 are considered. For the BP detector, we

choose the number of iterations as 2 and 5. We also consider the MLSE as a reference

curve. The BER performance for different detectors when the relay period T = 5 and

T = 10 is shown in Fig. 5.13 and Fig. 5.14, respectively. We note that with these

parameter choices, the effective CIR lengths for these two simulations are then L = 8

and L = 13, respectively, according to (5.8).

At a BER of 10−3, when T = 5, the DFSE detector exhibits performance approx-

imately 1.3 dB away from the optimal performance when µ = 2, and a performance

penalty of 1.2 dB when µ = 4. Recall that when µ = L = 8, the DFSE becomes

the MLSE. The BP detector, on the other hand, performs only 0.5 dB away from

optimal when 2 iterations are used, and only 0.1 dB away when 5 iterations are used.

When T = 10, i.e. L = 13, the DFSE detector shows approximately 1.2 dB and 1dB

away from the optimal performance for µ = 2 and µ = 4, respectively. While the

BP detector performs 0.5 dB and 0.05 dB aways from optimal for 2 and 5 iterations,

respectively.

Having presented the computational complexity and performance, we now consider

practical implementation issues with respect to computing resources, latency, and

performance tradeoffs. The parameters used in simulations in Section 5.7 are assumed

here, i.e. L{sd,sr,rd} = 2 and T = 10 so that L = 13.

When an optimal MLSE detector is considered as a reference, the number of
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Figure 5.13: BER performance for different detectors when T = 5.

Figure 5.14: BER performance for different detectors when T = 10.

95



dominant computing elements (complex multipliers) is 2L = 213. Meanwhile, a DFSE-

based detector consumes (L− µ+ 1)2µ = 48 elements when µ = 2, and 160 elements

when µ = 4. For a BP-based detector, the number of non-zero coefficients is L′ = 6, so

it uses up to 2L
′

= 64 elements. The DFSE detector is the most cost-saving solution

among the three when µ is small. The DFSE detector has a MLSE-like structure;

thus the decoding latency, which is equal to the traceback length, is similar to MLSE.

On the other hand, the latency of the BP detector is determined by the iteration

number. A large number of iterations results in low throughput for the BP detector,

rendering it unsuitable for use in high-rate applications. In some situations, however,

the additional performance offered by increasing the number of iterations is often

minimal. We also note that if the individual channel lengths are large, there will be a

significant number of non-zero taps in the effective channel, and the BP detector may

be too complex. In such circumstances, the effective channel can be first equalized to

a sparse TIR by a partial response equalization before BP detection, which has been

discussed in Section 2.3.1.

5.8 Conclusions

After developing a system model for the case of AF relays in ISI channels, we first

presented an optimal ML detector realization based on the Viterbi algorithm; how-

ever, the implementation was shown to be limited by high computational complexity

which increases exponentially with the length of the effective CIR. Since the dura-

tion of the effective CIR is extended as the relay period increases, the use of optimal

ML detector becomes impractical even when the relay period has just a few symbol

durations. By exploiting the sparse characteristic of the effective CIR, a MVA based
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detector was proposed which decomposes the original trellis into multiple parallel

irregular sub-trellises by investigating the dependencies between the received sym-

bols. Although MVA provides near-optimal performance through simulations, it is

not easy to implement for arbitrary ISI channels since the trellis decomposition is

not straightforward in general. In order to achieve a balance between the compu-

tational complexity and performance, the DFSE detector and the BP detector were

proposed for cooperative ISI channels. Traditionally these two detectors are used with

fixed, static channels. In our model, however, the effective channel in the cooperative

communications is shown be to periodically time-varying, even when the component

channels themselves are static. Consequently, the DFSE detector and the BP detector

were modified, as appropriate, to account for this. Through simulations in frequency

selective fading channels, we demonstrated the uncoded performance of these detec-

tors when compared to the optimal MLSE detector. In addition to quantifying the

performance of these detectors, we also included an analysis of the implementation

complexity as well as a discussion on complexity/performance tradeoffs.
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Chapter 6

Conclusions

6.1 Summary of Results

This dissertation is devoted to exploring near-optimal and practically implementable

symbol detectors in time domain for single-carrier transmissions over wireless ISI

channels.

