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Abstract

It is well known that partial functions arise frequently in formal reasoning

about programs. A partial function may not yield a value for every member

of its domain. Terms that apply partial functions thus may not denote, and

coping with such terms is problematic in two-valued classical logic. A question

is raised: how can reasoning about logical formulae that can contain references

to terms that may fail to denote (partial terms) be conducted formally? Over

the years a number of approaches to coping with partial terms have been

documented. Some of these approaches attempt to stay within the realm

of two-valued classical logic, while others are based on non-classical logics.

However, as yet there is no consensus on which approach is the best one to

use. A comparison of numerous approaches to coping with partial terms is

presented based upon formal semantic definitions.

One approach to coping with partial terms that has received attention over

the years is the Logic of Partial Functions (LPF), which is the logic underlying

the Vienna Development Method. LPF is a non-classical three-valued logic

designed to cope with partial terms, where both terms and propositions may

fail to denote. As opposed to using concrete undefined values, undefinedness

is treated as a “gap”, that is, the absence of a defined value. LPF is based

upon Strong Kleene logic, where the interpretations of the logical operators

are extended to cope with truth value “gaps”.

Over the years a large body of research and engineering has gone into the

development of proof based tool support for two-valued classical logic. This

has created a major obstacle that affects the adoption of LPF, since such proof

support cannot be carried over directly to LPF. Presently, there is a lack of

direct proof support for LPF.

An aim of this work is to investigate the applicability of mechanised (au-

tomated) proof support for reasoning about logical formulae that can contain

references to partial terms in LPF. The focus of the investigation is on the ba-

sic but fundamental two-valued classical logic proof procedure: resolution and

the associated technique proof by contradiction. Advanced proof techniques

are built on the foundation that is provided by these basic fundamental proof

techniques. Looking at the impact of these basic fundamental proof techniques

in LPF is thus the essential and obvious starting point for investigating proof

support for LPF. The work highlights the issues that arise when applying

these basic techniques in LPF, and investigates the extent of the modifications



ii

needed to carry them over to LPF. This work provides the essential founda-

tion on which to facilitate research into the modification of advanced proof

techniques for LPF.
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Chapter 1

Introduction

Contents

1.1 Setting the Scene . . . . . . . . . . . . . . . . . . . 1

1.1.1 Mathematical Logic . . . . . . . . . . . . . . . . . . 1

1.1.2 Formal Methods . . . . . . . . . . . . . . . . . . . . 2

1.1.3 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.4 The Issues that Arise When Reasoning About Par-

tial Functions . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Structure of the Thesis . . . . . . . . . . . . . . . . 13

An aim of this thesis is to investigate the applicability of mechanised proof sup-

port for reasoning in the Logic of Partial Functions about logical formulae that

can contain references to terms that may fail to denote proper values (partial

terms), for instance, arising from the application of partial functions. In this

chapter the scene is first set by briefly introducing some relevant background

information, as well as highlighting the issues that arise when reasoning about

partial functions, which provides the motivation for this work. The aims of

this thesis are then discussed, which is followed by an overview of how they

will be addressed over the course of this thesis.

1.1 Setting the Scene

In this section the scene is set by briefly introducing the topics of mathe-

matical logic, formal methods, and proofs. Then the issues that arise when

faced with reasoning about partial functions are introduced, which provides

the motivation for the aims of this thesis.

1.1.1 Mathematical Logic

“The study of logic was begun by the ancient Greeks... where it was used

to formalize deduction: the derivation of true statements from statements

that are assumed to be true” [BA01]. At a later date mathematicians started
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using logic to study the foundations of mathematics [BA01]. Mathematical

logic is used extensively today in computer science. A detailed history of

mathematical logic is not presented here as the reader can refer to other texts,

such as [BA01, Bun10, Wal97].

In propositional logic, formulae are built up from the constant truth val-

ues true and false, and from propositional variables. These can be combined

using logical operators (connectives) which are given a precise formal mean-

ing [BA01]. Formulae are traditionally two-valued, that is, they take one of

two truth values either true or false.

First-order (predicate) logic extends from propositional logic. In first-order

logic formulae can also be built up from non-propositional variables and con-

stants using functions and predicates, and non-propositional variables can be

quantified [Har09]. This provides a logic which is much more expressive than

propositional logic.

1.1.2 Formal Methods

Software is becoming more complex, which means that there is a greater chance

of errors being present. Furthermore, software is increasingly being used in

situations where the failure of the software can put lives at risk, for example,

in onboard aircraft systems and in medical systems. The failure of software

can also lead to huge financial ramifications etc. Thus it is of no big surprise

that software correctness is an important research topic in computer science.

Formal methods are an approach to increasing confidence in computer systems.

Formal methods are mathematical techniques used in the development of

computer systems [WLBF09], for specifying and verifying systems [CW96].

The use of formal methods is warranted by the expectation that mathemat-

ical analysis can contribute to the reliability and to the robustness of a de-

sign [Hol97]. The complexity of such mathematical proofs, and the time that

it can take to discharge such proofs leads to limiting the extent to which formal

methods are applied in practice [JJLM91].

The term formal methods can be used to describe: “writing a formal spec-

ification; proving properties about the specification; constructing a program

by mathematically manipulating the specification; and verifying a program by

mathematical argument” [Hal90]. Formal methods for instance, can refer to

mathematically proving that properties of a system hold before it is imple-

mented [JJLM91].

A formal specification is used to provide a precise definition of what a

system should do and the system properties that are desired. Writing such

specifications ensures that properties and requirements of a system are written
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down formally. Such specifications can lead to uncovering inconsistencies and

design flaws etc. [CW96, Jon90].

Formal specifications employ a mathematical (logic) notation. Mathemat-

ical logic is used to verify programs. Two approaches to formal verification

are model checking and theorem proving. Such techniques are used to check

whether a system has the desired properties [CW96]. Given a model of a

system, model checking is used to check whether a property holds in that

model [CW96]. Theorem proving is the process of finding a proof of a prop-

erty, where the different steps in a proof are justified by referring to known

facts [CW96].

Numerous formal methods exist such as VDM [Jon90] and Z [Spi92]. They

have been used successfully in industry, for instance in specifying safety crit-

ical software and in verifying hardware designs [CW96]. For an overview of

the use of formal methods in industry the reader is referred to [CW96] and

to [WLBF09].

1.1.3 Proofs

A mathematical proof is an argument that some statement/claim is true, when-

ever some assumed statements are true. Proofs are used frequently in the

context of formal specifications, for instance in discharging proof obligations

about formal specifications, and for showing that expected properties of a for-

mal specification hold [BFL+94]. A formal language allowing statements to

be written, along with an interpretation giving a meaning to statements, and

a set of inference rules and axioms which are rules stating how statements

can be inferred from other statements, (where an axiom is an inference rule

whose truth is taken without question), are needed as a basis for conducting

proofs [BFL+94].

Depending on the purpose of the proofs, they can be conducted (written)

with different levels of formality [BFL+94]. At one extreme is informal proofs.

Informal proofs generally put forth a high-level argument that attempts to

convince a reader that a claim holds. The lack of formality in such informal

proofs means that they cannot be checked by tools, and thus there is a reliance

on the reader to check that they are correct. Additionally, in informal proofs

it could be the case that large steps are made without detailed justification.

Thus such proofs are susceptible to errors.

At the other extreme are formal proofs. In formal proofs the level of detail

in the proofs is greater than in informal proofs. Such proofs are generally

conducted a step at a time, where each step is justified by referring to known

rules, where generally no big jumps are made (certain tools may though allow
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for a number of steps to be made in a single step, for instance, steps that

simplify formulae). Tool assistance can be used to aid in the development of

such proofs, and for checking that such proofs are correct. Examples of such

tools include PVS [ORS92], Isabelle/HOL [NWP02], and CVC [BT07]. Formal

proofs can be checked for correctness by a tool, as the task can generally just

be reduced to an exercise in symbol manipulation. Checking the correctness of

steps in a formal proof can be done by pattern matching against rules [BFL+94].

A proof must serve the purpose of eliminating any doubt about the claim

being made not following. Proofs that lack a lot of formality cannot generally

eliminate such doubt. The highest level of confidence in proofs can be gained

by constructing formal proofs, since their detailed steps mean that tools can

be used to check such proofs for correctness.

Undertaking mathematical proofs is generally a hard task, and as a result

tool support is available to help in writing formal proofs (theorem provers). In

theorem proving a user generally provides a set of rules taken to be true, as well

as a formula to be proved. It is the purpose of the theorem prover to attempt

to construct a proof, or at least to help the user to find a proof that the formula

under consideration holds. Such tools can be aided by proof techniques such

as resolution, paramodulation, and semantic tableauxs [BA01, Har09, Bun10].

In interactive theorem proving the onus is on the user to complete the

proof but given the aid of a tool. The user could, for instance, have to pro-

vide a proof step by step, but significant proof tasks could still be performed

automatically by the tool. Such a tool may only check each step of a user’s

proof for correctness. At another extreme of theorem proving are automated

theorem provers, which will attempt to prove a formula, for instance by follow-

ing pre-programmed strategies to attempt to find a proof of a formula under

consideration automatically. However, such tools may still require user assis-

tance/guidance [GMW79, BA01].

1.1.4 The Issues that Arise When Reasoning About Partial Func-

tions

The interest in this thesis is reasoning about logical formulae that can contain

reference to terms that may fail to denote, for example, arising from the appli-

cation of partial functions. The terms total function and partial function will

first be introduced, followed a discussion of the issues that arise when reason-

ing about partial functions with examples which provides motivation for this

work. This section leads into the aims and the contributions of this thesis.

A total function is a function that will yield a result (value) for every

member of its domain. The domain is the set of values to which a function
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may be applied. A total function is defined on all values that are within its

domain. No matter what arguments are passed into a total function, a term

that applies a total function will always denote a value, that is, the term will

be defined.

A partial function may not yield a result for every member of its domain.

Thus reasoning about partial functions is more problematic as a term that

applies a partial function can fail to denote, as a partial function may not

yield a proper defined value for some or possibly all of the arguments in its

domain that it can be applied to. A defined domain is the set of values to which

a function may be applied, where the function will yield a defined result. These

two domains are the same for total functions, but for partial functions these

two domains are different from each other. For instance, the domain of the

partial integer division function is Z×Z, but the defined domain of the partial

integer division function is Z× (Z \ {0}).
Reasoning about partial functions is necessary since they arise frequently

in computing, see e.g. [CJ91, Jon06, Far96, Owe97]. Partial functions arise

for example in the specification of computer programs (for instance in VDM

and Z), where they can arise from recursive function definitions which are only

defined when the recursion terminates and yields a defined value. Program

specifications also employ a number of data types, such as sequences and maps

which have associated operators that are partial, such examples include taking

the head of a sequence (the sequence could be empty) and map lookup (the

value may not exist in the map). Other examples where partiality can arise

includes from array indexing (an invalid array index), division by zero, and

taking the log of zero. Such partial operators are used frequently in program

specifications, and there is a great need for recursive functions.

A term that applies a partial function with argument(s) from outside of the

partial function’s defined domain will not denote (the term denotes no value)

and this is known as a partial term, or an undefined term, or a non-denoting

term. The terms partial term, undefined term, and non-denoting term are used

interchangeably throughout this thesis. Allowing partial functions (and partial

operators) to occur leads one to having to reason about potential partial terms

in proofs.

Formulae like i/i = 1, log(i) = 0, and A[i ] = 5, can all be true, false

or undefined, depending on the value assigned to the free variable i . Also

consider a sentence such as i is tall . This is true for some i , false for some i ,

and neither true or false for some i ; the sentence is vague. Undefinedness can

propagate, since the term 1/0 is undefined, the term 1 + (1/0) is undefined.

People have also argued (refer to [Sid10] for an introduction as well [Pri53]
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and [But55]) that propositions about the future also pose problems in classical

logic, since propositions about the future are neither true nor false when stated.

A sentence such as it will rain next Wednesday is neither true nor false at this

moment in time, since it is not yet determined that it will rain next Wednesday,

(cf. the arguments about Aristotle’s sea battle argument [Pri53, But55]).

It is illustrated below that reasoning about logical formulae that can contain

references to partial terms, for instance, arising from the application of partial

functions, is problematic in two-valued classical logic. Numerous approaches to

reasoning about logical formulae that can contain references to partial terms

though have been proposed, for instance in [Kle52, McC67, CJ91, Owe97,

FFL97, Far96, MS97, Meh08, GS95, Jon06, SB99, Art96, Häh05, WF08, Fit07,

JL11, Sch11]. A review of these different approaches is presented in Chapter 2.

The issues that arise due to partial terms arose a long time ago due to the

use of definite descriptors [SDG99]. Russell [Rus05] in the early 1900s discusses

such issues using the infamous example of the present King of France among

others, and introduces his own theory, where partial terms stand for no object

(since France is a republic now the phrase the present King of France refers to

no object), but assertions like the King of France is bald are false), as well as

outlining the theories of Meinong and Frege, which are theories where the King

of France would stand for some object. Refer to [SDG99] for such an historical

perspective. Some of these ideas can be seen underlying the approaches that

are considered in Chapter 2.

The focus in this thesis is on partial terms that arise through the applica-

tion of partial functions in program specifications. Approaches to coping with

partial terms are considered in Chapter 2.

In [Häh05] three different kinds of undefinedness/partiality that can be

encountered in program specifications are discussed:

• Non-termination: “A subcomputation needed for the evaluation of an

expression does not terminate” [Häh05];

• Error value: “A computation has an erroneous result, because it was

called with an illegal value... an illegal value is not intended to occur,

but if it does, one has to handle it” [Häh05]; and

• Non-determinism: “In contrast to error values, indeterminate values typ-

ically are intentional... An expression could be an error, but it could just

as well be loosely specified: it has a defined value, but it is left to an

implementation to fix that value” [Häh05].
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To further illustrate the problems with partial terms consider the following

formula where hd s extracts the first element from the sequence s :

s = [] ∨ hd s = 5

When s is an empty sequence the term hd s fails to denote a proper value;

it is known as a partial term. The second disjunct will contain a partial term

whenever the first disjunct is true.

Furthermore, consider the following formula where j is an integer and m is

a map from Z to Z:

j ∈ dom (m) ∧m(j ) = 3

Notice that the map lookup in the second conjunct gives rise to a partial

term when the first conjunct is false.

In these two examples the question is raised as to what meaning is to be

given to the logical formulae given the existence of partial terms.

To further illustrate the issue of partial terms consider the zero function

which is deliberately partial and was first presented in [CJ91]:

zero :Z→ Z

zero(i) 4 if i = 0 then 0 else zero(i − 1)

This function is defined to return 0 when i ≥ 0. However, when i < 0, the

term zero(i) will fail to denote an integer value, it will be a partial term.1 For

example, zero(5) returns an integer value notably 0, but zero(−1) is a partial

term (it denotes no value).

The zero function has been chosen primarily because it allows for the issues

surrounding undefinedness to be illustrated through such a simple definition.

This zero function and a related subp function (see Chapter 2) have been

promoted by Cliff Jones [Jon90, CJ91, Jon06] as a way of testing approaches

to coping with partial terms.

In the following it is being considered that functions are evaluated according

to a strict semantics, that is, if an argument passed into a function is undefined

then the function itself is undefined. Of course, functions can also be undefined

1The domain could be restricted to N since the domain is just a single set and therefore
the restricted set N can be used where all of the elements satisfy the precondition that is
presented. That is, the zero function will be total over this restricted set N. However,
taking such an approach is not always this straightforward. Consider that the precondition
is a relation between multiple domain elements. Taking this approach is considered in
Section 2.2.
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even if only defined arguments are passed into them.

The following property of the zero function attempts to capture the defined

domain of the zero function, and further illustrates how the issues of partial

terms can be manifested into logical formulae:

∀i :Z · i ≥ 0 ⇒ zero(i) = 0 (1.1)

it should be clear that the truth of this property relies on the truth of impli-

cations such as:

1 ≥ 0 ⇒ zero(1) = 0

which evaluates to:

true ⇒ 0 = 0

and further to:

true ⇒ true

which is clearly true.

However, the truth of this property also relies on the truth of implications

such as:

−1 ≥ 0 ⇒ zero(−1) = 0

where the term zero(−1) does not denote an integer value. There is a “gap”,

that is, an absence of a defined value. Blamey used the notion of “gaps” in the

value space/in truth values, as opposed to an explicit undefined value [Bla80].

The term “gap” will be used irrespective of the type of undefinedness from

the three types of undefinedness that can arise and that were listed above, so

no distinction will be made between the different types of undefinedness in

what follows. It is, however, convenient to illustrate the difficulties by writing

⊥Z and ⊥B to stand for missing integer values (“gaps”) and missing Boolean

values (“gaps”) respectively.

Thus this example evaluates to:

false ⇒ ⊥Z = 0

when considering weak (strict) equality (which fails to denote if either operand

fails to denote) means that this formula further evaluates to:
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false ⇒ ⊥B

where a non-denoting truth value (a “gap”, that is, the absence of a truth

value) has arisen. A partial term from the application of the zero function has

propagated up.

This does not make any formal sense in two-valued classical logic since

the truth tables only define the logical operators for proper Boolean values

(B, {true, false}), and no mention is made of formulae that fail to denote a

Boolean value.

Referring again to Property 1.1 the reader may want to interpret the impli-

cation as a “guard”, that is, whenever the antecedent is false then the impli-

cation is true. In other words interpreting the antecedent of the implication as

“guarding” the implication from the possible partial term (a “gap”) in the con-

sequent, but there is no formal sense in two-valued classical logic in which the

antecedent being false overcomes the problem of a “gap” in the consequent.

Furthermore, it is not at all wise to rely on such a “guard” being present.

A standard law in two-valued classical logic is that the contrapositive (¬ q

⇒ ¬ p) of an implication is equivalent to the implication (p ⇒ q):

∀i :Z · ¬ (zero(i) = 0) ⇒ i < 0 (1.2)

where the so called “guard” is less obvious.

