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1 I n t r o d u c t i o n  

In the A-calculus, there seems to be a well-established notion of what consti tutes a 
"meaningless" or "undefined" term. The unsolvable terms are taken to be meaning-  
less ([Bar84], 2.2.14) 1. 

A term M is solvable if for its closure M '  it holds that  for all terms P there 
are terms N1 - . .  N,~ such that  M'N1 - . .  N~ = P.  A term is unsolvable if it is not  
solvable. Unsolvable terms can be characterized in various ways: 

1. A term is unsol:cable if and only if there is a reduction containing infinitely many 
head reductions (Wadsworth, cf. [Bar84], 8.3.11). 

1 Even for the A-calculus the issue seems not be so clear either, as witnessed by [Bar92]. 
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2. A term M is solvable if and only it has a head normal form, which is a A- 
expression of the form A x l . " "  Axn.xE1... Ek, where x may be any of xl " - x n  
or any other variable. (Wadsworth, cfi [Bar84], 8.3.14). 

3. A term t is unsolvable if and only if for every context C[],  C[t] has a normal 
form if and only if C[s] has the same normal form for all s 2 ([Bar84], 14.3.24). 

Evidence that  unsolvability is a reasonable notion of undefinedness follows from: 

1. All unsolvable terms can consistently be equated ([Bar84], 16.1.3). 
2. The terms with no head normal form are exactly those which denote 2_ in graph 

model Pw of Plotkin and Scott ([Bar84], 19.1.10). 

Barendregt  defined the concept of BShm tree with help of unsolvability, which 
led to the semantics of BShm trees for A-calculus ([Bar84], 18.3). 

How much remains of this for term rewriting? What  is a good concept of "unde- 
fined" ? Clearly the A-calculus definition of solvability does not carry over. The other 
characterizations do, although sometimes a bit modified. 

This paper  makes an initial a t tempt  to identify certain classes of terms which 
are plausible candidates for the role of "undefined" or "meaningless" terms. Given a 
class of undefined terms satisfying some minimal axioms, the concept of BShm tree 
arises natural ly in the setting of infinitary term rewriting. From these axioms follow 
a general genericity lemma for term rewriting, similar to the genericity lemma in 
lambda calculus (cf. Proposition 14.3.24 in [Bar84]). As for A-calculus the BShm trees 
provide orthogonal term rewriting systems with denotational semantics, depending 
on the chosen set of undefined terms. 

2 I n f i n i t a r y  o r t h o g o n a l  t e r m  r e w r i t i n g  s y s t e m s  

We will briefly recall infinitary orthogonal term rewriting systems involving both  
finite and infinite terms. For details of finitary term rewriting the reader is referred 
to [vL90] and [AGM92] and for an account of infinitary term rewriting to [KKSdV93] 
or the papers of Kennaway et al. in [SPvE93]. 

An infinitary term rewriting system (TRS, usually this abbreviation is reserved 
for the finitary term rewriting systems only) over a signature Z is a pair (Ter~176 R) 
consisting of the set Ter~ of finite and infinite terms over the signature ~U and 
a set of rewrite rules R C Ter(•)  x Ter~176 If all function symbols of Z occur in 
R we will write just R for (Ter~176 

The set Ter~ is the metric completion of the set of Ter(Z) of finite terms 
with the metric: d : Ter(Z) x Ter(Z) ~ [0, 1]. The distance d(t, s) of two terms t 
and s is 0, if t and s are equal, and 2 -k, otherwise, where k E w is the largest natural  

2 Actually in [Bar84] is proved that: a term t is unsolvable if for every context C[ ] it holds 
that C[t] has a normal form implies C[s] has the same normal form for all s. 

The second implication can clearly be reversed (take s ---- t). The reverse of the first 
implication says that if t is solvable, then there is a context C[], a normal form r, and 
a term s such that C[t] ---- r and C[s] ~ r. But this is surely true - take s to be some 
other solvable term and use separability to construct a context C[] such that C[t] and 
C[s] have different normal forms. 
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number  such that  all nodes of s and t at depth less than or equal to k are equally 
labeled. 