• Firstly, we present a partial response belief propagation (PRBP) symbol detec-

tor for sparse channels. The architecture is implemented by cascading a linear

equalizer with an iterative BP detector. The channel is first partially equalized

by the LE to a even more sparse target impulse response (TIR) with only a few

nonzero coefficients remaining. The residual ISI is then canceled by the BP de-

tector. With the cascaded LE-BP structure, the symbol detector is capable to

achieve a near-optimal error rate performance with acceptable implementation

complexity. Moreover, we present a pipeline high-throughput implementation

of the detector for channel length 30 with QPSK modulation.

• Secondly, we investigate the performance of the PRBP detector under a more
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generic ISI channel rather than the sparse channel. We compare the perfor-

mance of the PRBP detector with the partial response maximum-likelihood

(PRML) detector, which also employs a hybrid two-stage scheme to allow bet-

ter performance/complexity tradeoff. Via simulations under the ITU-R 3G

channels, it is shown that the PRBP detector provides superior performance

over both the traditional minimum mean squared error linear equalizer and the

PRML detector. Due to the effect of colored noise, the PRML detector in fading

wireless channels is not as effective as it is in magnetic recording applications.

• Thirdly, an adaptive decision feedback sparsening filter BP (DFSF-BP) detec-

tor, which is also in the category of the PRBP detector, is proposed. Different

from the aforementioned PRBP detector based on LE-BP structure, the BP

detector is followed by a nonlinear DFSF as the partial response equalizer aim-

ing to reduce the error propagation. The DFSF employs a modified feedback

filter which leaves the strongest post-cursor ISI taps uncorrected. In order to

deal with the Doppler fading of the ATSC channel, and also to facilitate the

BP implementation, the DFSF is adapted using the LMS algorithm, such that

the equalized sparse channel appear to be static during the second stage of BP

detector. Simulation results show that the DFSF-BP detector outperforms the

traditional DFE in symbol error rate, under both static channels and dynamic

ATSC channels.

• Finally, we study the symbol detector design for cooperative communications,

which employs a non-orthogonal amplify-and-forward half-duplex relay through

ISI channels. We first design and implement an optimal ML detector, which

is implementable only for short relay period. Next three feasible sub-optimal
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detectors are presented for the cooperative system with long relay period. A

multitrellis Viterbi algorithm (MVA) based detector with near-optimal perfor-

mance is proposed. However, the use of MVA detector is limited since it is not

straightforward to extend to arbitrary ISI channels. The DFSE detector and the

BP detector, which are traditionally used with static channels, are modified to

accommodate to cooperative ISI channels. Also, we demonstrate the uncoded

performance of these detectors in frequency selective fading channels, analyze

the implementation complexity, and discuss complexity/performance tradeoffs.

6.2 Open Issues

The following is a list of open issues that can be further studied as an extension of

this dissertation:

• As discussed in Chapter 2, the complexity of the BP detector is O(MDg), where

M is the order of modulations and Dg is the number of nonzero coefficients of

the CIR. Many efforts have been made to reduce the implementation complexity,

such as using PRE and layer processing scheme. However, the implementation

result showed that the complexity is still very high even for a QPSK system for

a channel with only three nonzero coefficients. Thus using BP detector with

higher-order modulations is not practically implementable. Possible work can

be done by modifying and simplifying the BP algorithm.

• The BP algorithm operates on the assumption that the noise is AWGN. How-

ever, in the PRBP detector, the PRE colors the noise. We can seek to quantify

the performance penalty of the BP detector in the presence of colored noise.
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• In Chapter 4, the performance advantage of the DFSF-BP detector over the

traditional DFE is not significant for ATSC channels. It was shown that at a

SER of 10−5, the DFSF-BP detector exhibits performance about 1 dB better

than the traditional DFE for both static and dynamic channels. However,

the complexity of the DFSF-BP detector is much higher than the DFE, which

makes the DFSF-BP detector less competitive. Our simulation results (which

are not presented in this dissertation) indicates that the DFSF-BP detector still

suffer the error propagation. Appropriate schemes like error correction code and

interleave/deinterleave should be considered in the system.

• In our system model, perfect channel estimation has been assumed, which is

not a usual case in reality. The performance robustness of BP detectors in the

presence of channel estimation errors needs to be investigated.
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