A more problematic property of the zero function is:

∀i :Z · zero(i) = 0 ∨ zero(−i) = 0 (1.3)

where it is clear that with the exception of the case when i denotes 0 one of

the disjuncts will fail to denote a proper value. Depending on the value of i

either of the operands can fail to denote a proper value. It should be clear

that the truth of Property 1.3 relies on the truth of disjunctions such as:

zero(1) = 0 ∨ zero(−1) = 0

which again since the term zero(−1) does not denote an integer value evaluates

to:

0 = 0 ∨ ⊥Z = 0

and due to the notion of weak equality this further evaluates to:



Introduction 10

true ∨ ⊥B

which again makes no sense in two-valued classical logic, since the truth ta-

bles of two-valued classical logic are only defined for proper Boolean values.

In [Far90] Farmer states that reasoning about partial functions in classical logic

is problematic as they can lead to a violation of the existence assumption, that

is, that all terms have a denotation.

Examples can be constructed that serve the same illustration purpose as

the zero function did but using division instead:

∀i :Z · i 6= 0 ⇒ i/i = 1 (1.4)

∀i :Z · (i/i = 1) ∨ ((i − 1)/(i − 1) = 1) (1.5)

Specification languages in particular must handle partial terms, since par-

tial terms arise frequently, and they pose problems. At ZUM97 (the Z User

Meeting), it was reported by Mark Saaltink (the author of the Z Eves proof

tool), that not one of 400 published Z specifications analysed was free of errors

caused by undefined terms [SDG99].

The big question that is raised due to the presence of partial terms is how

can reasoning about logical formulae that can contain references to partial

terms be conducted formally. Approaches to coping with partial terms must

provide an answer to this question. They must also address the issue of what

terms like zero(−1) and 0/0 denote (they could just be left as a “gap” to be

dealt with by other constructs), or eliminate such terms completely.

Chapter 2 outlines numerous approaches that have been proposed over the

years to handle logical formulae that can contain references to partial terms.

As yet there is no consensus on which is the best approach to cope with partial

terms. Approaches include those that attempt to provide “workarounds” to

remain within the realm of two-valued classical logic, and those approaches

that make use of non-classical (three-valued) logics.

Non-classical logics have long been used to model undefinedness in for-

mal specification languages [BCJ84]. The approach that the main body of

this thesis is based on is known as the Logic of Partial Functions (LPF for

short) [BCJ84, Che86, CJ91, JM94, Jon06], which is a non-classical (three-

valued) logic, where a formula can be true, false, or undefined (a “gap”), and

the interpretations of the logical operators are extended to cope with such
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“gaps”. LPF is one of the approaches discussed in Chapter 2. Section 2.3

presents justifications for using LPF over other approaches that have been

proposed over the years that allow for reasoning about logical formulae that

can include references to partial terms. LPF is used in the Vienna Development

Method (VDM).

A big obstacle to the use of LPF (and of non-classical logics in general) is

that it is an unfamiliar logic. For instance, the available proof rules in LPF,

differ from those of two-valued classical logic. In particular the law of the

excluded middle does not hold in LPF. Thus more effort is required from a

user who may be familiar with two-valued classical logic to learn how to reason

in LPF.

The fact that LPF deviates from the world of two-valued classical logic

leads to another big obstacle against the adoption of LPF, that being, that a

large body of research and engineering has gone into two-valued classical logic,

which has led to a wide range of proof procedures and to the development of

(interactive/automated) proof based tool support for two-valued classical logic.

All of this proof support cannot be reused without change for LPF due to its

three-valued nature to cope with the occurrence of partial terms. Thus, it is the

case that mechanised (automated) proof support for LPF requires additional

effort. Proof support for LPF remains a subject of debate and research [Fit07].

Appropriate proof support to aid reasoning in LPF can go a long way to

addressing this obstacle against the adoption of LPF, and investigating this

topic is a major aim of this thesis.

1.2 Aims

LPF is a non-classical logic, which has for a long time been considered a viable

candidate solution within which to conduct reasoning about logical formulae

that can contain references to partial terms. A major obstacle affecting the

adoption of LPF is that there is a distinct lack of direct proof support available

for LPF.

An aim of this work is to:

Research into the applicability of mechanised (automated) proof support for

LPF.

The thesis argues that the basic ideas of the two-valued classical logic

proof procedure resolution and the associated technique of proof by contradic-

tion [Bun10, BA01] can be reused for reasoning in LPF when supplemented

with vital modifications to cover LPF. Furthermore, it argues that these pro-
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cedures can be modified efficiently for LPF.

Being able to re-use the basis of two-valued classical logic proof procedures

to be able to reason in LPF is essential. This ensures that existing ideas and

work can be extended for LPF, rather than having to start from scratch. For

instance, existing code bases and tool support can be adapted for LPF.

There is a question over whether the use of LPF will lead to a substantial

increase in the work needed when applying proof procedures, compared to in

two-valued classical logic. An efficient mechanisation of proof procedures is

essential to support any future use of and future work on LPF.

An aim of this work as already mentioned is concerned with work on the

mechanisation of LPF. In this thesis providing a formal comparison of ap-

proaches to coping with partial terms is also an aim. This is used to argue for

the use of LPF for reasoning about logical formulae that can contain reference

to partial terms.

1.3 Contributions

This work presents an investigation into the applicability of mechanised proof

support for LPF. Over the years there has been a lack of direct proof support

for LPF. This work is aimed at addressing this. Related work will be discussed

in the appropriate places in the main body of this thesis.

This work focuses on investigating the basic but fundamental two-valued

classical logic proof procedure: resolution and the associated technique of proof

by contradiction [Rob65, BA01]. These basic fundamental proof techniques are

the basis on which advanced proof techniques such as paramodulation [RW69]

and superposition [BG94] are built. Thus investigating these basic proof tech-

niques is the essential and obvious starting point for addressing the develop-

ment of proof support for LPF. An investigation into the issues that arise in

applying these basic techniques to LPF, and an investigation into the extent of

the modifications needed to be made to these basic proof techniques for LPF is

undertaken. This provides key insights into providing mechanised proof sup-

port for a non-classical logic like LPF, for instance into the amount of extra

work that arises in a mechanisation of such techniques for LPF. This work

provides the essential foundation on which to facilitate research into the mod-

ification of advanced proof techniques for LPF, and for providing tool support

in the future.

Semantic definitions of LPF are defined. These semantic definitions pro-

vide the underlying basis of this work. The semantic definitions precisely and

succinctly capture how LPF copes with logical formulae that can contain ref-

erences to partial terms. A semantic definition allows for concepts required for
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the investigation of proof techniques to be presented unambiguously, and for

issues that arise due to partial terms when applying these techniques to LPF

to be illustrated precisely. Proofs of modifications required to carry the proof

techniques over to LPF are also proved with respect to a semantic definition.

It is also shown how interactive tool support for LPF in addition to the work

on modifying resolution and the associated technique of proof by contradiction

can be developed from semantic definitions for LPF.

Earlier publications (e.g. those cited at the end of Section 1.1.4) have dis-

cussed the use of LPF for reasoning about logical formulae that can contain

references to partial terms. This thesis argues for the use of LPF for such a

purpose, but instead of just presenting informal comparisons this thesis also

provides formal comparisons based upon formal semantic definitions, providing

a clear divide between this and earlier work. A wide range of approaches are

compared in this thesis. A semantic definition of LPF is modified to formally

capture the semantics of other approaches to coping with partial terms. This

is used to facilitate comparisons and to undertake a vital task of identifying

ways of being able to move theorems between the different approaches. The

comparisons alongside the mechanisation work for LPF greatly aid in justi-

fying the use of LPF for reasoning about logical formulae that can contain

reference to partial terms.

1.4 Structure of the Thesis

Chapter 2 provides an overview of different approaches to coping with logical

formulae that can contain references to partial terms. Justifications for the

use of LPF, and prior work on mechanising LPF are then discussed in this

chapter.

Chapter 3 formally captures the semantics of LPF with both Structural

Operational Semantics (SOS) definitions and denotational semantic (DS) def-

initions being defined.

One of the purposes of the DS definitions is to provide a means to undertake

formal comparisons of the different approaches to coping with logical formulae

that can contain references to partial terms. An LPF DS definition is modified

to formally capture the semantics of different approaches, and these definitions

are presented in Chapter 4. This is followed by the comparisons that are

made between the different approaches based upon these definitions, and the

identification of relationships to allow for theorems to be moved between the

different approaches. A DS definition for LPF is also the underlying basis with

which to conduct proofs in Chapter 6.

The focus of Chapter 5 is on illustrating how SOS definitions that formally
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capture the semantics of LPF can give rise to mechanisations of LPF, in both

a term-rewriting system and in a theorem prover.

Chapter 6 defines the concepts of satisfiability and validity, as well as re-

lated definitions in LPF. An investigation into the applicability of mechanised

proof support for LPF is then presented, focusing on the resolution proof pro-

cedure. The issues that arise when applying it in LPF are highlighted with

illustrative examples, followed by an investigation into determining how to

modify it to cover LPF and into the extent of the modifications needed, which

are presented alongside supplementary proofs.

Chapter 7 contains a summary of this thesis, and future work of interest is

discussed.

Full semantic definitions from Chapter 3 are presented in Appendix A.

This includes full abstract syntax definitions, full context conditions as well as

the full SOS definitions, and the full DS definitions.

The notation used throughout this thesis in numerous examples is based

on the mathematical VDM-SL notation. Appendix B presents the notation of

selected VDM-SL data types and their associated operations etc. for reference.

Any reader who is not familiar with the mathematical VDM-SL notation is

advised to refer to this appendix first.

A glossary consisting of definitions of many terms used widely throughout

this thesis is presented in Appendix C.
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Partial functions arise frequently in computer science, for instance in program

specifications. The application of partial functions can give rise to partial

terms, that is, terms that fail to denote a proper value. The presence of

partial functions leads to complications when reasoning about logical formulae

that can include references to partial terms. Reasoning about such logical

formulae is needed for instance, when discharging proofs about properties of

program specifications that are expected to hold. As illustrated in the previous

chapter, two-valued classical logic cannot directly cope with undefined truth

values (truth value “gaps”, that is, the absence of a defined truth value true or

false), as the two-valued classical logic truth tables are only defined for proper

Boolean values.

There is a history of research that has gone into logics that can cope with

partial terms. Numerous approaches to reasoning about logical formulae that
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can contain references to partial terms have been proposed over the years. The

questions that must be addressed by approaches to coping with terms partial

terms are: what meaning is to be given to the term f (i) when the value i

is outside of the defined domain of a partial function f , how undefinedness

is to propagate through the various language constructs, and how can rea-

soning about logical formulae that can contain references to partial terms be

conducted formally.

However, there is as yet no consensus on which is the best way of reason-

ing about logical formulae that can contain references to partial terms. This

chapter surveys a number of different approaches to reasoning about such log-

ical formulae. Chapter 4 then goes further by presenting a formal comparison

between the approaches.

The different approaches can be classified into categories; these are outlined

in Section 2.1. The different approaches are then considered in more detail in

Section 2.2. Justifications for LPF then follow in Section 2.3. A discussion on

prior mechanisation work that has been undertaken for LPF is presented in

Section 2.4.

2.1 Categorising the Different Approaches to Coping

with Partial Terms

The different approaches to coping with partial terms can be classified into

two categories. The first category comprises of those approaches that attempt

to continue using two-valued classical logic, and the second category comprises

of those approaches that accept the need for a non-classical logic.

The approaches in the first category preserve the two-valued classical logic

operators. However, the approaches in the second category essentially give up

on two-valued classical logic in favour of the use of a non-classical logic. In a

non-classical logic, proof rules that are sound in two-valued classical logic are

no longer sound and thus they need modifying with definedness conditions, and

additional (non-classical) proof rules may be needed for completeness. These

complications can affect mechanised proof procedures, and these modifications

and extensions can lead to a non-classical logic being too unfamiliar for a user,

and thus difficult not only to learn but to use in practice.

The approaches to handling partial terms can be further categorised by

describing where they attempt to cope with undefinedness, so what language

constructs is undefinedness allowed to propagate through and where are the

attempts made to catch undefinedness. It is this categorisation that will be

used to structure Section 2.2:

1. Force the reformulation of formulae and/or function definitions to avoid
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the introduction of partial terms;

2. Force all terms to denote;

3. Allow terms to fail to denote proper values, but still guard the logical

operators from the resulting undefinedness by catching undefinedness at

the predicate level; and

4. Adopt non-classical logics.

Category 1 includes those approaches that force the reformulation of any

expressions containing references to partial functions, and those approaches

that force the reformulation of the domain of partial functions to make partial

functions total (i.e. restricting the types of arguments). See Section 2.2.1.

Category 2 attempts to deal with undefinedness by forcing all terms to

denote proper values, for instance, through under/over-specifying partial func-

tions on arguments from outside of their defined domain. Approaches where

the consideration of partial terms are eliminated from validity proofs by forc-

ing extra well-definedness (WD) conditions to be proved are also considered

in this category. See Section 2.2.2.

Category 3 attempts to deal with undefinedness by allowing terms such

as zero(−1) to fail to denote proper values, but to force predicates such as

zero(−1) = 0 to denote, even when their operands are terms that fail to denote

proper values. This approach is referred to as the “semi-classical” approach.

See Section 2.2.3.

Category 4 allows undefinedness from partial terms to propagate up to

the logical operators. Approaches in this category are the non-classical (non-

standard) logics, since the interpretations that are given to the logical operators

are re-interpreted as undefinedness is incorporated into the logic itself, while

the approaches in the three other categories attempt to catch undefinedness

before it collides with the logical operators. The logics that are considered

in this chapter are commonly referred to as three-valued logics; undefinedness

is lifted to formulae by extending the truth values formulae can denote from

{true, false} to {true, false,⊥B}. Here the logics are not considered to have

an explicit undefined value, it is just regarded as a “gap”, that is, an absence

of a (defined) value [Bla80, Fit07], (there is not an additional truth value, it is

just regarded as the absence of a truth value). See Section 2.2.4.

Two-valued classical logic is bivalent, that is, there are two truth values,

and every proposition has a truth value that is either true or false. The non-

classical (three-valued) logics that are considered here are trivalent, that is,
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they can be either true, false, or undefined (but recall again there is no concrete

undefined value, undefinedness is just treated here as a “gap”).

The major benefit of approaches in both Category 1 and Category 2 is

that two-valued classical logic can be still used. Additionally, the approaches

in Category 3 preserve the use of the two-valued classical logic operators.

The approaches in Category 4 use non-classical logics in favour of two-valued

classical logic.

For an overview of many valued logics refer to [Got05]. Four-valued logics

also exist (see [Got05] for an overview), but for reasoning about logical formulae

that can contain references to partial terms, a three-valued logical treatment

suffices.

2.2 Approaches to Coping with Partial Terms

Each of the following four subsections correspond to one of the four categories

for coping with partial terms outlined in Section 2.1. Numerous different

approaches are discussed for each category. The final subsection in this section

outlines different interpretations that can be given to a sequent in a non-

classical (three-valued) logic approach.

2.2.1 Reformulating Expressions and Function Definitions

Relations

This approach forces reasoning about partial functions in terms of the corre-

sponding graph of the functions. The graph of an n-ary function is an (n + 1)-

ary relation. So a partial function f :Z→ Z is to be viewed as a relation Z×Z.

So, instead of writing a function application in the style of f (x ) = y it is to be

written as (x , y) ∈ f , that is, is (x , y) a member of the graph of f . The key

idea is that (x , y) ∈ f is false when x /∈ dom f , for all y [Far90, CJ91, Jon06].

Reasoning about partial functions in this way forces formulae to be written

in a non-standard way, and can lead to verbose definitions. As an example

Property 1.3 becomes:

∀i :Z · (i , 0) ∈ zero ∨ (−i , 0) ∈ zero

when written in terms of the membership of the graph of the zero function.

When there is no explicit result expression it is necessary to use existential

quantifiers [Jon06].

Restricting the Bounds on Quantifiers

One solution is to restrict quantification to over sets that do not contain any

values from outside of the defined domains of any partial functions used. The
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zero function presented earlier is always defined (denotes a value) when applied

with a positive number as an argument, however, when applied with a negative

number as an argument this function will not denote a proper value.

The key property of this function could thus be expressed as:

∀i :N · i ≥ 0 ⇒ zero(i) = 0 (2.1)

where this property now avoids undefinedness and is therefore true in two-

valued classical logic, due to the use of N.

However, restricting the bounds on quantifiers is not always as straightfor-

ward. In order to illustrate this consider the following subp function presented

in [Jon90, CJ91]:

subp :Z× Z→ Z

subp(i , j ) 4 if i = j then 0 else subp(i , j + 1) + 1

This function is designed to compute i− j , but when i < j the function will

fail to denote. For example, subp(5, 3) results in the value 2, but subp(3, 5) is

undefined.

The key property of the subp function is:

∀i , j :Z · i ≥ j ⇒ subp(i , j ) = i − j (2.2)

When i has the value 5 and j has the value 3, there is no problem:

5 ≥ 3 ⇒ subp(5, 3) = 5− 3

true ⇒ 2 = 2

true ⇒ true

true

However, in the case where i has the value 3 and j has the value 5:

3 ≥ 5 ⇒ subp(3, 5) = 3− 5

false ⇒ ⊥Z = −2

false ⇒ ⊥B

⊥B

the formula makes no sense in two-valued classical logic.
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Here, the defined domain is a partial relation based upon a relationship

between the variables i and j (the function is only defined when i ≥ j ) and

thus a set needs to be defined that takes into account this relationship between

the two variables i and j (the defined domain of the subp function):

{(i , j ) | i :Z, j :Z ∧ i ≥ j}

Thus Property 2.2 needs reformulating to:

∀i , j : {(i , j ) | i :Z, j :Z ∧ i ≥ j} · subp(i , j ) = i − j

to be able to guard against undefinedness arising from the application of the

subp function. A similar related approach is considered in the next section.