Substitutions, contexts and reduction steps generalize trivially to the set of infini- 
t a ry  terms Ter~176 

A rewrite rule  l -~ r is left-linear if no variable occurs more than once in the 
left-hand side l. R is non-overlapping if for any two left-hand sides s and t, any 
position u in t, and any substitutions a and ~- : Var --+ Ter~176 it holds tha t  if 
( t /u) ~ = s ~ then either t /u  is a variable or t and s are left-hand sides of the same 
rewrite rule and u = A (i.e. non-variable parts of different rewrite rules don ' t  overlap 
and non-variable parts of the same rewrite rule overlap only entirely). A (in)finitary 
term rewriting system R is orthogonal if its rules are left-linear and non-overlapping. 

A transfinite reduction sequence consists of a function f whose domain is an 
ordinal a,  such that  ] maps each/3 < a to a reduction step jr# --+ f#+l .  )r is Cauchy 
continuous if the sequence of terms {]# I fl < c~} is a continuous function from 
(with the usual topology on ordinals) to Ter~176 (with the metric topology). For 
each/3 < a,  let d# be the depth of the redex reduced in the step from f# to f#+l .  
The sequence is strongly continuous if for every limit ordinal A < a,  the sequence 
{d# I /3 < A} tends to infinity. It is Cauchy convergent if it is Cauchy continuous 
and converges topologically to a limit, denoted by f~. It is strongly convergent if 
in addition the sequence {d# I fl < a} tends to infinity. As we have argued in 
[KKSdV93], strongly convergent reduction sequences are the appropriate notion of 
transfinite reduction sequence, as Cauchy convergence alone is insufficient to allow 
the definition of the fundamental notions of residuals, compression and (projection 
or) strip lemma. 

We write t ~ s (resp. t -~<~ s) to denote a strongly converging reduction of 
length a (resp. at most a) starting from a and converging to/3,  and t _+oo s for 
a strongly converging reduction of any finite or infinite length, t ~ *  s denotes a 
reduction of finite length (including zero). Consider some examples: 

1. Rule A(x, y) ~ A(y, x), sequence A(B,  C) ~ A(C, B) --+ A(B,  C) --+ A(C, B ) . . -  
2. Rule A(x, y) --+ A(y, x), sequence A(D, D) --+ A(D, D) --~ A(D, D) --+ A(D, D ) . . .  
3. Rule C -+ S(C), sequence C -~ S(C) -+ S(S(C))  -+ . . .  S (S(S( . . . ) ) ) .  

Example (1) is a diverging reduction sequence. Example (2) is Cauchy conver- 
gent with limit A(D,D) .  Example (3) is strongly convergent with limit S ~ (Le. 
S(S(S(...)))). 

In order to transfer certain theorems about  finitary orthogonal term rewriting to 
the infinitary setting we need to extend the definition of descendant to account for 
what  happens at limit points. For a set of positions v of to and a reduction sequence 
a from to --+~ t~, the set v \ a of descendants of v by to ~ t~ in t~ is defined by 
induction on the ordinal a. When a is finite, this is the s tandard notion. If a is a 
limit ordinal, then v \ a is defined in terms of the sets v \/3 for all/3 < a,  as follows: 
u E v \ a if and only if 3 f l < a  Y V ( f l < V < a  ~ u E v \V)  

L e m m a  1. Strip Lemma. Let to -%, t~ be a strongly converging reduction of to to t~ 
and let to --+ so be a reduction of a redex R of to. Then there is a strongly converging 
reduction so --~# sa consisting of a concatenation of strongly converging reductions 
s-i -+#~ s-~+l for V < a, where for all V <- a, s-~ is obtained by contraction of all 
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descendants of  R in t 7 and s 7 -+~  87+ 1 i8 a strongly converging reduction of all 
descendants of  the contracted redex in t 7 ~ t~+l. [] 

The notion of Ldvy equivalence can be generalised to the infinitary context. The 
compression lemma then states tha t  for any strongly converging reduction there 
exists a L@vy equivalent strongly converging reduction of length at most w. For the 

present  paper the following version suffices: 

L e m m a 2 .  Simple Compression Lemma.  I f  t - ~  s then t ~ <_~ s. [] 

In infinitary term rewriting the transfinite Church-Rosser property (whenever 
tl + - ,  t ~ Z  t2 there exists a term s such that  tl --+~ s +-~ t2) holds only for almost 
non-collapsing orthogonal TRSs. A TRS is almost non-collapsing if it has at most  
one rule whose right hand side is a single variable, in which case the corresponding 
left hand side contains no other variables. A counterexample is given by the rules 
C ~ A ( B ( C ) ) ,  A (x )  -~ x, B ( x )  -+ x. The term C can strongly converge to both A ~ 
and B ~. 

