431 research outputs found

    Theory Morphisms in Church's Type Theory with Quotation and Evaluation

    Full text link
    CTTqe{\rm CTT}_{\rm qe} is a version of Church's type theory with global quotation and evaluation operators that is engineered to reason about the interplay of syntax and semantics and to formalize syntax-based mathematical algorithms. CTTuqe{\rm CTT}_{\rm uqe} is a variant of CTTqe{\rm CTT}_{\rm qe} that admits undefined expressions, partial functions, and multiple base types of individuals. It is better suited than CTTqe{\rm CTT}_{\rm qe} as a logic for building networks of theories connected by theory morphisms. This paper presents the syntax and semantics of CTTuqe{\rm CTT}_{\rm uqe}, defines a notion of a theory morphism from one CTTuqe{\rm CTT}_{\rm uqe} theory to another, and gives two simple examples that illustrate the use of theory morphisms in CTTuqe{\rm CTT}_{\rm uqe}.Comment: 17 page

    Recursive Definitions of Monadic Functions

    Full text link
    Using standard domain-theoretic fixed-points, we present an approach for defining recursive functions that are formulated in monadic style. The method works both in the simple option monad and the state-exception monad of Isabelle/HOL's imperative programming extension, which results in a convenient definition principle for imperative programs, which were previously hard to define. For such monadic functions, the recursion equation can always be derived without preconditions, even if the function is partial. The construction is easy to automate, and convenient induction principles can be derived automatically.Comment: In Proceedings PAR 2010, arXiv:1012.455

    Binary Relations as a Foundation of Mathematics

    Get PDF
    We describe a theory for binary relations in the Zermelo-Fraenkel style. We choose for ZFCU, a variant of ZFC Set theory in which the Axiom of Foundation is replaced by an axiom allowing for non-wellfounded sets. The theory of binary relations is shown to be equi-consistent ZFCU by constructing a model for the theory of binary relations in ZFU and vice versa. Thus, binary relations are a foundation for mathematics in the same sense as sets are

    On the mechanisation of the logic of partial functions

    Get PDF
    PhD ThesisIt is well known that partial functions arise frequently in formal reasoning about programs. A partial function may not yield a value for every member of its domain. Terms that apply partial functions thus may not denote, and coping with such terms is problematic in two-valued classical logic. A question is raised: how can reasoning about logical formulae that can contain references to terms that may fail to denote (partial terms) be conducted formally? Over the years a number of approaches to coping with partial terms have been documented. Some of these approaches attempt to stay within the realm of two-valued classical logic, while others are based on non-classical logics. However, as yet there is no consensus on which approach is the best one to use. A comparison of numerous approaches to coping with partial terms is presented based upon formal semantic definitions. One approach to coping with partial terms that has received attention over the years is the Logic of Partial Functions (LPF), which is the logic underlying the Vienna Development Method. LPF is a non-classical three-valued logic designed to cope with partial terms, where both terms and propositions may fail to denote. As opposed to using concrete undfined values, undefinedness is treated as a \gap", that is, the absence of a defined value. LPF is based upon Strong Kleene logic, where the interpretations of the logical operators are extended to cope with truth value \gaps". Over the years a large body of research and engineering has gone into the development of proof based tool support for two-valued classical logic. This has created a major obstacle that affects the adoption of LPF, since such proof support cannot be carried over directly to LPF. Presently, there is a lack of direct proof support for LPF. An aim of this work is to investigate the applicability of mechanised (automated) proof support for reasoning about logical formulae that can contain references to partial terms in LPF. The focus of the investigation is on the basic but fundamental two-valued classical logic proof procedure: resolution and the associated technique proof by contradiction. Advanced proof techniques are built on the foundation that is provided by these basic fundamental proof techniques. Looking at the impact of these basic fundamental proof techniques in LPF is thus the essential and obvious starting point for investigating proof support for LPF. The work highlights the issues that arise when applying these basic techniques in LPF, and investigates the extent of the modifications needed to carry them over to LPF. This work provides the essential foundation on which to facilitate research into the modification of advanced proof techniques for LPF.EPSR

    An algebraic basis for specifying and enforcing access control in security systems

    Get PDF
    Security services in a multi-user environment are often based on access control mechanisms. Static aspects of an access control policy can be formalised using abstract algebraic models. We integrate these static aspects into a dynamic framework considering requesting access to resources as a process aiming at the prevention of access control violations when a program is executed. We use another algebraic technique, monads, as a meta-language to integrate access control operations into a functional programming language. The integration of monads and concepts from a denotational model for process algebras provides a framework for programming of access control in security systems

    Syntactic definitions of undefined: On defining the undefined

    Get PDF
    In the lambda-calculus, there is a standard notion of what terms should be considered to be “undefined”: the unsolvable terms. There are various equivalent characterisations of this property of terms. We attempt to find a similar notion for orthogonal term rewrite systems. We find that in general the properties of terms analogous to the various characterisations of solvability differ. We give two axioms that a notion of undefinedness should satisfy, and explore some of their consequences. The axioms lead to a concept analogous to the Böhm trees of the λ-calculus. Each term has a unique B5hm tree, and the set of such trees forms a domain which provides a denotational semantics for the rewrite system. We consider several particular notions of undefinedness satisfying the axioms, and compare them

    Abstraction Logic: A New Foundation for (Computer) Mathematics

    Full text link
    Abstraction logic is a new logic, serving as a foundation of mathematics. It combines features of both predicate logic and higher-order logic: abstraction logic can be viewed both as higher-order logic minus static types as well as predicate logic plus operators and variable binding. We argue that abstraction logic is the best foundational logic possible because it maximises both simplicity and practical expressivity. This argument is supported by the observation that abstraction logic has simpler terms and a simpler notion of proof than all other general logics. At the same time, abstraction logic can formalise both intuitionistic and classical abstraction logic, and is sound and complete for these logics and all other logics extending deduction logic with equality
    corecore