Re-defining the Domain of Partial Functions

The aim of this approach is to re-define the domain of partial functions to turn

them into total functions, by restricting the types of arguments. This approach

is similar to the approach from the previous section in that it uses restricted

sets which include only those values that lie within the defined domain of a

partial function

For instance, the zero partial functions domain changes from Z→ Z to N
→ N, to make the function total. Additionally, the type of the second argument

to the integer division operator could be restricted to arguments that belong to

the subtype of non-zero integers, so integer division would be defined as Z×Z1

→ Z, where Z1 is Z \ {0}, that is, Z1 = {i | i :Z ∧ i 6= 0}. One must ensure

by the restricted sets that functions are never applied outside of their defined

domains.

A difficulty can arise as operators such as subtraction etc. could be defined

with the domain Z× Z→ Z, so zero(10− 20) and 0/(10− 20) can both pose

further issues in this approach. Also unfortunately, with this approach any

set can be a type and in general the type system becomes undecidable [GS95,

CJ91].

2.2.2 Classical Approaches

The first two approaches in this section force the application of functions and

operators to denote an element of their range when applied with any arguments

from their domain. Functions are forced to denote a value even when they are

applied with arguments from outside of their defined domains. In other words

a value is assigned to the application of f (x ), even in the cases when x is not

in the defined domain of the partial function f .
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Two contrasting approaches are to underspecify partial functions or to

overspecify partial functions. These two approaches are both considered below.

The two approaches each remain within two-valued classical logic. The Well-

Definedness approach which also maintains the use of two-valued classical logic

is then discussed.

Underspecification

This approach centers around forcing every partial function to yield a definite

but unspecified (indeterminate/unknown) value from its range when applied

with arguments from outside of their defined domain [Far90, GS95, FFL97,

Jon06]. In this approach it is generally regarded that it should be impossible

to determine (and to prove) which value is returned from a partial function

when it is applied with arguments from outside of its defined domain.

For instance, the zero function is undefined when its integer argument is

less than zero. So when applied with such an argument which is outside of its

defined domain the zero function should return some definite but unspecified

integer value. This forces the zero function to become total. In this approach

zero(−1) is a defined expression, but its value is left unspecified. Thus:

zero(−1) = 0 ∨ zero(−1) 6= 0

is true if the partial zero function returns a definite but yet unknown integer

value for arguments from outside of its defined domain (i < 0).

Since a partial function is underspecified (thus modelling it as a total func-

tion), the underspecification approach carries a major benefit which is that

two-valued classical logic can still be used. In particular as illustrated the law

of the excluded middle still holds.

Expressions such as the one just presented and an expression such as:

zero(−1) = zero(−1)

and:

x/x = x/x

are true. This allows assumptions to be made about partial terms. Note that

in some common programming languages such expressions will typically lead

to a runtime error.

However, in all cases the truth of a formula cannot be known, for example:
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zero(−1) = 0

and:

5/0 = zero(−1)

are both defined, but it cannot be determined whether either of them is true or

false. Again in common programming languages such expressions will typically

lead to a runtime error.

Furthermore, there will be questions over whether:

zero(−1) = zero(−2)

is true.

A slight alternative to the underspecification approach that returns a def-

inite but yet unknown/unspecified value is to return an arbitrary but still

unknown value. So, zero(−1) denotes some arbitrary unknown value. If an

arbitrary value is returned instead of a definite value, but such a value is still

an unknown value then:

zero(−1) = zero(−1)

can be true or false, and the law of the excluded middle cannot be assumed to

hold (again it can be either true or false).

The paper [Jon95] puts forward a counter example that hints towards the

underspecification approach being problematic in a specification language if re-

cursive function definitions somehow overspecify. The counter example follows

by defining single element types, for instance, define the type that consists of

just the one integer value: S = {i | i :Z ∧ i = 0}, then taking the head ele-

ment of an empty sequence s of type S , it should be possible to conclude that:

hd s = 0, and similarly for the zero function where the range of the function

is of type S , it should be possible to conclude that: zero(−1) = 0. Thus it has

been possible to get an unintended overspecification.

This underspecification approach poses a problem when considering the

fixed point rule. The authors in [SB99] show that if the fixed point rule is

included in Gries’s and Schneider’s approach [GS95] (underspecified functions

instead of partial functions) an inconsistency can result. The interpretation

of zero denoting the fixed point is lost, since the term zero(−1) denotes an
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unspecified value, an extension of the graph of zero is needed [Jon06].

When considering underspecified functions as opposed to partial functions,

then a formula that refers to an underspecified function generally has to be put

into the consequent of an implication, with an antecedent describing the de-

fined domain [GS95, SB99]. Whenever, the antecedent is false, the implication

is true; the consequent is some unknown (but defined) value.

Overspecification

The overspecification approach is similar to the underspecification approach,

except that the result that should be returned by a partial function when

applied with arguments from outside of its defined domain, is a known/specific

value. For instance, the zero function when applied with an argument from

outside of its defined domain yields a specific known integer, for example 0.

This approach also has the unfortunate consequence that it can give rise

to theorems like:

0/0 = 0

and:

zero(−1) = 0

A very similar approach is to make any partial function a total function by

adding an error value to the range of a function. Thus the zero function could

be defined as: zero:Z × Z⊥, where ⊥ is used here to denote the error value

being used and Z⊥ = Z∪{⊥}, and the application of the zero function for any

argument from outside of its defined domain would yield this error value. For

example, zero(−1) = ⊥.

Because of non-termination all partial functions cannot be transformed into

total functions [Che86]. Since in general, we cannot determine if a computation

will terminate on some arbitrary input, assigning an arbitrary value to a partial

application is uncomputable [Che86].

In HOL [GM93] and in Isabelle/HOL [NWP02] all functions are total. The

idea of reasoning about partial functions in such environments follows using

similar approaches. For instance, in Isabelle/HOL the expression 1 div 0 is 0.

The Well-Definedness Approach

One approach to coping with partial terms that can arise is known as the Well-

Definedness (WD) [Meh08, DMR08] approach. The WD approach forces WD

conditions to be proven, and as a result undefinedness need not be considered in
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validity proofs, (that is what the WD conditions are for). If WD(e) is proved

then e is guaranteed to contain no term or predicate that fails to denote.

Any question over definedness is removed from the concern of validity. Well-

definedness and validity are proved separately, and both need to be shown to

hold. So, to prove Γ ` e, both validity:

Γ ` e

and well-definedness:

`WD(Γ ` e)

must be shown to hold. When proving the former it can be assumed that the

sequent is well-defined. The expression WD(e) is true if e is not undefined.

Showing that both hold is enough to ensure that undefined properties cannot

be proved.

Thus for example the expression:

zero(−1) = 0

is rejected from this approach to coping with partial terms, as it cannot be

shown to be well-defined.

The main benefit of this approach is that all reasoning, both of the WD

conditions and of the validity proofs, can be done within two-valued classical

logic. However, the WD conditions generated can be complicated and they

can expand exponentially in size, and thus cause a significant time overhead,

and well-definedness is undecidable and therefore needs proving [Meh08].

An alternative is to conduct all reasoning in a three-valued logic. This is

considered in Section 2.2.4 and the WD approach is compared to this approach

in that section.

PVS has an expressive specification language which is based on classical

higher-order logic with a type system that includes predicate subtypes [ORS92,

COR+95]. PVS is based on a logic of total functions, but partial functions can

be modelled as total functions where the domain is a predicate subtype. In

other words total over a restricted domain. For instance, the second argument

to the division function must belong to the type R\{0}. In PVS type checking

is undecidable. Type Correctness Conditions (TCCs) are constructed and need

to be proven. If the TCCs are proven then all of the corresponding terms,

predicates and formulae are defined. However, as pointed out in [BBS+05] it

is possible for a formula p ⇒ q to have a valid TCC whose contrapositive ¬ q
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⇒ ¬ p has as invalid TCC.

The approach taken in CVC Lite [BBS+05] is also to remove undefinedness

from validity proofs. They start from a three-valued semantics but reduce the

problem of checking for validity to checking two formulae in a two-valued logic.

A TCC formula is constructed whose validity asserts that the original formula

is defined. If the TCC is shown to be valid, then the formula itself is checked

for validity. The defined domain of all partial functions needs to be stated.

The authors in [SB99] take a different approach. They have a type boolean

that has the values true and false and a type extboolean that has the values

true, false and ⊥. In this approach a logical operator such as ∨ takes two

extbooleans and returns a boolean. Two symmetric models of evaluation are

defined. In one model ⊥ is interpreted as being true and in the other model

⊥ is interpreted as being false. Here a formula is to be regarded as valid if it

evaluates to true in both symmetric models of evaluation. In this approach

⊥ ∨ (¬⊥) holds as in both interpretations for ⊥ it follows that ⊥ ∨ (¬⊥) is

true.

2.2.3 Semi-Classical Approaches

The semi-classical approaches here also maintain the use of the two-valued

classical logic logical operators. Partial functions can still give rise to partial

terms, but here the approaches force predicates to yield a defined value of true

or false, even if the arguments applied to predicates fail to denote. The idea

behind these approaches is presented in [Rus05].

A Partial First-Order Logic (PFOL) is presented in [Far96], which is a vari-

ant of first-order logic and, which supports the so called traditional approach

to coping with partial functions. It is argued that this approach is “com-

monly used in mathematics” and “is taught to American students in high

school” [Far96]. This approach is supported in the Interactive Mathematical

Proof System (IMPS). This approach is also taken in [Far90] and stays close

to two-valued classical logic.

In this approach [Far96]:

• Variables and constants always denote;

• Functions may be partial, so zero(−1) is not assigned a value, and a

function application is undefined if any of its arguments is undefined;

and

• Formulae are always defined since predicates always denote. In this

approach a predicate is considered to be false if a term within it (an
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operand) does not denote, thus zero(−1) = 0 is false since an operand,

that is zero(−1), does not denote.

This approach, however, does not fit with the view taken by the author

here that formulae such as zero(−1) = 0 should not be propositions at all,

because the view taken is that no assumptions should be made about partial

terms.

As previously mentioned the current notion of equality (which is referred

to as weak equality) is undefined if either of its operands are undefined. The

weak equality relational operator is illustrated in the truth table in Figure 2.1

when its arguments are integer values.

= −1 0 1 ... ⊥Z
−1 true false false ... ⊥B
0 false true false ... ⊥B
1 false false true ... ⊥B
... ... ... ... ... ...
⊥Z ⊥B ⊥B ⊥B ... ⊥B

Figure 2.1: The truth table for weak equality

In evaluating Property 2.2 a partial term can arise from the application of

the partial function subp which is an operand to the weak equality relational

operator. The other operand is defined. The result of using weak equality here

is that the partial term propagates outwards making the equality relational

operator (predicate) undefined, and thus giving rise to an undefined truth

value, and leaving a formula that makes no sense in two-valued classical logic.

The equality relational operator (a predicate) must denote a value even if its

operands fail to denote proper values. For instance the use of weak equality can

be replaced with such a non-strict equality. Consider first existential equality

which is illustrated in the truth table in Figure 2.2 when its arguments are

integer values.

=∃ −1 0 1 ... ⊥Z
−1 true false false ... false
0 false true false ... false
1 false false true ... false
... ... ... ... ... ...
⊥Z false false false ... false

Figure 2.2: The truth table for existential equality
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As can be seen from the truth table this equality is designed to denote false

if either of its operands is undefined. Consider the modified version of the key

subp property:

∀i , j :Z · i ≥ j ⇒ subp(i , j ) =∃ i − j (2.3)

In the case when i ≥ j (the defined case) the evaluation using this equality

is no different to what has already been presented (with weak equality), what

changes is the evaluation in the undefined case. In the case when i has the

value 3 and j has the value 5, the evaluation would now be as follows:

3 ≥ 5 ⇒ subp(3, 5) =∃ 3− 5

false ⇒ ⊥Z =∃ −2

false ⇒ false

true

The implication logical operator has been guarded from the “gap”. The use

of the non-strict equality (existential equality here) has prevented the “gap”

in the term from propagating up past the existential equality to the logical

operator. The existential equality predicate denotes a Boolean value, when

any of its operands are undefined.

A problem with using a non-strict equality is that defined values are re-

turned even in cases when at least the one operand is undefined. Thus in this

approach the weak notion of equality still needs to be written in function defi-

nitions, with a non-strict notion of equality being needed to cope with partial

terms in logical formulae. Thus, a user has to be aware of multiple notions of

equality when reasoning about logical formulae that can contain reference to

partial terms using such an approach.

In the examples, weak equality has been replaced with a non-strict equality,

but the relational operator ≥ has been kept, because i and j are bound to

integers and so i ≥ j is always defined. However, while this discussion has

focused on equality all predicates that are subject to undefined operands will

need modifying in a similar way. Thus:

zero(−1) >∃ zero(−2)

and:

zero(−1) ≤∃ zero(−2)
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are both false.

However, the expression:

zero(−1) =∃ zero(−1)

is false, and the expression:

zero(−1) 6=∃ zero(−1)

is false, but the expression:

¬ (zero(−1) =∃ zero(−1))

is true. It is the case that ⊥Z =∃ ⊥Z is false of whose negation is true, while

⊥Z 6=∃ ⊥Z is false. Thus ⊥Z 6=∃ ⊥Z is not logically equivalent to ¬ (⊥Z =∃ ⊥Z).

Strong Equality

Another non-strict equality that could have been used instead of existential

equality is strong equality. The truth table for strong equality is presented in

Figure 2.3, when its arguments are integer values.

== −1 0 1 ... ⊥Z
−1 true false false ... false
0 false true false ... false
1 false false true ... false
... ... ... ... ... ...
⊥Z false false false ... true

Figure 2.3: The truth table for strong equality

Note that this equality differs from its existential counterpart only by the

fact that ⊥Z == ⊥Z is true instead of false. The modified key subp property is

presented in Property 2.4, but the evaluation is the same as already presented

for existential equality and so will not be presented again.

∀i , j :Z · i ≥ j ⇒ subp(i , j ) == i − j (2.4)

So, the expression:

zero(−1) == 0

evaluates to false, and the expression
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zero(−1) == zero(−1)

evaluates to true.

However, it is less clear why the expression:

zero(−1) == zero(−2)

should evaluate to true.

Furthermore, while the expression:

zero(−1) 6=6= zero(−1)

evaluates to true, the expression:

¬ (zero(−1) == zero(−1))

evaluates to false. Thus a 6=6= b is not logically equivalent to ¬ (a == b).

Again all predicates that are subject to undefined operands will need modifying

in a similar way to what has been presented for strong equality.

The Logic of Computable Functions

Edinburgh Logic of Computable Functions (LCF) [GMW79] is a system for

doing proofs interactively. This is based on domain theory [GMW79, Age94].

Terms can fail to denote. Terms include computable functions, and an

undefined value is needed since computations may never terminate. Since the

computation may not terminate an undefined value UU is assumed for such

terms. Formulae are designed to be two-valued. The equality operator ==

can be used in LCF to build up formulae from terms. Recall that this notion

of equality is non-strict.

Quantifiers in LCF can range over undefined values. In LCF a variable

may be undefined. For instance, the domain of integers would include the ele-

ment UU . This has the undesired consequence that frequent reasoning about

undefinedness can be needed, (consider using the natural number induction

rule, where P(UU ) will need to be shown to hold).

Predicate Underspecification

This approach is similar to the underspecification approach discussed earlier

for terms, but in this approach terms can be undefined whereas predicates

are forced to be defined. However, this approach differs from the approaches
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discussed above where for example the truth value false is taken by a predicate

when any of its operands are undefined.

In this approach when a predicate contains an undefined operand the pred-

icate is defined, but in all cases it is not known whether the predicate is true or

false. In [Spi92] they state that predicates are undetermined, it is not known

whether they are true or false. The predicates do not have some intermediate

status in which they are ’neither true nor false’; it is just not said whether

they are true or not [Spi92]. It is this approach that has been used in the Z

notation [Spi92].

Both:

1/0 = 1/0

and:

1/0 = 0 ∨ ¬ (1/0 = 0)

can both be proven to be true. However:

1/0 = 0

and:

1/0 = 2/0

are both known to be defined. It is, however, unknown whether the last two

examples are true or false.

2.2.4 Non-Classical Logic Approaches

The approaches considered from here onwards make the case for the use of

a non-classical (three-valued) logic to reason about logical formulae that can

contain references to partial terms. The approaches considered above have

the aim of eliminating the problem of undefinedness before the undefinedness

propagates upwards and collides with the logical operators. In the non-classical

logic approaches the logical operators are extended to cope with undefinedness.

 Lukasiewicz in the 1920s presented the first three-valued logic [Che86].

Differences between that logic and other three-valued logics comes down to

how undefinedness is interpreted.
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∨W true ⊥B false
true true ⊥B true
⊥B ⊥B ⊥B ⊥B
false true ⊥B false

∧W true ⊥B false
true true ⊥B false
⊥B ⊥B ⊥B ⊥B
false false ⊥B false

⇒W true ⊥B false
true true ⊥B false
⊥B ⊥B ⊥B ⊥B
false true ⊥B true

¬W

true false
⊥B ⊥B
false true

Figure 2.4: The weak Kleene truth tables for disjunction, conjunction, impli-
cation and negation

Weak Kleene (Bochvar Internal)

Weak Kleene [Kle52, Sid10] is a three-valued logic, where formulae can be

undefined. The weak Kleene approach takes the viewpoint that if any formula

has a part of it that is undefined then the entire formula is to be regarded

as undefined. The truth values of all operands to a logical operator must be

available (that is, defined) for a defined result to be returned, otherwise the

result is undefined.

Here all of the logical operators are given a strict interpretation. When

all operands of a logical operator are defined, that is, denote a truth value

true or false, then the meaning coincides with the two-valued classical logic

interpretations of the logical operators. The truth tables for this approach

are presented in Figure 2.4. The weak Kleene truth tables are the same truth

tables as in Bochvar’s internal three-valued logic [Boc81].