In the rest of this paper all reductions will be assumed to be potentially infinite, 
strongly converging reductions. 

3 A x i o m s  f o r  u n d e f i n e d  t e r m s  

There are two properties which we consider any notion of undefinedness should 
satisfy, which we state here as two axioms on the set U of undefined terms. 

Firstly, evaluation of an undefined term should not yield a defined term (other- 
wise the original term would be considered to be defined). Conversely, evaluation 
of a defined term should not yield an undefined term. This assumption depends on 
the fact tha t  we are dealing only with orthogonal term rewrite systems. In other 
systems, a term might reduce to both an undefined term and to a defined term, and 
it is less clear how to classify such a term. 

A x i o m  1. U and its complement are closed under strongly converging reduction. 

Secondly, terms without root stable form should immediately be classified as 
undefined. 

D e f i n i t i o n  3. A term is root stable if it cannot be reduced to a redex, t has a root 
stable form if it can be reduced to a root  stable term s. s is said to be a root stable 
form of t. 

Intuitively, ff we can reduce a term to a root-stable form, then the information at 
the root  embodies par t  of the total information obtainable from the term. If a term 
has no root-stable form, then it contains no information, and should be considered 
to be undefined. Hence: 

A x i o m  2. U contains every term which has no root stable form.  
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It  is convenient to use the symbol • to denote undefinedness. We add this to 
the signature as a nullary function symbol. Terms possibly containing • are called 
partial terms. • is conventionally defined to be not root-stable. A partial order is 
defined on partial terms by requiring that  1E_ t for every term t, and tha t  every 
function symbol is monotonic. If s __ t, then s is said to be a prefix of t. 

The next definition extends to partial terms the classification of terms into de- 
fined and undefined. 

D e f i n i t i o n 4 .  U• = {t �9 T e r ~ ( X U  {• I 3s �9 U.t E_ s}. 

For the remaining definitions and theorems, we assume that  U satisfies axioms 
1 and 2. All terms considered are partial terms. 

L e m m a  5. U is closed under reduction if and only if U• is. 

Proof. "If" is trivial. For the reverse direction, let t E U• Take a variable x not 
occurring in t and let t ~ be obtained from t by replacing every occurrence of • by 
x. Then every reduction of t corresponds to a reduction of #. If t were reduced to a 
term outside U• the corresponding reduction of t '  would lead to a term outside U. 

[] 

This implies that  U satisfies axiom 1 if and only if U• does. 

D e f i n i t i o n  6. U-reduction (notated ~ u )  is the union of the reduction relation of 
the given system with the rule t ~v- l -  for all t E U• A normal form with respect 
to this relation is, by analogy with lambda calculus, called a BShmu tree or BShmv 
normal form. 

The following theorems establish some basic properties of BShmu normal forms, 
and flesh out the intuition that  undefined terms are not "visible" to any context in 
which they are placed. Preliminary to this, we need some properties of prefixes and 
root-stable terms. 

L e m m a  7. Let t _~o~ s, and let r be a finite prefix of s. Then there is a term q, also 
having r as a prefix, such that t --+* q. 

Proof. By the Compression Lemma, t --+-<~ s. By strong convergence, every term in 
this sequence from some point before the limit onwards has r as a prefix. [] 

L e m m a 8 .  1. The set of root stable terms is closed under strongly converging re- 
ductions. 

2. The set of terms having a root stable form is closed under strongly converging 
reduction. 

Proof. 1. Immediate  from the definition. 
2. This follows from the first item and theorem 18, a general theorem tha t  we will 

prove in the next section. [] 
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L e m m a  9. I f  a term can be reduced to root-stable form, it can be reduced to root- 
stable form in finitely many steps. 

Proof. Let t be reducible to a roo t -s tab le  t e rm s. By the Compression Lemma,  this  
can be done in at  most  w steps. By s t rong convergence, the  reduct ion of t to s must  
have the form t -+* r --+~ s, where r --+~ s performs no root  reductions.  Suppose 
tha t  r is not root-s table .  Then r can be reduced to a redex,  and by lemma 7 can 
be reduced to a redex in finitely many  steps.  Let  r --+* q be such a reduction.  Now 
apply  the Strip Lemma to  the  sequences r --+~ s and  r -+* q, to  obta in  sequences 
s --+~ p and r --+~ p. Neither of the  given sequences contains any root  reductions,  
therefore neither  do the sequences cons t ruc ted  by the  Str ip  Lemma.  r is a redex, so 
by orthogonali ty,  p must  also be a redex,  cont rad ic t ing  the  root -s tab i l i ty  of s. [] 

T h e o r e m  10. Every term has a unique BShmu tree. 

Proof. Define t to be stable to depth n if for every occurrence u of t of length at  most  
n, t I u is either _1_ or root-s table .  

Let  t be any term.  If t has no roo t - s tab le  form, then by the first axiom, t -+u-l-. 
By lemma 8, the set of such terms is closed under  reduct ion,  so .1_ is the  only BShmu 
tree which t can reduce to. Otherwise,  t reduces,  and by l emma 9 in finitely many  
steps, to a root -s tab le  te rm s. The  finite Church-Rosser  p rope r ty  (of the ord inary  
reduct ion rules) implies tha t  the  root  symbol  or root  variable of s is de termined 
uniquely. Therefore every te rm can be U-reduced to a t e rm which is s table to dep th  
1, and its root  symbol,  whether  _1_, a variable,  or a function symbol,  is unique. 

Let  t be stable to depth  n. For any occurrence u of t of length n, t I u can be 
reduced in finitely many  steps to a t e rm s table  to  dep th  1. Doing this for all such 
occurrences gives a finite reduct ion of t to a t e rm s table  to dep th  n + 1. Furthermore,  
the  prefix of this te rm down to dep th  n + 1 is uniquely determined.  

Repea t ing  indefinitely gives a s t rongly  convergent  U-reduct ion of t to a unique 
te rm stable to all finite depths,  i.e. a BShmu tree. [] 

D e f i n i t i o n  11. Bu(t )  denotes the  B5hmu t ree  of t. 

T h e o r e m l 2 .  For any term t, and any finite term s E_ Bu( t ) ,  there is a finite 
reduction of t to some term r such that s E r. 

Proof. In the proof  of theorem 10 we cons t ruc ted  for each te rm a s t rongly converging 
reduct ion to BShmu normal  form of length at  most  w. By the definition of s trong 
convergence any finite prefix of the final t e rm is present  a t  some finite s tage during 
the  reduction.  [] 

T h e o r e m l 3 .  For any term t, t E U• if and only if B~](t) =_1_. 

Proof. =~: immedia te  from the definit ion of U-reduct ion.  
r From the definition of U-reduct ion,  the  final s tep of a U-reduct ion of t to _l_ 

must  have the form s --+2., where s E U• Since by axiom 1 the  complement  of U is 
closed under  reduction,  t must  also be in U• Q 

T h e o r e m 1 4 .  I f  s E_ t then Bu(s)  E_ Bu( t ) .  
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Proof. By induction on a U-reduction of s to Bu(s) .  It  is immediate from the def- 
inition of U-reduction that  t has a U-redex everywhere that  s does. Therefore if 
s -+v s ~ by a reduction at occurrence u, then for some t ~, t -+ t ~ by reduction at u, 
and s ~ E t ~. By continuity, it follows that  there is a term ff such tha t  t --+~ t ~ and 
Bv( s )  E t'. Therefore Bu(s)  E Bv( t ' )  = Bv( t ) .  [] 

T h e o r e m  15. For any terms s and t, 13u(s) ~- Bu(t)  if and only if  for  every context 
c[], E By(Girl). 

Proof. ~ :  immediate by taking C[] = []. 
=*: By uniqueness of Bhhmu-normal  forms (theorem 10), the right hand side is 

equivalent to Bu (C[Bu (s)]) E Bu(C[Bu(t)]).  In other words, it is sufficient to prove 
the theorem in the case where s and t are B6hm normal forms. When this is the case, 
the left hand side is equivalent to s being a prefix of t. This implies tha t  C[s] E C[t]. 
By theorem 14 the right hand side follows. O 

T h e o r e m l 6 .  For any term t, t is in U• if and only if  for  any context C[] and 
t e rm s, E Bv(c[s]). 