Quantifiers in this approach are given a strict interpretation, and this is

defined as a case analysis:

∀i : D · p(i) 4 {
true - p(i) is true for all i ∈ D

false - *

⊥B - p(i) is ⊥B for some i ∈ D

∗ - p(i) is false for at least the one i ∈ D , and p(i) is never undefined for any

i ∈ D

The existential quantifier follows in a similar way. Quantifiers will only

range over a set of defined values. All variables range only over defined values.

Consider some of the earlier illustrative properties again; first an evaluation

of Property 2.2:

3 ≥ 5 ⇒W subp(3, 5) = 3− 5
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false ⇒W ⊥Z = −2

false ⇒W ⊥B

⊥B

and an evaluation of Property 2.8:

subp(3, 5) = 3− 5 ∨W subp(5, 3) = 5− 3

⊥Z = −2 ∨W 2 = 2

⊥B ∨W true

⊥B

As illustrated such properties do not hold in this approach. Additionally,

the law of the excluded middle and the absorption properties do not hold in

this approach.

The logical operators in this approach are strict, that is, if an operand is

undefined then the formula is undefined. Any undefined operand ensures that

no defined result can be returned ensuring that true ∨ ⊥B and ⊥B ∨ true

are both undefined. The following non-classical logic approaches utilise non-

strict logical operators, that is, that they attempt (in certain circumstances)

to return a defined value even in the presence of undefined operand(s).

McCarthy’s Conditional Operators

A non-classical interpretation of the logical operators was proposed by Mc-

Carthy [McC67]. In this approach the logical operators are defined through

the use of conditional expressions, so for instance:

p ∨M q

is defined as:

if p then true else q

The other logical operators must also be given a conditional definition.

The truth tables for McCarthy’s conditional operators are presented in

Figure 2.5. The operators are monotone in the ordering presented in Figure 2.6.

If a formula denotes a value true or false, then the formula will still denote

that value it will not be contradicted, if any undefined term later evaluates to

a defined value (e.g. through further evaluation).

When restricted to just the truth values true and false then McCarthy’s
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∨M true ⊥B false
true true true true
⊥B ⊥B ⊥B ⊥B
false true ⊥B false

∧M true ⊥B false
true true ⊥B false
⊥B ⊥B ⊥B ⊥B
false false false false

⇒M true ⊥B false
true true ⊥B false
⊥B ⊥B ⊥B ⊥B
false true true true

¬M

true false
⊥B ⊥B
false true

Figure 2.5: The McCarthy truth tables for disjunction, conjunction, implica-
tion and negation

true false

≺ @
@
@ �
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⊥B

Figure 2.6: The ordering on truth values in McCarthy’s approach

logical operators coincide with the two-valued classical logic operators. The

logical operators have a lazy evaluation in that if a result can be determined

from the first operand then that result is returned irrespective of the second

operand. The logical operators are given a strict sequential interpretation

in McCarthy’s approach, and thus this approach can cover up “gaps” in the

second operand in certain circumstances.

The key property of the subp function but this time with the conditional

implication operator is:

∀i , j :Z · i ≥ j ⇒M subp(i , j ) == i − j (2.5)

where an example evaluation follows as:

3 ≥ 5 ⇒M subp(3, 5) = 3− 5

false ⇒M ⊥Z = −2

false ⇒M ⊥B

true

As shown a formula that made no sense in two-valued classical logic can

now be evaluated to true using a conditional interpretation of the implication

logical operator.

However, this approach does have some drawbacks. Firstly, in this logic the
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disjunction logical operator and conjunction logical operator no longer have the

commutative property, that is, p ∨M q being equivalent to q ∨M p. Second

the implication contrapositive property, that is, p ⇒M q being equivalent

to ¬q ⇒M ¬p no longer holds. Also, there is a problem that if the first

variable is undefined then the expression is undefined because the conditional

expressions are strict in their first argument; the first variable was referred

to as the inevitable variable by McCarthy. However, if the second operand is

undefined a defined result could be returned if enough information to decide

the result is given through the first operand.

To emphasise the problem of the inevitable variable consider the following

property of the subp function:

∀i , j :Z · subp(i , j ) = i − j ∨M subp(j , i) = j − i (2.6)

If i is set to the value 3 and j to the value 5 the evaluation is:

subp(3, 5) = 3− 5 ∨M subp(5, 3) = 5− 3

⊥Z = −2 ∨M 2 = 2

⊥B ∨M true

⊥B

Thus Property 2.6 does not hold in McCarthy’s approach. The contrapos-

itive of the key subp property also causes a problem with McCarthy’s condi-

tional interpretation of the logical operators:

∀i , j :Z · subp(i , j ) 6= i − j ⇒M i < j (2.7)

A problematic evaluation of Property 2.7 follows as:

subp(3, 5) 6= 3− 5 ⇒M 3 < 5

⊥Z 6= −2 ⇒M true

⊥B ⇒M true

⊥B

Due to the treatment of “gaps” in this approach, the law of the excluded

middle is also lost. Abandoning the law of the excluded middle gives rise to a

logic that is weaker than two-valued classical logic.

Defining quantifiers is problematic in this logic. This issue is considered
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further in Section 4.1. Note that as in the weak Kleene approach (and in LPF)

quantifiers will only range over a set of defined values. All variables range only

over defined values.

Numerous programming languages contain logical operators which are in-

terpreted in this way. Such a semantics is used in the specification language of

the Rigorous Approach to Industrial Software Engineering (RAISE) [GHH+92,

GHH+95].

Due to the problems of the lack of the commutative rules etc. there has

been a proposal to use both the standard logical operators (for commutativ-

ity etc.) and the conditional forms of these logical operators (to cope with

“gaps”) [CJ91]. However, an extensive amount of non-standard rules are re-

quired for this approach to work.

LPF

The LPF approach, like McCarthy’s approach considered, handles undefined-

ness by extending the interpretations of the logical operators. LPF was the

logic designed to underlie the Vienna Development Method (VDM) [Jon90].

LPF itself is based upon Strong Kleene logic [Kle38, Kle52].

The truth tables in Figure 2.7 illustrate the way in which the propositional

operators in LPF have been extended to handle truth values that may fail

to denote proper values. These truth tables provide the strongest possible

monotonic extension of the familiar two-valued classical logic propositional

operators with respect to the ordering on truth values depicted in Figure 2.6

(the ordering is the same as in McCarthy’s conditional operator approach).

The truth tables can be viewed as describing a parallel lazy evaluation of

the operands, whereby a result is delivered as soon as enough information is

available, and such a result will not be contradicted if a ⊥B later evaluates to

a proper Boolean value.

Thus as in McCarthy’s conditional operator approach the logical operators

are non-strict. These truth tables are presented by Kleene in [Kle38] and

in [Kle52, §64], who in turn attributes them back to  Lukasiewicz (discussed in

the next section). These connectives were introduced to model non-terminating

recursive functions [Kle38]. Notice that as in the other non-classical logics

considered in this chapter, a partial term in a formula can be replaced by

another partial term, and the meaning of the formula will not change.

It should be clear from the truth tables that familiar properties such as

the commutativity of conjunction and disjunction hold in LPF, unlike in Mc-

Carthy’s approach.

The quantifiers only range over a set D of proper (i.e. defined) values. No
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∨ true ⊥B false
true true true true
⊥B true ⊥B ⊥B
false true ⊥B false

∧ true ⊥B false
true true ⊥B false
⊥B ⊥B ⊥B false
false false false false

⇒ true ⊥B false
true true ⊥B false
⊥B true ⊥B ⊥B
false true true true

¬
true false
⊥B ⊥B
false true

Figure 2.7: The LPF truth tables for disjunction, conjunction, implication and
negation

⊥ element/value can be included in D . All variables in LPF range only over

defined values, like in the weak Kleene and in McCarthy’s conditional operator

approach already introduced. For instance, one can quantify over the set of

proper integer values Z, but not over the set Z⊥, that is, Z∪⊥Z. The universal

quantifier is defined through a case analysis:

∀i : D · p(i) 4 {
true - p(i) is true for all i ∈ D

false - p(i) is false for one i ∈ D

⊥B - otherwise

thus ∀i : D · p(i) can be false even if p(i) is undefined for some i ∈ D . The

universal quantifier is undefined if p(i) is undefined for all i , or when p(i)

is undefined for at least the one i and p(i) is never false. The existential

quantifier follows in a similar way.

Since quantifiers range only over proper defined values the quantifiers are

a natural extension of the propositional logical operators viewing universal

quantification as a conjunction and existential quantification as a disjunction.

The two quantifiers (universal and existential) are monotonic.

As with McCarthy’s approach, LPF can handle the key subp property

(Property 2.2), but unlike McCarthy’s approach LPF can cope with the con-

trapositive of this property, where the problematic example from the discussion

on McCarthy’s conditional operators is now evaluated as:

subp(3, 5) = 3− 5 ⇒ 3 < 5

⊥Z = −2 ⇒ true

⊥B ⇒ true

true

Additionally, LPF can also cope with the following property:
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δ
true true
⊥B ⊥B
false true

∆
true true
⊥B false
false true

Figure 2.8: The LPF truth table for the definedness operators δ and ∆

∀i , j :Z · subp(i , j ) = i − j ∨ subp(j , i) = j − i (2.8)

where the problematic example from the discussion on McCarthy’s conditional

operators is now evaluated as:

subp(3, 5) = 3− 5 ∨ subp(5, 3) = 5− 3

⊥Z = −2 ∨ 2 = 2

⊥B ∨ true

true

One issue with this logic is that the, so called, law of the excluded middle:

p ∨ ¬ p

does not hold because the disjunction of two undefined Boolean values is still

undefined: thus (subp(1, 5) = 4) ∨ ¬ (subp(1, 5) = 4) is not a tautology. The

law of the excluded middle only holds for defined p. Additionally, p∧¬ p being

false does not hold, and p ⇒ p also does not hold, due to the presence of the

third undefined value.

For expressive completeness, definedness operators δ and ∆ are introduced

whose truth tables are presented in Figure 2.8. The two definedness operators

δ and ∆ are used to determine whether a formula is defined.

The δ logical operator is monotone, an undefined operand gives rise to

an undefined result. Unlike all of the other logical operators presented, the

∆ operator is not monotone, it is total (always returns a defined result) and

obviously non-strict. While the ∆ logical operator is not monotone it does add

expressiveness to the logic.

A sequent is a statement about logical expressions that is used to repre-

sent the situation when a conclusion can be derived/deduced from a (possibly

empty) set of assumptions. In LPF a sequent is interpreted with what is known

as the SS -interpretation, see Section 2.2.5. Let Γ = {e1, . . . , en} be a set of
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formulae, where the commas are to be interpreted as conjunctions, and let e be

a single formula, then the sequent statement in LPF Γ ` e is valid whenever

for all interpretations:

• where Γ is true (that is, each formula in Γ is true) in an interpretation

then e is also true in that interpretation;

• where Γ is false (that is, there exists a formula in Γ that is false) in an

interpretation; and

• where Γ is undefined in an interpretation.

If Γ is false or undefined in an interpretation then no mention needs to

be made of e; that is, in such situations e can be true, false or undefined in

that interpretation. A sequent statement is invalid whenever there exists an

interpretation where Γ is true, and e is false or undefined in that interpreta-

tion. Section 2.2.5 compares strong Kleene logic (the preferred approach, see

Section 2.3) with other sequent interpretations.

Due to the sequent interpretation in LPF and due to the loss of the law of

the excluded middle, certain rules need modifying in LPF. For instance, the

unrestricted deduction theorem:

p ` q

p ⇒ q

does not hold in LPF because p could potentially be undefined. It is the case

that ⊥B ` ⊥B is valid in LPF, but it is the case that ⊥B ⇒ ⊥B is not valid

in LPF (it is undefined), since p ⇒ p is not a tautology in LPF. A modified

rule needs to be used that has the added hypothesis that p is defined (p must

be shown to be defined in LPF):

⇒ -I
δp; p ` q

p ⇒ q

Compared to two-valued classical logic, extra axioms are required in LPF

due to the loss of the law of the excluded middle to complete the propositional

LPF definition; refer to [BFL+94] and [Jon06] for more detail.

Without the ∆ operator there would be no tautologous formulae in this

approach, due to the presence of “gaps” (⊥B). The ∆ operator gives rise to

an alternative property which is known as the law of the excluded fourth:

p ∨ ¬ p ∨ ¬∆p
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that is, p is true, false, or undefined. Since the ∆ operator is not monotone it

rarely appears in normal assertions, and is an operator on the meta-level. To

claim definedness in a proof the δ operator is normally used, as was illustrated

in the ⇒ -I rule.

The equality used in this approach is weak. No strong notion of equality

is used here.

In the WD approach one has to prove well-definedness and validity sepa-

rately, to avoid being able to prove undefined formulae valid. This approach

does allow the assumption that when proving that a sequent is valid that it is

well-defined, as another proof takes on the burden of well-definedness. In LPF

validity and well-definedness are proved at the same time.

An untyped version of LPF is introduced in [Che86]. A typed version of

LPF is introduced in [JM94].

Similar approaches: In [MJ12] the authors take a similar approach. Their

aim is to prevent arithmetic overflows in Alloy. Formulae involving out of

bound arithmetic applications are considered to be undefined. The LPF propo-

sitional operator semantics are utilised, but a different interpretation is given to

the quantifiers. The quantified variables are to range only over values whereby

the quantified expression is defined, that is, the quantified expression (the

predicate) is true or false. Thus values where the predicate would be unde-

fined are removed, which is determined through the LPF semantics, and as

a result quantifiers can never be undefined. Thus quantifiers do not use the

three-valued LPF interpretation. Every top-level formulae in an Alloy model

is quantified.

Koletsos’s three-valued logic [Kol76] uses the same truth tables as LPF for

propositional logical operators, with only monotone operators being present.

In this approach partial predicates can be present, however, partial functions

are not available. Two notions of validity are considered. The first strong

validity, where given a set of assumptions Γ and a set of formulae φ, (Γ ` φ)

for every interpretation, if Γ is true in an interpretation then at least one

formula φi ∈ φ is true in that interpretation, and if all formulae in φ are false

(that is, that each φi ∈ φ is false) in an interpretation, then at least the one

formula γi ∈ Γ is false. The second notion of validity is similar to the sequent

interpretation of LPF.

Blamey’s partial logic [Bla80] again only deals with monotone operators.

This approach considers partial functions, and also uses a notion of validity

similar to Koletsos’s strong validity notion.

The truth tables of the LPF approach were first introduced in [Kle38] and

are also presented in [Kle52]. Additionally, it was Koletsos’s logic [Kol76]
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∨ L true ⊥B false
true true true true
⊥B true ⊥B ⊥B
false true ⊥B false

∧ L true ⊥B false
true true ⊥B false
⊥B ⊥B ⊥B false
false false false false

⇒ L true ⊥B false
true true ⊥B false
⊥B true true ⊥B
false true true true

¬  L
true false
⊥B ⊥B
false true

Figure 2.9: The  Lukasiewicz truth tables for disjunction, conjunction, impli-
cation and negation

that inspired LPF [Che86]. Blamey’s logic [Bla80] was also considered, but its

notion of strong validity was deemed too strong, as the interested is just in

being able to deduce truth from truth [Che86]. A combination of Koletsos’s

logic and Blamey’s logic was used in the development of LPF [Che86].

 Lukasiewicz

 Lukasiewicz presented a three-valued logic in [ Luk20] (also refer to [Pri53,

But55, Sid10]). The truth tables for this approach for disjunction, conjunc-

tion and negation are the same as in LPF (strong Kleene logic) as presented

in Figure 2.7. In  Lukasiewicz’s approach, however, the implication logical

operator differs from that for LPF. The truth tables for  Lukasiewicz’s logical

operators are presented in Figure 2.9.  Lukasiewicz’s approach was put forward

originally as a solution to the problem of propositions of future events [Pri53].

Undefinedness is often regarded as indefinite or possible in this approach, while

in LPF/strong Kleene it is regarded as undefined, and it is frequently written

as 1
2

in  Lukasiewicz’s approach but here it will still be written as ⊥B.

A difference to the LPF/strong Kleene approach comes down to the fact

that p ⇒ L p is valid in  Lukasiewicz’s logic, since ⊥B ⇒ L ⊥B is taken to be

true. So, while in the LPF/strong Kleene approach undefinedness cannot be

used to infer anything, in  Lukasiewicz’s approach undefinedness can be used

to infer truth, that is, you can infer that you do not know if you really do not

know. Additionally, in  Lukasiewicz’s approach ⊥B ⇔  L⊥B is true.

This means that unlike in the LPF/strong Kleene approach the logical op-

erators in  Lukasiewicz’s are not monotone. Consider ⊥B ⇒ L ⊥B as being true,

then if the antecedent “completes” (the evaluation of a function “completes”)

to true and if the consequent “completes” to false (the evaluation of a function

“completes”), then the truth value of ⊥B ⇒ L ⊥B changes from true to false.

This is one of the primary reasons why the LPF approach must be favoured for

this work, (the same can be applied as an argument against Bochvar’s external
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∨B true ⊥B false
true true true true
⊥B true false false
false true false false

∧B true ⊥B false
true true false false
⊥B false false false
false false false false

⇒B true ⊥B false
true true false false
⊥B true true true
false true true true

¬ B

true false
⊥B true
false true

Figure 2.10: The Bochvar external truth tables for disjunction, conjunction,
implication and negation

approach considered in the next subsection).

In  Lukasiewicz’s logic one has to give up the well known property that an

implication p ⇒ L q is logically equivalent to ¬ p ∨ L q , due to the case when

both p and q are undefined. In fact p ∨ L q is logically equivalent to (p ⇒ L q)

⇒ L q , and thus ¬  Lp ∨ L q is logically equivalent to (¬  Lp ⇒ L q) ⇒ L q .

Additionally, ¬  L p ⇒  L p is not logically equivalent to p. Also like in the

other non-classical logic approaches considered above, the law of the excluded

middle also does not hold in  Lukasiewicz’s approach.