Proof. r Take C[] -- [] and s =_1_. Then the right hand side says tha t  Bv( t )  = •  
By theorem 13, t C U• 

=v: Let t E U• By theorem 13, Bv( t )  =_k. Therefore Bu(C[t]) = Bu(C[-I-]). 
•  s, so by theorem 15, Bu(C[-k]) E Bu(C[s]). rn 

This theorem is a generalization of the genericity lemma occuring in lambda 
calculus (cf. Proposit ion 14.3.24 in [Bar84]). 

D e f i n i t i o n  17. A term is totally defined if none of its subterms (including the term 
itself) is in U• (Note tha t  such a term necessarily cannot contain _L.) 

We note tha t  our axioms are expressed in terminology which applies to the 
lambda calculus as well. The set of unsoh,able terms of lambda calculus satisfies all 
the above axioms and theorems, as do the sets of easy terms and the terms of order 
0 [Bar92]. 

4 C a n d i d a t e s  f o r  s y n t a c t i c  d e f i n i t i o n s  o f  u n d e f i n e d n e s s  

In this section we describe four- different notions of undefinedness. For each one, 
we state which of the axioms of the previous section it does or does not satisfy. 
In addition, with each definition there is associated a set of "certainly-meaningful" 
terms; with these we can state stronger versions of some of the axioms. 

We can simplify the task of establishing that  the various concepts satisfy the 
axioms for undefinedness, by the following theorem. 

T h e o r e m  18. Let S be a set of terms having the following two properties: 

1. S is closed under transfinite reduction. 
2. For every term t, if there is an s C S such that t _+or s, then there is an s ~ E S 

such that t -~ * s ~. 



550 

Let -S be the set of all terms t such that there is an s E S for which t ---~ s. Then 
-S is closed under transfinite reduction. 

Proof. Let t E S. T h a t  is t - + ~  p for some p E S. Suppose t ha t  t --+~ s. We must  
show tha t  s E S.  From t E S it follows tha t  t ~ p for some p E S. Hence, by 
condi t ion 2, there  is an r E S such tha t  t -~* r. By the Str ip Lemma,  there  must  
exist  a q and reduct ion  sequences s --+~ q and r --+~ q. By condit ion 1, q E S. 
Therefore  s E S .  [] 

4.1 T r a n s p a r e n t  a n d  o p a q u e  t e r m s  

D e f i n i t i o n  19. A closed te rm is a transparent value if i t  has the  form a(llu), where 
l is the  lef t -hand side of a rule, u is a posi t ion in l such tha t  llu is not  a variable,  
and  a is a subs t i tu t ion .  An open te rm is a transparent value if some closed instance 
is. A t e rm is transparent if it  can be reduced to a t r ansparen t  value; otherwise, it  is 
opaque. Uo is the  set of opaque terms.  A totally transparent value is a term,  all of 
whose sub te rms  are  t r anspa ren t  values. 

For example  in a TRS expressing basic a r i thmet ic  one might  encounter  the  rules: 

Add(O, y) --+ y 

Add(S(x) ,  y) -+ S(Add(x,  y)) 

In this  f ragment  the  te rms 0, S(0) and Add(S(x) ,y)  are examples  of t r ansparen t  
values. Terms like Add(x, True) and S(True) are opaque.  

The  in tu i t ion  behind the definition of Uo is tha t  for a t e rm to be meaningful,  it 
must  be possible for it  to  be pa t t e rn -ma tched  from outside.  

Note  tha t  while the  sets of opaque and t ransparen t  terms are in general  not  recur- 
sive, the  sets of t r anspa ren t  values and to ta l ly  t r ansparen t  values are. Transparent  
values can be thought  of as "obviously meaningful" terms.  Tota l ly  t r ansparen t  values 
consist  ent irely of obviously meaningful components .  

The  concept  of t r anspa ren t  value can be regarded as a general isa t ion to a rb i t r a ry  
or thogonal  rewri te  systems of the not ion of const ructor  term. A const ructor  system 
is a TRS  in which every function symbol  is ei ther  an operator, i.e. appears  a t  the  root  
of a t  least  one lef t -hand side, and does not  appear  anywhere else in any lef t-hand 
side, or a constructor, i.e. a symbol  which does not  appear  a t  the  root  of any lef t-hand 
side. A constructor term is one having a const ructor  symbol  at  i ts  root.  I t  is clear t ha t  
in a cons t ruc tor  system,  every t ransparen t  value is a const ructor  term.  In pract ical  
examples  of cons t ruc tor  systems,  such as programs in most  funct ional  languages,  one 
typica l ly  also finds t ha t  every term with a sufficiently large prefix consist ing entirely 
of cons t ruc tors  is a t r ansparen t  value. In fact, if cons t ructor  symbols  always arise 
in conjunct ion with opera to rs  whose rules d iscr iminate  on the constructor ,  then the 
t r anspa ren t  values will be precisely the  const ructor  terms.  