Bochvar External

Bochvar’s External three-valued logic approach [Boc81] differs from the other

non-classical logic approaches in that each logical operator returns true or

false, that is, formulae are forced into a two-valued framework; the output of

applying a logical operator is always two-valued. The terms nonsense N or

meaningless are generally used in Bochvar’s approaches as opposed to the term

undefined, but in the descriptions that follow ⊥ will continue to be written.

Even if both operands of a disjunction are undefined then a defined value

(false) is returned. The reasoning is that if an operand to the disjunction

logical operator is not true, then the disjunction logical operator cannot be

true. In this approach undefined is treated as if it is false. The truth tables

for this approach are presented in Figure 2.10.

Notice that in this approach the expression ¬ B(1/0 = 0) is taken as being

true since the undefined predicate 1/0 = 0 is regarded as false. Also it is the

case that the expression ⊥B ⇒B ⊥B is true. Again this does not fit with the

preferred viewpoint here that no assumptions should be made about partial

terms. Furthermore, note that p is not logically equivalent to ¬ B¬ Bp.

An advantage of this three-valued logic is that the law of the excluded mid-

dle holds. The truth tables for the logical operators return only defined truth

values, that is, true and false as results, but at the expense of monotonicity.
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d
true true
⊥B false
false false

e
true false
⊥B false
false true

Figure 2.11: The Bochvar external truth tables for the assertion operator d
and the denial operator e

In Bochvar’s internal approach (and the weak Kleene approach) if the

Boolean expression p is undefined then any logical operator with p as an

operand is undefined. Bochvar, when introducing his external approach [Boc81]

introduces an assertion logical operator dp and a denial logical operator ep,

which are to be read as “p is true” and as “p is false” respectively. The truth

tables for the logical operator d and for the logical operator e are presented in

Figure 2.11.

Bochvar’s external logical operators are never undefined when given un-

definedness as input. The external logical operators can be defined through

the use of the internal logical operators. For example, p ∨B q is defined as

dp ∨W dq . The internal truth tables and the external truth tables correspond

when all operands to any of the logical operators denote.

Property 2.2 and Property 2.8 both hold in this approach. Consider some

of the earlier illustrative evaluations again, first of Property 2.2:

3 ≥ 5 ⇒B subp(3, 5) = 3− 5

false ⇒B ⊥Z = −2

false ⇒B ⊥B

true

and an evaluation of Property 2.8:

subp(3, 5) = 3− 5 ∨B subp(5, 3) = 5− 3

⊥Z = −2 ∨B 2 = 2

⊥B ∨B true

true

2.2.5 Sequent Interpretations

In this section different interpretations of the sequent (consequence relation —

`) are discussed in the context of the strong Kleene approach. Thus the other
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approaches considered in this section use the same propositional operations

and quantifiers as mentioned earlier for LPF (which is based on the strong

Kleene logic) in Section 2.2.4, but different interpretations are given to the

sequent statement.

One possible interpretation of the sequent has already been discussed and

that is the SS interpretation that is used in the LPF approach. Other inter-

pretations that can be given to sequents in the strong Kleene approach are:

SW , WW and WS , where W stands for a weak (∆p ⇒ p) interpretation

and S stands for a strong (∆p ∧ p) interpretation. Let Γ = {e1, . . . , en} be a

set of formulae, where the commas are to be interpreted as conjunctions, and

let e be a single formula. A sequent is to be interpreted as from the set of

formulae Γ, the formula e can be inferred, (Γ ` e). The first W or S is for

the assumptions interpretation and the second W or S is for the conclusion

interpretation. Note that Γ is a set of formulae that can be empty. The choice

of which interpretation is given to a sequent determines the inference rules

that are sound, and thus has an impact on the applicability of certain proof

procedures.

A comparison of this work on the different sequent interpretations (that

is discussed below in this section) is presented in [Owe97]. A brief overview

follows of the different sequent interpretations to enable some justifications in

favour of LPF to be introduced.

A sequent is valid in the same manner as in two-valued classical logic when-

ever Γ and e are defined. That is, a sequent is valid iff for all interpretations,

if Γ is true in an interpretation (that is, where all formulae in Γ are true), e is

also true in that interpretation, or if an interpretation makes Γ false (that is,

there is a formula in Γ that is false). However, the sequent is invalid whenever

there exists an interpretation that makes Γ true but e false.

The SS (LPF) sequent interpretation is invalid whenever Γ is true, and e is

false or undefined in an interpretation. The sequent is valid in all other cases.

The SW sequent interpretation is invalid whenever Γ is true, and e is false

in an interpretation. The sequent is valid in all other cases.

The WW sequent interpretation is invalid whenever Γ is true, and e is false

in an interpretation. The sequent is also invalid whenever Γ is undefined and

e is false in an interpretation. The sequent is valid in all other cases.

The WS sequent interpretation is invalid whenever Γ is true, and e is false

or undefined in an interpretation. The sequent is also invalid whenever Γ is

undefined, and e is false or undefined in an interpretation. The sequent is valid

in all other cases.

All four sequent interpretations have inference rules that hold which do not
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hold in other sequent interpretations, and all four sequent interpretations have

inference rules that do not hold.

For instance, in the SS interpretation, as already mentioned the deduction

theorem:

p ` q

p ⇒ q

does not hold. Also proof by contradiction does not hold in this interpretation.

In the SW interpretation, modus ponens:

p; p ⇒ q

q

does not hold. Additionally, the cut rule does not hold.

In the WW interpretation, again modus ponens does not hold.

In the WS interpretation, the trivial sequent:

p ` p

does not hold.

The sequent interpretations are formalised in Section 4.2.

A sound and a relatively complete set of proof rules for WS is presented

in [Owe97].

2.3 Summary of the Justifications for LPF

There are two arguments that are needed to justify the choice of LPF. First

that the semantics of the logical operators etc. in LPF is the preferred way

to reason about logical formulae that can include references to partial terms.

Second to justify that the LPF SS sequent interpretation is the preferred

sequent interpretation.

It is pleasing that it is relatively trivial to be able to convert theorems

between two-valued classical logic and LPF. The big difference between LPF

and two-valued classical logic is the loss of the law of the excluded middle. All

theorems of LPF are theorems of two-valued classical logic, for example, if all

partial functions are overspecified. But some theorems of two-valued classical

logic cannot be proved in LPF, due to the loss of the law of the excluded

middle in LPF. Adding a definedness hypotheses for all propositions in a valid

two-valued classical logic formula is sufficient to make the validity of a formula

in two-valued classical logic and in LPF coincide.
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Another big consideration in the choice of a logic is the ease with which

proofs can be completed. In LPF one can reason about recursive functions

using inference rules that can be generated from recursive function definitions.

For instance, for the zero function the following two inference rules can be

generated:

zero b
zero(0) = 0

zero i

i :Z;

i 6= 0;

zero(i − 1) = k

zero(i) = k

where the equality used in the inference rules is weak equality. One can imagine

the automatic generation of such inference rules from the function definitions

themselves.

These inference rules can be used to aid completing proofs of properties

relating to the zero function. The proof of Property 1.1 is presented in Fig-

ure 2.12, and is referred to as Lem in the subsequent proof. This proof is

complicated by the fact that a δ definedness obligation needs to be discharged

in the proof step referenced by the line number 5. In this case showing de-

finedness is trivial, since in this proof the definedness of i ≥ 0 follows from the

type i :Z.

from i :Z
1 zero(0) = 0 zero b
2 from n:N; zero(n) = 0
2.1 n + 1:Z 2.h2, Z
2.2 n + 1 6= 0 2.h1, 2.1, Z

infer zero(n + 1) = 0 zero i(2.1, 2.2, 2.h2)
3 ∀n:N · zero(n) = 0 ∀-I (N-ind(1, 2))
4 from i ≥ 0
4.1 i :N 4.h1, N

infer zero(i) = 0 ∀-E (3, 4.1)
5 δ(i ≥ 0) h1, Z

infer ∀i :Z · i ≥ 0 ⇒ zero(i) = 0 ∀-I (⇒ -I (5, 4))

Figure 2.12: Proof of zero Property 1.1

A proof of Property 1.3 is presented in Figure 2.13. This proof is identical
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from i :Z
1 i ≥ 0 ∨ i < 0 h1, Z
2 from i ≥ 0
2.1 zero(i) = 0 ⇒ -E -L(Lem(h1), 2.h1)

infer zero(i) = 0 ∨ zero(−i) = 0 ∨-I -R(2.1)
3 from i < 0
3.1 −i ≥ 0 h1, 3.h1, Z
3.2 −i :Z h1, 3.1, Z
3.3 zero(−i) = 0 ⇒ -E -L(Lem(3.2), 3.1)

infer zero(i) = 0 ∨ zero(−i) = 0 ∨-I -L(3.3)
infer ∀i :Z · zero(i) = 0 ∨ zero(−i) = 0 ∀-I (∨-E (1, 2, 3))

Figure 2.13: Proof of zero Property 1.3

to how a proof of the same property would look in two-valued classical logic.

It is not necessary to make any assumption about the meaning of terms such

as zero(−1), as in LPF one reasons from truth to truth.

The proofs of the corresponding subp properties, can all be proved in a

similar way.

An issue that can be raised about the non-classical logic approaches is that

the familiar logic rules can become complicated by the addition of definedness

obligations to ensure the soundness of such rules. Since such definedness obli-

gations need discharging more time and effort is needed by a user during the

proof process. But this is also the case in the well-definedness approach where

despite the fact that all reasoning can be done in two-valued classical logic,

definedness needs to be established in a separate proof to the validity proof.

The approaches that avoid the need for a non-classical logic raise subtle

questions and issues, for instance, forcing the introduction of multiple notions

of equality, forcing arbitrary values to be returned by a function if the func-

tion is applied with argument(s) from outside of the partial functions defined

domain, or separating definedness out from validity proofs. Such issues have

been outlined in Section 2.2. Certain non-classical logics can provide a nat-

ural way of reasoning about logical formulae that can contain references to

partial terms, but at the expense of having to use a non-standard (unfamiliar)

three-valued logic semantics.

All of the non-classical three-valued logics considered do have the pleasing

property that any formula that only includes defined operands corresponds

to the two-valued classical logic interpretation. There are differences between

these non-classical logics that have been considered, that lead the author to

the choice of LPF.
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In weak Kleene’s (Bochvar’s Internal approach) where if undefinedness

arises then undefinedness results, it is preferred that the strongest possible

interpretation is given to the propositional logical operators, and to the quan-

tifiers, that is, that they are as defined as possible. If a result can be determined

from a single operand and such a result cannot be contradicted later by the

completion of further evaluations, then it is preferred that such a result should

be returned.

The sequential interpretation that is given to the logical operators in Mc-

Carthy’s conditional operator approach is used in certain tool support environ-

ments; for example the McCarthy conditional disjunction operator is closely

related to the standard disjunction that is provided in programming languages

such as C and Java, as a sequential interpretation can be implemented instead

of a parallel interpretation. However, when conducting proofs the parallel in-

terpretation of LPF (strong Kleene logic) is preferred over McCarthy’s sequen-

tial interpretation as the former, for instance allows for both true ∨ ⊥B and

⊥B ∨ true to be true, while in the latter approach only the first of these two

examples is true.

Due to the sequential interpretation that is given to the logical operators

in McCarthy’s conditional operator approach, basic algebraic properties such

as the commutativity of disjunctions and conjunctions do not hold. Hav-

ing to conduct proofs where operands to the disjunction and the conjunction

logical operators cannot be easily commuted can be tedious; this can for ex-

ample complicate mechanised proof procedures, for instance complicating the

clausal form notation that is used in the resolution proof procedure and so

on. Issues such as this is why the parallel interpretation of LPF is preferred

here for conducting proofs in. The truth tables in LPF provide the strongest

possible monotonic extension of the corresponding familiar two-valued truth

tables. Thus properties such as the commutativity and the distributivity of

conjunctions and disjunctions hold, as well as familiar properties such as the

idempotent and the de Morgan properties. There is an argument that the ac-

ceptance of logics (to cope with partial terms) can be decided by their algebraic

properties [CJ91].

In  Lukasiewicz’s approach p ⇒  Lp is true, and in Bochvar’s External

approach ¬ B⊥B is true. Such logics are not monotone, and if a function later

completes its evaluation (it becomes defined), results can changes from true to

false. Thus  Lukasiewicz’s approach and Bochvar’s external approach are not

deemed as appropriate in comparison to other approaches considered here for

this work.

Additionally, the SS sequent interpretation is preferred over the other se-
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quent interpretations. In the SS sequent interpretation one can only infer

truth from truth. While in the SW sequent interpretation, an interpretation

where true ` ⊥B occurs is actually valid. The same holds for the WW sequent

interpretation. In the WS sequent interpretation, an interpretation that gives

rise to either ⊥B ` false or to ⊥B ` ⊥B causes the sequent to be invalid. In the

SS sequent interpretation, when the left hand side is false or is undefined in an

interpretation, there is no constraint on the goal in such an interpretation. Of

course no matter which sequent interpretation is chosen in the strong Kleene

approach, some two-valued classical proof rules do not hold and need modify-

ing with definedness conditions for soundness. The notion of strong validity is

too strong, and can distract from the overall goal that is to deduce truth from

truth.

So, LPF stays close to two-valued classical logic in that a lot of the proof

rules of two-valued classical logic are still valid in LPF. However, some proof

rules (such as the deduction theorem, see LPF Section 2.2.4) need modifying to

maintain soundness, and some extra proof rules are needed for completeness.

Thus such a logic is less familiar for a user accustomed to two-valued classical

logic. One big drawback of LPF is that the proof by contradiction proof

technique does not follow as it does in two-valued classical logic due to the

presence of “gaps”. However, in Chapter 6 it is shown that such a technique

can be modified to cover LPF.

There have been arguments presented for the adoption of LPF for a while,

for instance in [CJ91, Jon06]. As mentioned an obstacle against the adoption

of LPF concerns the lack of proof support that is available for LPF. Attempting

to address this obstacle can be seen as an overall aim of this work. A focus of

this work is on investigating the applicability of basic but fundamental proof

techniques in LPF. Extra work will result in LPF due to definedness obligations

that will need discharging due to the presence of partial terms, but identifying

the extent of this extra work, and how to address and reduce this extra work

is the goal. In Chapter 6 an investigation into the applicability of fundamental

proof techniques in LPF is presented which goes a long way to addressing the

issue of a lack of mechanised proof support for LPF. Addressing the issue of

proof support for LPF can be used to counter the obstacle against LPF, and

in doing so to further justify the choice of LPF for reasoning about logical

formulae that can contain references to partial terms.

Chapter 4 provides a semantically based comparison between numerous

different approaches that have been discussed in this chapter. Relationships,

in particular how theorems can be moved between the different approaches are

also identified from this comparison.
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2.4 Previous Attempts at Mechanisation Support for

LPF

LPF is the logic that underlies VDM [Jon90, FLM+05, FL09], but its potential

for application goes beyond that particular formalism [Fit07]. VDM was estab-

lished back in the 1970s from work done at IBM’s Vienna Laboratory. VDM is

a range of techniques centered around the modelling, the specification and the

design of computer systems [Fit07] and is a widely used model-based formal

method [LBF+10]. A model-oriented formal method is used to define the be-

haviour of a system by constructing a model of the system using mathematical

structures such as sets and functions [Win90].

The issues posed behind proving properties of computer systems which

include references to partial functions was a motivating factor behind the

development of LPF [Fit07]. It has already been illustrated that partial

terms arise frequently in program specifications and this is indeed the case

in VDM models, as can be seen in a wide range of literature, for exam-

ple [Jon90, BFL+94, Bic98, FLM+05, Jon06, Fit07].

To date there have been numerous attempts at providing a mechanisation

of LPF which have all been centered around work done for VDM, notably tools

which have been designed to encourage the modelling and exploration of mod-

els [Fit07] (the VDM Toolset and the Overture Toolset); a formal development

support system (mural); and attempts at providing proof support, for instance

using the PVS theorem prover and the HOL theorem prover.

The aim of this section is twofold. Firstly, to introduce what was achieved

in the approaches alluded to above, and secondly to illustrate how the work to

be presented in the following chapters of this thesis differs from the previous

attempts at mechanising VDM/LPF.

2.4.1 The VDM Toolset and the Overture Toolset

The commercial VDM Toolset [ELL94, Fit07, FLS08]1 was designed to en-

courage modelling in VDM and the exploration of VDM models. Facilities

provided include but are not limited to: syntax checking, static type check-

ing, the execution of models in an interpreter (testing by execution), and the

generation of proof obligations.

The Overture Project2 is an open source initiative still currently under

development [LBF+10]. Its aim is to provide tools to support the modelling

of computer-based systems using VDM. Currently the Overture tool supplies

tool support for creating VDM models such as syntax checking and static type

1www.vdmtools.jp
2www.overturetool.org
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checking, as well as providing functionality that allows for VDM models to be

executed and to be tested.

One of the key ideas behind LPF is to provide a parallel (lazy) evaluation

of the operands of the propositional operators, such that:

0 = 0 ∨ (1/0) = 0

and:

(1/0) = 0 ∨ 0 = 0

are both true. However, due to issues in mechanising such a parallel evalu-

ation the VDM Toolset and the Overture Toolset do not provide the propo-

sitional operators present in VDM with the LPF interpretation, but instead

give the propositional operators McCarthy’s conditional operator interpreta-

tion [Fit07]. Thus only the first of the two examples above can be evaluated

to true, and interpreting the second example just results in an error being

returned.

Before continuing it is also worth pointing out that proof obligations can

be generated through tool sets such as the VDM Toolset and the Overture

Toolset. A proof obligation is an unproven Boolean expression that highlights

some constraint/property from a given model that must be discharged in order

for the model to be able to be regarded as consistent.

2.4.2 mural

The mural tool is a Formal Development Support System [JJLM91]. The aim

of mural was to provide a support tool and a proof assistant for VDM. The

mural tool was specified in VDM.

The mural tool supports the full development cycle. A number of tools sup-

port different stages of this cycle such as the toolsets outlined in the previous

section for the specification phase and the proof obligation generation phase.