L e m m a  20.  The set of transparent values is closed under transfinite reduction. 
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Proof. Let t = a(l]u), let l be the  left hand side of some rule, and let u r 0 be a 
posi t ion of a function symbol  in I. Let  t __+oo s. We prove by induct ion on the length 

of the sequence tha t  s is an instance of l[u. 
Let t --+ s in one step,  by reduct ion of a redex at  posi t ion v. By orthogonal i ty ,  

u .  v cannot  be a posi t ion of a function symbol  in l, since otherwise (r(l) would have 
conflicting redexes at  0 and at  u .  v. Therefore u �9 v is an extension of a posi t ion of 
a variable x in l, and s is an instance a1(llu), where a t differs from a only at  x. 

Suppose to -+~ t~, where to = a(l[u) is t ransparent ,  a ,  l, and u being as before. 
Assume by induct ion tha t  each te rm tz for fl < a is an instance of llu. Since l[u is 
finite, convergence implies tha t  t~ is also an instance of flu, and hence is a t r anspa ren t  
value. [] 

L e m m a 2 1 .  If  t can be reduced to a transparent value, it can be reduced to one in 
finitely many steps. 

Proof. Suppose t can be reduced to an instance of a te rm llu , where l is a left hand  
side and u is a nonempty  posit ion of a function symbol  in I. Since l]u is finite, by 
lemma 7, t can be reduced to such a te rm in finitely many steps. [] 

By theorem 18 we obta in  from these lemmas: 

C o r o l l a r y  22. The set of transparent terms is closed under transfinite reduction. 

T h e o r e m  23. In an orthogonal TRS: 

1. Uo satisfies axioms 1 and 2. 
2. Every transparent value is root stable. 
3. Every totally transparent value is a normal form. 

Proof. 1. By or thogonal i ty  Uo is t r ivial ly  closed under reduct ion,  and by corollary 
22 so is its complement.  From or thogonal i ty  it  is immedia te  tha t  Uo contains all 
terms without  root  s table form. 

2. Immedia te  from orthogonali ty.  
3. Immedia te  from the previous i tem. [] 

However, note tha t  in general not  all normal  forms are t ransparent .  An example  
is given by a te rm such as Add( True, True), given a set of rules for Add which require 
both  arguments  to be integers. This term is an opaque normal  form. 

4.2 w - r e d u c t i o n  

w-reduction is based on the notion tha t  in general,  one cannot  discover the normal  
form of a te rm other  than  by reducing it to normal  form. The  information about  
the  normal  form of a te rm tha t  we can discover without  performing any reduct ion 
may be approx imated  by imagining tha t  every redex is undefined, and tha t  every 
t e rm tha t  might  possibly be a redex, given tha t  nothing is known about  its subterms 
which are redexes, is also undefined. 
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D e f i n i t i o n  24. Let w be a new nul lary funct ion symbol.  Define a par t ia l  ordering 
on terms:  

1. w <_ t for all t 
2. F ( t l , . . . , t ~ )  <_ F(t ' l , . . .  ,t'~) if ti _< t~ when 1 < i < n. 

If s < t then s is an w-prefix of t. w-reduct ion is defined by the rule t --~ w if t < s 
for some redex s. 

P r o p o s i t i o n  25. w-reduction is confluent and strongly normalising (even if the TRS 
is not ~orthogonal). 

D e f i n i t i o n  26. wnf(t) is the (existing and unique, by the  previous proposi t ion) w- 
normal  form of t. t is an w-value if there  is a finite w-prefix s of t such tha t  why (s) ~ w. 
t is w-defined if it  reduces to an w-value, otherwise i t  is w-undefined. U~ is the  set 
of w-undefined terms.  A total w-value is a term,  all of whose subterms are w-values. 

For finite terms,  the above definition of t being an w-value is equivalent to the 
w-normal  form of t not being w. For infinite terms,  this  is not  the case. For example,  
given a rule whose left hand side is F(A),  the  infinite te rm F(F(F( . . . ) ) )  is a normal  
form, hence also an w-normal form, but  every finite w-prefix w-reduces to w. The 
more  complicated definition of w-value is necessary to ensure tha t  the  w-undefined 
te rms are closed under reduction.  