The mural tool supports the construction of VDM specifications, has facilities

to generate the associated proof obligations, as well as providing support to

construct proofs for instance, of the associated proof obligations.

The generic proof tool of mural can be used with a wide range of logics.

The logical frame of the mural tool has been instantiated with different logics

such as LPF and First-Order Predicate Calculus (FOPC).

The mural proof construction support tool is an interactive proof assistant.

A key requirement envisaged for the mural tool is that the proof assistant tool

should help users in the proof construction process, that is, that the human
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rather than the program should be in control throughout the proof construction

process (user guided proof). The proofs are to be conducted interactively with

some automated aids.

For an account of using the mural tool to specify a system, the reader is

referred to [VMH01].

2.4.3 Utilising Existing Theorem Provers

The following approaches attempted to use existing theorem provers to try

and discharge proof obligations.

In [Bic98, §6] the authors discuss utilising the PVS theorem prover [ORS92,

COR+95] as a tool to support VDM-SL. The aim was to translate VDM-SL

specifications into the PVS specification language, and to be able to use PVS

for type checking and for verifying properties of VDM-SL specifications. A

large subset of VDM-SL can be translated to PVS but it must be done man-

ually. The PVS proof checker can be used for proving proof obligations that

arise from specifications. Logical formulae from VDM-SL need representing as

logical formulae in PVS, so that the proof capabilities of PVS can be used for

VDM.

However, the proof rules of VDM-SL are not accurately captured because

of the differences between the logics of VDM-SL and PVS. PVS as mentioned

earlier does not support actual partial functions (division by zero for example is

subtyped), so PVS will generate obligation(s) to ensure that the functions are

total (partial VDM-SL functions need translating into total PVS functions).

A tool that automatically translates a large subset of VDM and its asso-

ciated proof obligations to the theorem prover HOL is discussed in [Ver07,

VHL10]. The goal of this work was to be able to discharge as many proof obli-

gations as possible that are generated by the VDM Toolset automatically using

the theorem prover HOL. This work involved the development of a VDM++

to HOL translator and using HOL to then prove the proof obligations of the

model.

It is mentioned in [Ver07] that one of the main challenges in the translation

is: “Partial to Total: All partial functions in VDM need to get some kind of

total representation in HOL, as HOL does not allow partial functions”. This

is because LPF is the logic that underlies VDM, while HOL uses a two-valued

logic. Thus this approach is not faithful to the semantics of LPF, as they stay

within a two-valued subset of VDM models.

This work on HOL built upon work that was undertaken in the PROSPER

project [DCN+00]. A case study that was undertaken in this project was to

investigate the automatic translation of VDM-SL models into the HOL 98
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theorem prover. But again this work is not faithful to LPF.

In [AF97] and also documented in [Bic98, §7] the authors attempt to in-

stantiate Isabelle with a VDM-SL variant of LPF. However, this attempt again

suffers due a lack of faithfulness to LPF, when it comes to undefinedness.

In a similar fashion to the attempts made in HOL, the approach docu-

mented in [WF08] uses domain checks to attempt to avoid having to conduct

proofs in a three-valued logic based setting.

In the paper on linking VDM and Z [WF08] the authors show that a theo-

rem prover for Z (Z/Eves) can be used a verify theorems in VDM. Despite the

fact that VDM uses a three-valued logic (LPF) to cope with partial terms while

Z uses a semi-classical logic, and the theorem prover Z/Eves uses two-valued

classical logic.

Classical logic is used to reason about facts in VDM, where the soundness of

the proofs relies on finding guards to guarantee the definedness of expressions.

In order to prove a VDM fact e the authors proceed along the lines of taking

a guard G for the formula e. By proving in classical logic that both G and e

can be inferred the authors illustrate how e follows in LPF. Such guards can,

however, expand exponentially. This approach is like the Well-Definedness

(WD) approach, as a guard needs proving, and a separate validity proof needs

proving.

The subp function is used as an example by the authors in [WF08], and

when Z/Eves checks the subp equation a domain check using guards is gener-

ated which needs proving to ensure that every application of subp is within the

defined domain of the subp function. The defined domain of the subp function

needs specifying to be able to discharge these guards.

However, as alluded to earlier, both:

subp(3, 5) = subp(3, 5)

and:

subp(3, 5) = 0 ∨ ¬ (subp(3, 5) = 0)

can be proven valid in Z/Eves. This is despite the fact that the term subp(3, 5)

fails to denote a proper value, but due to the semi-classical nature of Z, it must

be the case that predicates denote.

2.5 Conclusions

This chapter has provided a comprehensive survey of different approaches to

coping with partial terms, e.g. arising from the application of partial functions.
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The different approaches all attempt to address the issues that partial terms

bring about as discussed in Section 1.1.4. The survey has addressed how the

different approaches cope with the presence of partial terms; the advantages of

the different approaches; issues that arise with the different approaches; and

the logical semantics of the different approaches, e.g. whether they maintain

the use of two-valued classical logic, or whether they are a non-classical logic

approach.

Justifications for taking the LPF approach have been outlined. LPF is the

logic that underlies VDM. Previous work on mechanising LPF (usually in the

context of VDM) has been discussed. The existing work on mechanising LPF

either has different goals as to what will be presented in the following chapters

such as the VDM Toolset, or was not conducting reasoning in a way completely

faithful to LPF.

A formal semantic comparison of a number of the approaches to coping

with partial terms presented in this chapter will be presented in Chapter 4.

This allows for further justifications for LPF to be presented.
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The semantics of LPF is formally defined in this chapter using different se-

mantic definitions. The aim of dynamic semantics is to give a meaning to a

construct by defining its evaluation. In particular two types of semantic defini-

tions are presented in this chapter. The first is known as Operational Semantics

(OS) and the second is known as Denotational Semantics (DS) [NN92]. Both

semantic formalisations are used to provide the meaning of well-formed (syn-

tactically correct) expression constructs by defining their evaluation according

to the semantics of LPF.

For the first semantic description both a big-step semantics and a small-

step semantics is provided. The former is generally referred to as a natural

semantics [Kah87] and the latter is generally referred to as a Structural Op-

erational Semantics (SOS) [Plo81, Plo04]. Here the former is referred to as a

big-step SOS and the latter as a small-step SOS.

An OS definition is concerned with how programs are executed not just

with what the results are [NN92]. How the final value is computed must be

stated. Big-step SOS definitions serve the purpose of describing how overall

results of execution are obtained, while small-step SOS definitions serve the

purpose of describing how individual steps take place [NN92].

In the DS approach, the interest is in the effect (the association between

initial and final states) of executing a program, not how it is obtained [NN92].
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“The meaning of a program is modelled by mathematical objects that represent

the effect of executing the constructs” [NN92].

The SOS definitions provide an intuitive introduction to the semantics of

LPF, and how LPF addresses the issues of handling logical formulae that can

contain references to partial terms, by illustrating the process of how expres-

sions are evaluated in LPF. The DS definitions provide set theoretic definitions

of the values that are denoted by expressions according to the semantics of

LPF.

It is beneficial to provide such definitions since doing so allows one to

be clear about the semantics of LPF before beginning with a mechanisation

of it. Additionally, such formal semantic definitions can form the basis of

mechanisations, and they provide criteria with which to check whether any

mechanisation is “correct”, (e.g. they provide a key underlying basis on which

proofs of modifications made to proof procedures for LPF can be conducted

on, see Chapter 6). Mechanisations in both the Maude term-rewriting system,

and in the Isabelle proof assistant are considered in Chapter 5.

A DS semantic definition is made use of in subsequent chapters to present

a formal comparison between different approaches to coping with partial terms

(in Chapter 4), as well as being used, as a basis from which to prove modifica-

tions of two-valued classical logic proof techniques for LPF, to precisely define

concepts, and to illustrate issues with applying selected proof techniques to

LPF (in Chapter 6).

Before the semantics are presented the expression constructs for which the

semantics are to be provided are presented. This is followed by the context

conditions which allow for the ill-formed expressions that can be constructed

to be removed from further consideration, that is, to be removed from fur-

ther consideration in the semantic definitions. The semantic objects that are

needed, followed by the semantic definitions themselves (the transition rela-

tions for the SOS definitions and the DS set theoretic definitions) are then

presented which are followed by a number of illustrative proofs, for example,

to show that some of the different semantic definitions presented coincide.

(Some of the content from Sections 3.1, 3.2, and 3.3.2 are presented in the

paper [Lov10], but such content has been extended for this chapter. Some

of the content from Sections 3.3.2 and 3.4 are presented in [JL11] but with

concrete syntax, whereas abstract syntax and context conditions are used here.

The content has again been thoroughly extended for this chapter. The SOS

definitions are mine. Cliff Jones also suggested producing DS definitions (a

small basis of which was provided, which was then modified and extended by

myself), which were derived from the SOS definitions. The paper [JL11] also



Semantic Definitions for LPF 56

contains proofs on a partial predicate done by Cliff Jones which forms no part

of this thesis.)

3.1 Expression Constructs

The expression constructs present in the language are all introduced below

using abstract syntax [McC62, §12]. The purpose of using abstract syntax

as opposed to using concrete syntax is to allow for the necessary information

to be conveyed without having to concern oneself about the actual (concrete)

syntactical representation of such expressions. For instance, which of the fol-

lowing syntactical representations for a disjunction expression should be used:

p ∨ q , or p or q , p | q , p || q , ∨ (p, q), or or(p, q)? Here such considerations

do not matter so abstract syntax is used so that just the essential information

is presented as opposed to having to also convey the syntactical representation

of the expression constructs. Abstract syntax is independent of the notation

used, and is similar to the function that a Back-Naur Form specification pro-

vides, but without any concern for the concrete syntactical representation.

The “basic” language includes numerous expression constructs, where all of

the expressions must be of the type Boolean or of the type integer. The restric-

tion on the domain is for simplicity in the following semantic definitions only.

But, at the same time, even with just these two types, the issues encountered

with partial terms can still be adequately illustrated. Extending the following

semantic definitions to incorporate more datatypes is straightforward. This

can be necessary because most programming languages contain many different

datatypes.

A constant value, that is, a Boolean value (B, true or false) or an inte-

ger value (Z, . . . ,−1, 0, 1, . . .) is itself treated as an expression. Other valid

expressions in the language include: referring to an identifier; arithmetic ex-

pressions; a relational (equality) expression; a conditional expression (useful

for defining recursive function definitions); propositional logic expressions, in

particular negation, disjunction, and a definedness operator δ; an existential

quantifier; and function and predicate call expressions.

Of course certain logical operators that are not presented here can be de-

fined in terms of the subset presented just as in two-valued classical logic, for

example, p ∧ q is equivalent to ¬ (¬ p ∨ ¬ q), p ⇒ q is equivalent to ¬ p ∨ q ,

p ⇔ q is equivalent to (p ⇒ q) ∧ (q ⇒ p), and ∀x · p is equivalent to

¬∃x · ¬ p in LPF. The definitions of such operators could of course be defined

in the different semantic definitions, but since such operators can be defined

in terms of the other operators in LPF, the inclusion of these other operators

would expand the definitions at the expense of clarity.
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In addition only quantification over the set of integer values is considered

for simplicity. Recall that in LPF quantification is only over a set of proper

(i.e. defined) values. It is straightforward to remove this restriction.

Four sorts of identifiers can occur in expressions, those for propositions

(Prop), for integer variables (Var), for functions (Fn) and for predicates (Pr).

Prop, Var , Fn and Pr are assumed to be disjoint sets. Notice that while a

e ∈ Prop and a e ∈ Var are expressions, any reference to a Fn or to a Pr

identifier must be made through the FuncCall and the PredCall expression

constructs.

The abstract syntax is:

Expr = Value | Id | Arith | Equality | Cond | Not | delta |
Or | Exists | FuncCall | PredCall

Value = B | Z

Id = Prop | Var | Fn | Pr

Arith :: a : Expr

op : + | − | × | ÷
b : Expr

Equality :: a : Expr

b : Expr

Cond :: p : Expr

a : Expr

b : Expr

Not :: p : Expr

delta :: p : Expr

Or :: p : Expr

q : Expr

Exists :: x : Var

p : Expr

Function/predicate call expressions require both the name of the func-

tion/predicate to be called as well as the arguments to be passed into the

function/predicate:

FuncCall :: function : Fn

args : Expr ∗
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PredCall :: predicate : Pr

args : Expr ∗

A function in the language always takes integer arguments and returns an

integer result. A function definition thus contains a sequence of parameter

names and a resulting expression (that might include recursive calls to the

function), where a record is used to represent a single function definition:

Func :: params : Var ∗

result : Expr

A predicate is similar; it always takes integer arguments but will instead

return a Boolean result:

Pred :: params : Var ∗

result : Expr

It is assumed that all variables and function/predicate definitions are de-

fined before use alongside the expression to be evaluated, as follows:

Start :: vars : Prop | Var
m−→ Value

funcs : Fn
m−→ Func

preds : Pr
m−→ Pred

body : Expr

3.2 Context Conditions

Now that the abstract syntax has been presented the context conditions can be

introduced. The abstract syntax provides a structure for all expressions. The

set of expressions from the abstract syntax is a proper subset of all well-formed

expressions. The purpose of the context conditions is to be able to remove ill-

formed expression constructs from consideration in the semantic definitions

that follow, thus leaving only those well-formed expressions. For instance,

semantics should be provided for expressions such as mk Arith(1,+, 2) and

mk Or(true, false), but not for expressions such as mk Arith(1,+, true) and

mk Or(true, 1) which can be constructed, according to the abstract syntax

presented.

There are two types in the language specifically the Boolean type and the

integer type:

Type = Bool | Int

where Bool and Int are primitive tokens naming the types B and Z respec-

tively.

To be able to perform type checks in the language a map entitled Types is

introduced that maps variable identifiers to the type of data that the variables

store, for example, a Prop will map to a Bool, and a Var will map to a Int:
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Types = Prop
m−→ Bool |

Var
m−→ Int

Furthermore, a map entitled Defs is introduced that maps function and

predicate identifiers to the corresponding function and predicate definitions,

to enable more type checks to be made:

Defs = Fn
m−→ Func |

Pr
m−→ Pred

It is intended that the only expressions for which, the semantics will be

provided are those expressions which satisfy the following criteria:

• A constant expression (of the type Bool or Int);

• A variable identifier (Prop or Var) which is defined within the domain

of a given Types map, and thus maps to an appropriate type (Bool or

Int);

• An arithmetic expression if both of its operands are well-formed and are

both of the type Int, and the operator is +,−,×, or ÷;

• A relational (equality) expression if both of its operands are well-formed

and of the type Int;

• A negation expression if its operand is well-formed and of the type Bool;

• A definedness operator δ expression if its operand is well-formed and of

the type Bool;

• A disjunction expression if both of its operands are well-formed and of

the type Bool;

• A conditional expression if the expression condition is well-formed and

of the type Bool, and the true and the false sub-expressions are both

well-formed and of the type Int;

• An existentially quantified expression if the quantified expression is well-

formed and of the type Bool when the quantified variable is included

within the given Types map and is constrained to be of the type Int;

• A function call expression if the arguments are well-formed and of the

type Int, and the function to be called exists in the given Defs map;

and

• A predicate call expression if the arguments are well-formed and of the

type Int, and the predicate to be called exists in the given Defs map.
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These criteria are presented formally in Figure 3.1 and Figure 3.2.

As well as checking whether expressions are well-formed, function and pred-

icate definitions need to be checked to ensure that they are well-formed. Func-

tion and predicate definitions are considered well-formed if the result expres-

sion is of the same type as the intended return type of the function/predicate

definitions in this language notably Int and Bool respectively. This is for-

malised in Figure 3.3 and Figure 3.4. It is intended that the only variables

that should be used within a functions/predicates result expression are the

parameter variables, so a functions/predicates result expression is checked to

see if it is well-formed with only the functions/predicates parameter names

included as a variable within a given Types map.

All of the context conditions (wf functions) that have been presented are

total as they are defined on all possible members of Expr .

Having the context conditions simplifies the syntax and the following se-

mantic definitions since it can be assumed in Section 3.3 and in Section 3.4

that for any expression, and function definitions and predicate definitions con-

structed and used in the following semantic definitions, that they satisfy all of

the necessary context conditions.

An Alternative Approach

A solution to reducing the size of the context conditions that are needed is to

define Expr along the following lines:

Value = B | Z

Id = Prop | Var | Fn | Pr

Expr = BoolExpr | IntExpr

BoolExpr = B | Prop | Equality | Not | delta |
Or | Exists | PredCall

IntExpr = Z | Var | Arith | Cond | FuncCall

Arith :: a : IntExpr

op : + | − | × | ÷
b : IntExpr

Equality :: a : IntExpr

b : IntExpr

Cond :: p : BoolExpr

a : IntExpr

b : IntExpr
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wf -Expr : Expr × Types × Defs → (Type | Error)

wf -Expr(e, vars , defs) 4

cases e of
e ∈ B→ Bool
e ∈ Z→ Int

e ∈ Prop→ if e ∈ dom vars
then Bool
else Error

e ∈ Var→ if e ∈ dom vars
then Int
else Error

mk Arith(a, op, b)→ let l = wf -Expr(a, vars , defs) in
let r = wf -Expr(b, vars , defs) in
if l = Int ∧ l = r ∧ op ∈ {+,−,×,÷}
then Int
else Error

mk Equality(a, b)→ let l = wf -Expr(a, vars , defs) in
let r = wf -Expr(b, vars , defs) in
if l = Int ∧ l = r
then Bool
else Error

mk Cond(p, a, b)→ let l = wf -Expr(p, vars , defs) in
let r = wf -Expr(a, vars , defs) in
let s = wf -Expr(b, vars , defs) in
if l = Bool ∧ r = Int ∧ r = s
then Int
else Error

mk Not(p)→ if wf -Expr(p, vars , defs) = Bool
then Bool
else Error

mk delta(p)→ if wf -Expr(p, vars , defs) = Bool
then Bool
else Error

mk Or(p, q)→ let l = wf -Expr(p, vars , defs) in
let r = wf -Expr(q , vars , defs) in
if l = Bool ∧ l = r
then Bool
else Error

mk Exists(x , p)→ if wf -Expr(p, vars † {x 7→ Int}, defs) = Bool
then Bool
else Error. . .

end

Figure 3.1: The expression context conditions (part 1)
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wf -Expr : Expr × Types × Defs → (Type | Error)

wf -Expr(e, vars , defs) 4

cases e of
. . .

mk FuncCall(id , args)→ if (∀i : inds args ·
wf -Expr(args(i), vars , defs) = Int) ∧

id ∈ dom defs ∧
len args = len defs(id).params

then Int
else Error

mk PredCall(id , args)→ if (∀i : inds args ·
wf -Expr(args(i), vars , defs) = Int) ∧

id ∈ dom defs ∧
len args = len defs(id).params

then Bool
else Error

others Error
end

Figure 3.2: The expression context conditions (part 2)

wf -Func : Func × Types × Defs → B

wf -Func(mk Func(p, r), vars , defs) 4

wf -Expr(r , {p(i) 7→ Int | i : inds p}, defs) = Int

Figure 3.3: The function definitions context conditions

wf -Pred : Pred × Types × Defs → B

wf -Pred(mk Pred(p, r), vars , defs) 4

wf -Expr(r , {p(i) 7→ Int | i : inds p}, defs) = Bool

Figure 3.4: The predicate definitions context conditions
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Not :: p : BoolExpr

delta :: p : BoolExpr

Or :: p : BoolExpr

q : BoolExpr

Exists :: x : Var

p : BoolExpr

FuncCall :: function : Fn

args : IntExpr ∗

PredCall :: predicate : Pr

args : IntExpr ∗

A function definition could be defined as:

Func :: params : Var ∗

result : IntExpr

A predicate definition could be defined as:

Pred :: params : Var ∗

result : BoolExpr

Some of the conditions in the context conditions are still needed, particu-

larly those that make reference to the Types map and to the Defs maps. For in-

stance, some of the conditions in the mk FuncCall case of the wf -Expr context

condition are still needed, id ∈ dom defs , and len args = len defs(id).params .

3.3 Operational Semantics

The LPF expression evaluation process is defined in terms of a set of transition

relations, presented as inference rules which define the valid expression eval-

uations (transitions) that can occur for the expression constructs introduced

earlier. The inference rules provide an abstraction of how an expression is

evaluated in LPF.

Only those expressions that are constructed that pass the context condi-

tions, that is, where given any e ∈ Expr where wf -Expr(e, vars) 6= Error,

and reference well-formed functions and predicates, that is, for every function

and predicate wf -Func(. . .) = true and wf -Pred(. . .) = true, are considered

from here on in the semantic definitions.

The SOS specifications provide an intuitive introduction to the semantics

of LPF but are problematic when it comes to the quantified expressions.

All expressions in the language, that reduce to a constant value are to

be considered defined, since such values cannot be reduced any further. The

constant values present in this language are the Boolean values ({true, false}),
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and the integer values ({. . . ,−1, 0, 1, . . .}). If an expression is evaluated to a

member of one of these two sets then the expression is fully evaluated (no

more evaluation can occur) and the evaluated expression denotes a value. For

instance, the expression 0 denotes and the expression mk FuncCall(zero, [0])

denotes a value (given the definition of the zero function presented earlier),

but the expression mk FuncCall(zero, [−1]) cannot be evaluated to a member

of one of the two aforementioned sets, and thus, while the argument expression

denotes, the whole expression fails to denote; it is a partial term, regarded as

a “gap”.

A map entitled Σ (referred to as a memory store) needs to be introduced to

map identifiers to the values that they store, and the corresponding definitions

at “run-time”:

Σ = Prop
m−→ B |

Var
m−→ Z |

Fn
m−→ Func |

Pr
m−→ Pred

where Σ is to be regarded as the set of all possible memory stores and σ (σ ∈ Σ)

is used to represent a specific memory store. A memory store (σ) is a global

static object in the sense that associations defined between the Prop and Var

identifiers and the values that they store cannot be changed as a result of

applying any of the semantic rules that follow. Additionally, no change can

be made to a function definition or to a predicate definition by any of the

semantic rules that follow. Notice that the last two maps in Σ are just the two

maps from the Defs map that were presented in Section 3.2.

All variables must be present (and initialised) within a given σ before ex-

pression evaluation is undertaken using the following semantic rules. In this

language there is no way to create new variables or to assign new values to

variables.

The map involving Prop in a σ can be partial, that is, not include a mapping

for a used propositional identifier, so a propositional identifier can be absent

from the domain of a σ to allow for the possibility of undefined propositional

identifiers. However, the maps involving Var , Fn, and Pr are assumed to be

total, that is, each used Var maps to an integer (since all integer variables

are defined), each used Fn maps to a function definition, and each used Pr

maps to a predicate definition). The function definitions (Func) and predicate

definitions (Pred) themselves can be partial (not define a result for certain

arguments), to allow for “gaps”. It is assumed that Predicates have at least

an arity of 1.

All functions and predicates are considered to be strict, that is, if there
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is a “gap” in an argument then there is a “gap” in the result of applying a

function/predicate with that argument. For example, given a function f :Z
→ Z, if f is applied with a “gap” (f (⊥Z)) then the result is a “gap”. This is

illustrated in the following case analysis:

f (a) = {
f (a) if f (a) is defined and a is defined

⊥Z if f (a) is undefined and a is defined

⊥Z if a is undefined.

Additionally, functions and predicates have a fixed arity in any given σ,

and will always return the same result when given the same argument(s) in a

given σ.

3.3.1 Big-Step Structural Operational Semantics Definition

The semantic (transition) relation used to model the process of expression

evaluation is:

e−→:P((Expr × Σ)× Value)

Notice that there is no undefined value, instead the treatment of undefined-

ness is as “gaps”.

Consider the semantic rules for the evaluation of the disjunction logical

operator:

Or E1
(p, σ)

e−→ true

(mk Or(p, q), σ)
e−→ true

Or E2
(q , σ)

e−→ true

(mk Or(p, q), σ)
e−→ true

Or E3

(p, σ)
e−→ false;

(q , σ)
e−→ false

(mk Or(p, q), σ)
e−→ false

Remember that the truth tables in LPF can be regarded as describing a

parallel lazy evaluation of the logical operators. The semantic rules above do

not allow for this. Notice that the evaluation can get stuck in evaluating an

operand (c.f. the Or E1 semantic rule and the Or E2 semantic rule). As a

result if the evaluation starts with evaluating a non-denoting operand then the

evaluation process can get stuck. It could be that the other operand is defined
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and this operand alone could determine the result but this other operand may

not be given the chance to run.

To further highlight the problems that defining a big-step semantics could

cause when specifying the semantics of LPF, consider the semantic rule which

defines the evaluation of the function call expression and thus illustrates one

of the places where “gaps” can arise in the first place:

FuncCall E

let a = [args ′(i) | i : inds args∧
(args(i), σ)

e−→ args ′(i) ∧ args ′(i) ∈ Z] in

len args = len a;

(σ(id).result , σ † {σ(id).params(i) 7→ a(i) |
i : inds σ(id).params}) e−→ res ;

res ∈ Z
(mk FuncCall(id , args), σ)

e−→ res

where a ∈ Z is to check that a is a constant integer value, e.g. 0 ∈ Z is true, but

mk Arith(1,+, 1) ∈ Z is false, as mk Arith(1,+, 1) has not yet been evaluated

to a constant value. Additionally, σ(id) is used to retrieve a function definition

(which is represented as a Func record) from the given σ map corresponding

to the function name id . The trailing .result and .params are used to retrieve

the selected data from the function definition in question. The abstract syntax

ensures that id ∈ Fn.

All functions (and predicates) are strict, so the evaluation strategy that

is used is call by value, that is, the argument expressions are evaluated first

and then their resulting results/values (if there is no “gap” in any argument)

are then bound to the corresponding parameter variables in the function, by

updating the given memory store σ (temporarily updated, just during the

evaluation of that statement in a transition rule). No permanent change to

σ is made as σ is not present on the right hand side of the
e−→ semantic

transition. Thus a “gap” in an argument passed into a function causes a

“gap” in the function call term to occur, even if the function makes no use of

the argument in the functions defined result expression.

An operand to the disjunction operator could essentially be a “gap” (it will

not denote). For instance, the operand could contain a function call expression,

which for the given arguments could result in no result (a constant value res)

being returned; the function may not yield a result for such arguments, or at

least one of the arguments could be undefined (a “gap”).

Since the purpose of this SOS specification is to model the process of ex-

pression evaluation according to the semantics of LPF, a small-step semantics

is the preferred way of defining an SOS specification to precisely define, and
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to precisely illustrate the semantics of LPF. In fact a small-step SOS defini-

tion is needed to be able to define the expression evaluation process in a way

that is faithful to the semantics of LPF. Recall that the truth tables in LPF

can be viewed as describing a parallel lazy evaluation of the logical opera-

tors. The small-step SOS allows for more execution details to be presented,

since the big-step SOS definition is more abstract and denotational in na-

ture than a small-step SOS definition, resulting in the need for fewer semantic

rules/transition relations to define the expression evaluation process for LPF.

A small-step semantics definition allows for the interleaving of steps in

different expression branches as can be seen for the semantic rules for the

arithmetic expressions and for the semantic rules for the disjunction logical

operator among others that are presented in Section 3.3.2. It is important

to use a small-step semantics definition as interleaving is required for logical

operators such as disjunction since they have to cope with the “gaps” that

can occur. If a “gap” operand starts to be evaluated the other operand, which

could be defined and thus could in fact determine the overall result of the

evaluation, needs to be given a chance to be evaluated. This point will be

further discussed when the semantic rules for the disjunction logical operator

are introduced in Section 3.3.2.

The full set of semantic rules (both big-step and small-step) which model

the process of expression evaluation in LPF are presented in Appendix A.

3.3.2 Small-Step Structural Operational Semantics Definition

In this semantic definition the emphasis is on the individual steps that take

place during evaluating an expression. In the big-step semantics the evaluation

of an expression e with respect to a σ either returns a Value (e is fully evalu-

ated), or the evaluation is stuck (that is, there is no v such that (e, σ)
e−→ v)

and thus no result can be returned. In the small-step semantics after executing

a transition rule there are three possible outcomes, the evaluation of e is not

complete (there is an intermediate expression to evaluate), or the expression

evaluation process is stuck as before, or the evaluation has completed (that is,

has returned a Value).

The semantic rules that follow are all based upon a small-step semantics

definition unless otherwise stated. The semantic (transition) relation used to

model the process of expression evaluation is:

e−→:P((Expr × Σ)× Expr)

Nowhere in the semantic definitions presented will a given σ (σ ∈ Σ) be

changed as a result of applying a transition rule. This is the reason for there

being no Σ present on the right-hand side of the semantic relation
e−→. The
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presence of Σ only on the left of the
e−→ semantic relation illustrates that

there is no notion of side-effects that can change a given memory store. By

not including Σ on the right-hand side of the semantic relation, information

(a σ) that is not changed by a semantic rule is not repeated.

However, this does pose a problem that needs resolving before any small-

step SOS rules can be presented, that is, that a conventional transitive closure

cannot be used. Performing a transition provides a resulting expression after

applying the one single expression evaluation step, which may not be the final

value that should be obtained from evaluating an expression. The left-hand

side of the semantic relation
e−→ is: (Expr × Σ), while the right-hand side

of the semantic relation
e−→ is: Expr . Thus after a rule has been applied

the term from the right-hand side will no longer match the term on the left-

hand side. The two sides of the semantic relation
e−→ do not match, and

therefore the application of several
e−→ transitions cannot be concatenated by

a conventional transitive closure.

One solution to this problem is to use a semantic relation
tc−→:

tc−→:P((Expr × Σ)× (Expr × Σ))

but this approach is not favoured for the reason already given above since

information that is not changed by a semantic transition rule is repeated.

The preferred approach and the approach taken from here on is to use the

semantic relation
e−→, but to define in addition a semantic relation

E−→ that

is the reflexive, transitive closure of
e−→. There are two cases to consider for

such a semantic relation
E−→. A base case for the one evaluation step, and

a step case to allow for intermediate steps to be made during the expression

evaluation process, where e ∈ Expr , and v ∈ Value:

(e, σ)
E−→ v ⇔ e = v ∨ ∃e ′: Expr · (e, σ)

e−→ e ′ ∧ (e ′, σ)
E−→ v

Note that both
e−→ and

E−→ are needed as without defining this reflexive,

transitive closure with
E−→ in certain places an infinite rewrite can occur.

The first semantic rule is for constant expressions:

Value E
v ∈ Value

(v , σ)
e−→ v

where since a constant expression cannot be evaluated anymore, no change is

made to the constant expression.

The next set of semantic rules simply returns the value to which a variable

identifier is mapped in a given memory store:
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Prop E

id ∈ Prop;

id ∈ dom σ

(id , σ)
e−→ σ(id)

Var E
id ∈ Var

(id , σ)
e−→ σ(id)

informally the Prop E rule states that given the expression id then the ex-

pression id (with respect to a memory store σ) can be evaluated to (replaced

with) its associated value within the given memory store σ, if id is a propo-

sitional variable, and it is contained within the memory store (id ∈ dom σ)

as propositional identifiers can be missing from particular memory stores, to

allow for undefined propositional identifiers to be present.

The Var E semantic rule does not need the id ∈ dom σ restriction as

a Var map for every σ ∈ Σ is assumed to be total, that is, that all integer

variables denote.

The next set of semantic rules to be presented are those which define the

evaluation of arithmetic expressions. Notice that the operands a and b must

be evaluated as much as possible (both need evaluating to constant values)

before a result can be computed, i.e. eliminating the arithmetic operator from

the given expression. The choice of which rule is evaluated is non-deterministic;

there is no notion of fairness in the SOS rules:

Arith L
(a, σ)

e−→ a ′

(mk Arith(a, op, b), σ)
e−→ mk Arith(a ′, op, b)

Arith R
(b, σ)

e−→ b ′

(mk Arith(a, op, b), σ)
e−→ mk Arith(a, op, b ′)

Arith E1

a ∈ Z;

b ∈ Z
(mk Arith(a,+, b), σ)

e−→ [[+]](a, b)
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σ = {x 7→ 3}
(mk Arith(x ,−, x ), σ)

e−→ mk Arith(3,−, x ) Arith L,Var E

(mk Arith(3,−, x ), σ)
e−→ mk Arith(3,−, 3) Arith R,Var E

(mk Arith(3,−, 3), σ)
e−→ 0 Arith E2

thus :

(mk Arith(x ,−, x ), σ)
E−→ 0

Figure 3.5: A sample small-step SOS expression evaluation

Arith E2

a ∈ Z;

b ∈ Z
(mk Arith(a,−, b), σ)

e−→ [[−]](a, b)

Arith E3

a ∈ Z;

b ∈ Z
(mk Arith(a,×, b), σ)

e−→ [[×]](a, b)

Arith E4

a ∈ Z;

b ∈ Z;

b 6= 0

(mk Arith(a,÷, b), σ)
e−→ [[÷]](a, b)

where [[op]](a, b) is to be regarded as the standard mathematical result of the

specified operator op applied to two given operands a and b.

Partial terms arise from arithmetic expressions that reduce to something of

the form mk Arith(i ,÷, 0), so the Arith E4 semantic rule is one of the places

that gives rise to “gaps” in this SOS definition.

As an illustration of how expressions are evaluated in this language a simple

illustrative example is presented in Figure 3.5. In this example the expression

being evaluated is mk Arith(x ,−, x ), with a (global) memory store (σ) con-

taining the Var x mapped to the value 3. Another illustration is presented in

Figure 3.6 which illustrates how “gaps” can arise and how they are represented

in this language; the evaluation becomes stuck as shown in Figure 3.6.

The following set of semantic rules are used to define weak/strict equality.

Such a notion of equality is defined to return a result only if both operands
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σ = {x 7→ 3}
(mk Arith(x ,÷, 0), σ)

e−→ mk Arith(3,÷, 0) Arith L,Var E

(mk Arith(3,÷, 0), σ)
e−→ No more rules can be applied leaving a “gap ′′.

Figure 3.6: A sample small-step SOS “gap” expression evaluation

denote values, that is, in this language both operands denote integer values.

If both operands do not denote values then the given equality expression will

also not denote a (defined) value:

Equality L
(a, σ)

e−→ a ′

(mk Equality(a, b), σ)
e−→ mk Equality(a ′, b)

Equality R
(b, σ)

e−→ b ′

(mk Equality(a, b), σ)
e−→ mk Equality(a, b ′)

Equality E

a ∈ Z;

b ∈ Z
(mk Equality(a, b), σ)

e−→ [[=]](a, b)

the reader should notice how partial terms that are operands to such weak

relational operators can lead to a non-denoting truth value.

The set of semantic rules for the conditional expression follows:

Cond A
(p, σ)

e−→ p ′

(mk Cond(p, a, b), σ)
e−→ mk Cond(p ′, a, b)

Cond E1
(mk Cond(true, a, b), σ)

e−→ a

Cond E2
(mk Cond(false, a, b), σ)

e−→ b

where the Cond A semantic rule describes the small-step semantics for evalu-

ating the condition expression in the conditional expression construct. If this

condition expression can be evaluated to a Boolean value (the expression is de-
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fined), then one of two elimination semantic rules (Cond E1 or Cond E2) can

be applied. Either simply replaces the conditional expression construct with

the appropriate sub-expression (a or b). The interpretation of the conditional

expression construct is undefined if the condition expression is undefined, even

if both of the sub-expressions a and b evaluate to the same value.

Attention is now turned to defining the evaluation of the logical operators,

starting with the negation logical operator. If the operand expression p can

be evaluated to a constant Boolean value then it is inverted:

Not A
(p, σ)

e−→ p ′

(mk Not(p), σ)
e−→ mk Not(p ′)

Not E1
(mk Not(true), σ)

e−→ false

Not E2
(mk Not(false), σ)

e−→ true

The definedness operator (δ), as mentioned earlier, must return true only

if its argument is defined. For instance, given δ(p), if p can be evaluated to

true or to false, then return true as p is defined, otherwise p is non-denoting.