L e m m a 2 7 .  The set of w-values is closed under transfinite reduction. 

Proof. Let t be a w-value, with w-normal  form s. Then for every posit ion u of a 
p roper  function symbol in s, u cannot  be a posi t ion of a redex in any term which is 
an ins tance of slu. Therefore s is a prefix of every t e rm which t reduces to, and since 
s is a w-normal form, it is a prefix of the  w-normal  form of every such term. [] 

L e m m a  28. If  a term can be reduced to a w-value, it can be reduced to an w-value 
in finitely many steps. 

Proof. Let t be reducible to a w-value s. T h a t  p rope r ty  of s depends only on some 
finite prefix s '  of s in w-normal form. By l emma 7, t is reducible to a term having s '  
as a prefix in finitely many steps. Such a t e rm is a w-value. [] 

By theorem 18 we now obta in  from these lemmas:  

C o r o l l a r y  29. The set of terms having a w-normal form is closed under strongly 
converging reduction. [] 

T h e o r e m  30. In an orthogonal TITS: 

1. U~ satisfies axioms 1 and 2. 
2. Every w-value is root stable. 
3. The total w-values are the normal forms. 
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Pro'of. 1. The w-undefined terms are closed under reduction because they are a 
class of terms not reducible to members of a certain class. By corollary 29, the 
complement of U~ is closed under strongly converging reduction. It is immediate 
that  U~ contains all terms without root-stable form. 

2. Immediate. 
3. Immediate from the previous item. [] 

4.3 R o o t  s t ab le  f o r m  

In earlier sections we defined the notion of root stable form. This itself gives rise to 
a minimal notion of undefinedness, in which the "meaningless" terms are taken to 
be exactly the terms without root stable form. 

Let Ur~ be the set of terms without root stable form. By analogy with the notions 
of transparent value and w-value, we might call root-stable terms rs-values. The 
total rs-values would then be the terms, all of whose subterms are root-stable, i.e. 
the normal forms. 

T h e o r e m  31. In an orthogonal TRS: 

1. Urs satisfies axioms 1 and 2. 
2. The following are equivalent for any term t: 

(a) t is a normal form. 
(b) t is a total rs-value. 
(c) Every subterm of t is root stable. 

Proof. 1. Urs is trivially closed under transfinite reduction. Its complement is closed, 
by corollary 8. The second axiom is trivial from the definition. 

2. Trivial. [] 

4.4 Hypercol lapsing terms  

A collapsing rule is a rewrite rule whose right hand side is a variable. A collapsing 
redex is a redex by such a rule. A hypercollapsing term is a term from which there 
is a (strongly continuous) reduction sequence containing infinitely many collapsing 
reduction steps at the root. 

The notion of hypercoltapsing terms as being the undefined terms only satisfies 
the first axiom for undefinedness. We include it here because the hypercollapsing 
terms play a key role in the failure of the Church-Rosser property for infinitary 
rewriting in orthogonal TRSs. In [KKSdV93] we have shown that  in general, the 
Church-Rosser property holds only up to the equivalence of hypercollapsing terms. 

Let Uhc be the class of hypercollapsing terms. 

T h e o r e m  32. In an orthogonal TRS: 

1. Uhc satisfies axiom 1. 
2. A normal form contains no hypercollapsing subterms. 
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Proof. 1. In [KKSdV93] we have proved that hc-terms are closed under reduction. 
If a term reduces to a hypercollapsing term, then it is clearly a hypercollapsing 
term itself. Hence the complement of Uhc is closed under reduction as well. 

2. Trivial. [:] 

However, 

1. Uhc in general does not satisfy axiom 2. Consider the rule A -~ A and the term 
A. This term has no root-stable form, but is not hypercollapsing. 

2. Because of the failure of axiom 2, theorem 10 also fails for Uhc-reduction. The 
term A in the above example has no B6hmUhc tree. (However, BShmuhc trees, 
when they exist, are unique. This can still be proved with help of entirely different 
methods from [KKSdV93].) 

4.5 C o m p a r i s o n  of  the  above  no t ions  

T h e o r e m  33. Uhc CUrs C U~ C Uo. 
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