This is illustrated in the following set of semantic rules:

delta A
(p, σ)

e−→ p ′

(mk delta(p), σ)
e−→ mk delta(p ′)

delta E1
(mk delta(true), σ)

e−→ true

delta E2
(mk delta(false), σ)

e−→ true

Because of the way that expressions are being evaluated in this semantic

definition this rule for δ is exactly the same as the rule that would be provided

for ∆; the denotational semantics introduces ∆ into Expr and illustrates how

the truth value false can be returned.

The idea behind providing a small-step semantics is to allow for inter-
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leaving of steps in different expression branches since in LPF a result can

be returned even in the presence of “gaps” in operands, as long as there is

enough information available from evaluating the other operand. For exam-

ple, mk Or(p, true) can be evaluated to true even though the first operand

has not been fully evaluated; it could be that this operand could be fully eval-

uated, or that this operand will fail to denote a value with respect to a given

σ.

Considering the first operand of the previous example as containing a term

that will never denote a proper (i.e. constant) value (for example arising from

a function call, e.g. mk Equality(mk FuncCall(zero, [−1]), 0)), without such

interleaving in expression branches being able to occur then the evaluation of

this operand could start, and with a big-step semantics the evaluation will

not stop without this operand being evaluated to a constant Boolean value

(which it will never denote). Thus in the big-step SOS definition evaluating

an expression of the form of mk Or(⊥B, true) can get stuck, and not return the

constant Boolean value true as would be expected according to the semantics

of LPF.

The following set of semantic rules illustrates the evaluation of the disjunc-

tion logical operator according to the truth table presented in Figure 2.7.

Or L
(p, σ)

e−→ p ′

(mk Or(p, q), σ)
e−→ mk Or(p ′, q)

Or R
(q , σ)

e−→ q ′

(mk Or(p, q), σ)
e−→ mk Or(p, q ′)

Or E1
(mk Or(true, q), σ)

e−→ true

Or E2
(mk Or(p, true), σ)

e−→ true

Or E3
(mk Or(false, false), σ)

e−→ false

The two rules Or E1 and Or E2 can be seen as “coping with gaps” since

they are able to return a value even if one of their operands fails to denote.
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The choice of which rule is used is non-deterministic; there is no control

over which rule is used. Ideally when evaluating a disjunction expression each

operand would be evaluated in parallel, and then an elimination rule would

be used to return a result once enough information is available from at least

one evaluated operand. Alternatively, this parallel evaluation is simulated by

performing the one evaluation step on the left hand operand and then the one

evaluation step on the right hand operand, iterating this process until enough

information is available for an elimination rule to be applied (to complete the

evaluation of a disjunction expression — if an elimination rule can ever be

applied).

The fact that there is no control over when and what semantic rule is eval-

uated could be problematic. The left hand operand may always be “chosen”

for evaluation and never the right hand operand. Alternatively the left hand

operand could be evaluated to true and then the right hand operand could

be “chosen” to be evaluated continuously (with multiple applications of the

semantic rule), and this right hand operand may not denote (see the semantic

rules for the function call expression later), and thus the disjunction expres-

sion may never denote a Boolean value. Additionally there are other similar

evaluations that are possible with these rules that could cause no result to be

returned even if a result could be expected to be returned according to the

semantics of LPF. An internal rewriting strategy could be used to control the

rewriting process.

The next set of semantic rules sees the move from only coping with “gaps”

in the propositional calculus to the inclusion of quantified expressions. Here the

quantification semantic rules are first defined using the
E−→ semantic relation.

For the following semantic rule, it is necessary that for one integer i which

when applied to the expression e causes e to evaluate to true. In particular

true can even be returned if the quantified expression e fails to denote with

certain values of i ; clearly the choice of the value for i is important:

Exists E1
∃i :Z · (p, σ † {x 7→ i}) E−→ true

(mk Exists(x , p), σ)
e−→ true

The false case is expressed in the following rule, where the expression e for

every integer i must evaluate to false:

Exists E2
∀i :Z · (p, σ † {x 7→ i}) E−→ false

(mk Exists(x , p), σ)
e−→ false

At a first glance at these semantic rules it becomes clear that quantifiers
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are being used to define the existential quantifier in this language. The ex-

istential quantifier semantic rules contain infinitely many premises since the

quantification is performed over the set of integers. In the case of proof systems

this is referred to as semi-formal. While this is fine for one’s intuition, this is

not acceptable because if the meta-language interpretation of the quantifiers

changes then so does the implied semantics. This core issue will be resolved

soon enough. For now, think of the use of the existential quantifier above the

line in the Exists E1 semantic rule as shorthand for an infinite disjunction

(using the LPF disjunction logical operator already introduced), and the use

of the universal quantifier above the line in the Exists E2 semantic rule as

shorthand for an infinite conjunction, both over the set of integers.

Alternatively, the semantic rules to define the existential quantifier can be

expressed differently. Expr is first extended to:

Expr = . . . | ExistsInter

ExistsInter :: x : Id

pairs : ExistsPair ∗

where:

ExistsPair :: i : Z
p : Expr

A context condition is not included since this additional expression con-

struct (and the FuncInter expression construct introduced later) is only to be

formed through the application of a semantic rule.

The first existential quantifier rule creates an ExistsInter expression:

Exists E
(mk Exists(x , p), σ)

e−→
mk ExistsInter(x , [mk ExistsPair(i , p) | i :Z])

An expression evaluation step can now be made for an arbitrary integer

value, where the let expression makes an arbitrary choice here of a valid se-

quence index:

ExistsInter A

let j ∈ inds pairs in

(pairs(j ).p, σ † {x 7→ pairs(j ).i}) e−→ pairs ′(j ).p

(mk ExistsInter(x , pairs), σ)
e−→ mk ExistsInter(x , pairs ′)

where pairs ′ is pairs but incorporating the change made to the j th element:

pairs ′(j ).p.
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The final two semantic rules for the existential quantifier return a result if

enough information is available:

ExistsInter E1
true ∈ {pairs(i).p | i : inds pairs}

(mk ExistsInter(x , pairs), σ)
e−→ true

ExistsInter E2
{pairs(i).p | i : inds pairs} = {false}

(mk ExistsInter(x , pairs), σ)
e−→ false

Notice that the existential quantifier can give rise to a “gap”.

These semantic rules express the process of quantified expression evalua-

tion according to the semantics of LPF, despite the fact that infinitely many

premises exist.

Until this point “gaps” have only been introduced into the language through

a propositional variable identifier being absent from the domain of a given σ,

or through applying the division operator in an obvious way. The next set of

semantic rules allows for another way of “gaps” being introduced through the

function call expression construct.

The following semantic rule represents the small-step semantics for evalu-

ating the argument expressions to be passed into the function being invoked.

This rule is to be utilised until the argument expressions have all been reduced

to a constant value. Any argument used in a function call must denote oth-

erwise the function is not evaluated, and thus a function call expression is a

“gap”, that is, if an argument to a function is undefined, then the function’s

result is undefined. Here an arbitrary argument is selected for an evaluation

step:

FuncCall A
let i ∈ inds args in (args(i), σ)

e−→ args ′(i)

(mk FuncCall(id , args), σ)
e−→ mk FuncCall(id , args ′)

Another expression construct is included in the language here in order to

define a small-step semantics for evaluating the result of a function:

Expr = . . . | FuncInter

FuncInter :: result : Expr

paramid : Var ∗

args : Expr ∗

A FuncInter expression construct is used to represent a function call ex-

pression that is currently under evaluation. The data stored in a FuncInter ex-

pression comprises of information belonging to a given function call expression
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(the argument expressions) and information belonging to the function being

called, the function’s result expression and the function’s parameter identifiers.

Once (if) all of the argument expressions have been evaluated to a constant

value (they are defined) attempts can then be made to evaluate the function’s

result expression. Since the semantics are to allow for the possibility of inter-

leaving of steps in different expression branches the FuncCall E semantic rule

that follows first creates a FuncInter expression to allow for this possibility:

FuncCall E
[args(i) | i : inds args ∧ args(i) ∈ Z] = args

(mk FuncCall(id , args), σ)
e−→

mk FuncInter(σ(id).result , σ(id).params , args)

The next semantic rule is used to make a (further) step in evaluating a

functions result, which is now represented through a FuncInter expression

construct, each time it is applied:

FuncInter A
(res , σ † {paramids(i) 7→ args(i) | i : inds paramids}) e−→ res ′

(mk FuncInter(res , paramids , args), σ)
e−→

mk FuncInter(res ′, paramids , args)

notice that the parameter is included in the memory store (σ) during the

evaluation of the function’s result expression, but that the updated memory

store is not returned by the semantic rule. After the one evaluation step

has been made through an application of the FuncInter A semantic rule the

update made to the given memory store σ is effectively undone. Only the

updated result expression along with the parameter information to (possibly)

be used to update the memory store σ in the same way later is returned by

this semantic rule (in the form of a FuncInter expression construct). This is

to achieve the necessary variable scoping since interleaving of steps in different

expression branches is allowed and is necessary to define the semantics of LPF

precisely.

The final function application semantic rule (FuncInter E ) returns the

result of a function call expression once (if) it has been evaluated to an integer

value:

FuncInter E
res ∈ Z

(mk FuncInter(res , paramids , args), σ)
e−→ res

The purpose of using the FuncInter expression construct is to allow for the

current state of the result to be stored (alongside the parameter data) so that

the evaluation of a functions result can resume from where it left off previously
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if any interleaving of the steps in expression branches occurs. This is to be

able to provide a small-step semantics, so for instance given an expression such

as:

mk Or(mk Equality(mk FuncCall(zero, [1]), 0),

mk Equality(mk FuncCall(zero, [−1]), 0))

where zero is defined in σ as the partial function considered earlier. If evalu-

ation starts on the second non-denoting operand of the disjunction operator,

one step can be made in evaluating this operand using the small-step function

semantic rules presented above. After that one evaluation step has been per-

formed it is then possible for the other (denoting in this case) operand to be

evaluated, and thus a result (true in this case) could eventually be returned.

This may not be possible with the original FuncCall E semantic rule which

made a big step in evaluating the result of a function, if the non-denoting

operand is chosen to be evaluated first.

The rules for evaluating a predicate call expression are similar to the rules

provided for evaluating the function call expression. These extra semantic

rules are documented in Appendix A, where a full list of the big-step SOS

rules, and the small-step SOS rules are presented.

To illustrate how an expression containing a function call term is evaluated

in this language consider a sample evaluation of the expression:

zero(1) = 0 ∨ zero(−1) = 0

where the evaluation is presented using the small-step semantic rules intro-

duced earlier, but using a concrete syntax in places to fit on a page. The given

σ contains only the one maplet, and that is the maplet for the zero function:

σ = {zero 7→ mk Func([i ], i = 0 ? 0 : zero(i − 1))}
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σ = {zero 7→ mk Func([i ], i = 0 ? 0 : zero(i − 1))}

(zero(1) = 0 ∨ zero(−1) = 0, σ)
e−→ mk FuncInter(i = 0 ? 0 : zero(i − 1), [i ], [1]) = 0 ∨ zero(−1) = 0 Or L,Equality L,FuncCall E

(mk FuncInter(i = 0 ? 0 : zero(i − 1), [i ], [1]) = 0 ∨ zero(−1) = 0, σ)
e−→

mk FuncInter(1 = 0 ? 0 : zero(i − 1), [i ], [1]) = 0 ∨ zero(−1) = 0 Or L,Equality L,FuncInter A,Cond A,Equality L,Var E

(mk FuncInter(1 = 0 ? 0 : zero(i − 1), [i ], [1]) = 0 ∨ zero(−1) = 0, σ)
e−→

mk FuncInter(false ? 0 : zero(i − 1), [i ], [1]) = 0 ∨ zero(−1) = 0 Or L,Equality L,FuncInter A,Cond A,Equality E

(mk FuncInter(false ? 0 : zero(i − 1), [i ], [1]) = 0 ∨ zero(−1) = 0, σ)
e−→ mk FuncInter(zero(i − 1), [i ], [1]) = 0 ∨ zero(−1) = 0 Or L,Equality L,FuncInter A,Cond E2

(mk FuncInter(zero(i − 1), [i ], [1]) = 0 ∨ zero(−1) = 0, σ)
e−→

mk FuncInter(zero(1− 1), [i ], [1]) = 0 ∨ zero(−1) = 0 Or L,Equality L,FuncInter A,FuncCall A,Arith L,Var E

(mk FuncInter(zero(1− 1), [i ], [1]) = 0 ∨ zero(−1) = 0, σ)
e−→ mk FuncInter(zero(0), [i ], [1]) = 0 ∨ zero(−1) = 0 Or L,Equality L,FuncInter A,FuncCall A,Arith E2

(mk FuncInter(zero(0), [i ], [1]) = 0 ∨ zero(−1) = 0, σ)
e−→

mk FuncInter(mk FuncInter(i = 0 ? 0 : zero(i − 1), [i ], [0]), [i ], [1]) = 0 ∨ zero(−1) = 0 Or L,Equality L,FuncInter A,FuncCall E

(mk FuncInter(mk FuncInter(i = 0 ? 0 : zero(i − 1), [i ], [0]), [i ], [1]) = 0 ∨ zero(−1) = 0, σ)
e−→

mk FuncInter(mk FuncInter(0 = 0 ? 0 : zero(i − 1), [i ], [0]), [i ], [1]) = 0 ∨ zero(−1) = 0 Or L,Equality L,FuncInter A,FuncInter A,Cond A,Equality L,Var E

(mk FuncInter(mk FuncInter(0 = 0 ? 0 : zero(i − 1), [i ], [0]), [i ], [1]) = 0 ∨ zero(−1) = 0, σ)
e−→

mk FuncInter(mk FuncInter(true ? 0 : zero(i − 1), [i ], [0]), [i ], [1]) = 0 ∨ zero(−1) = 0 Or L,Equality L,FuncInter A,FuncInter A,Cond A,Equality E

(mk FuncInter(mk FuncInter(true ? 0 : zero(i − 1), [i ], [0]), [i ], [1]) = 0 ∨ zero(−1) = 0, σ)
e−→

mk FuncInter(mk FuncInter(0, [i ], [0]), [i ], [1]) = 0 ∨ zero(−1) = 0 Or L,Equality L,FuncInter A,FuncInter A,Cond E1

(mk FuncInter(mk FuncInter(0, [i ], [0]), [i ], [1]) = 0 ∨ zero(−1) = 0, σ)
e−→ mk FuncInter(0, [i ], [1]) = 0 ∨ zero(−1) = 0 Or L,Equality L,FuncInter A,FuncInter E

(mk FuncInter(0, [i ], [1]) = 0 ∨ zero(−1) = 0, σ)
e−→ 0 = 0 ∨ zero(−1) = 0 Or L,Equality L,FuncInter E

(0 = 0 ∨ zero(−1) = 0, σ)
e−→ true ∨ zero(−1) = 0 Or L,Equality E

(true ∨ zero(−1) = 0, σ)
e−→ true Or E1

thus :
(zero(1) = 0 ∨ zero(−1) = 0, σ)

E−→ true

Figure 3.7: A further sample small-step SOS expression evaluation
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3.4 Denotational Semantics

This section carries the intuition of the SOS definitions over to DS defini-

tions by providing a set theoretic definition of the values that are denoted by

expressions.

Both DS definitions are defined compositionally, that is, a relation is pro-

vided for each base element, and for each composite element the relation is

defined in terms of applying the relation to the sub-parts of the composite

elements [NN92]. Each DS definition describes the effect of executing each of

the available expression constructs according to the semantics of LPF. The

DS definitions are more abstract than the small-step SOS definitions because

the internal evaluation process is not what is of interest here, but rather the

values produced by the expression constructs. Section 3.5 shows that the two

DS definitions are equivalent and shows their relationship with the SOS defi-

nitions. The DS definitions are useful for proving properties of programs, and

are in fact used to perform such a task in Chapter 6.

The semantic relation E is defined as:

E :P((Expr∆ × Σ)× Value)

where Expr∆ is:

Expr∆ = Expr | Delta

where:

Delta :: p : Expr

and the context condition for Delta is the same as for delta.

The memory store Σ is now defined as:

Σ = Prop
m−→ B |

Var
m−→ Z |

Fn
m−→ Function |

Pr
m−→ Predicate

notice that only the function (Fn) and the predicate (Pr) maps have been

changed. The denotations of Function and Predicate are relations (set of

pairs):

Function = P(Z∗ × Z)

Predicate = P(Z∗ × B)

where the function Function and predicate Predicate denotations themselves

can be partial, that is, they may not yield a result for every member of their

domain.
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“Gaps” that arise are modelled by choosing relations as the space of deno-

tations, instead of partial functions as is classical in denotational semantics.

Notice that there is no undefined value. The treatment of undefinedness is as

a “gap” in the denotation. How “gaps” arise and are coped with can be seen

clearly in these denotational semantic definitions.

Recall that in a given σ a propositional identifier may be missing from the

domain of σ and this represents that the propositional identifier is undefined.

Each used Var will map to an integer value in a σ as all integer variables

denote. Also in a given σ each used Fn will map to a function definition

Function, but this Function may not contain a result for every member of

the domain, allowing for partial functions (and similarly for predicates). Note

that the values that a function will not yield a defined value for are not con-

tained within the relevant Function that is mapped to by a function identifier,

(e.g. considering the zero function as defined earlier, ([0], 0) ∈ σ(zero), but

([−1], 0) /∈ σ(zero)). The defined domain of Functions does not need to be

specified. There is no undefined value assigned to values from outside of the

defined domain of Functions. The treatment is as a “gap”.

E is defined in parts:

E = Evalue ∪Eid ∪Earith ∪Eequality ∪Econd ∪Eor ∪Enot ∪Edelta ∪
EDelta ∪ Eexists ∪ Efunccall ∪ Epredcall

A constant value (Value) cannot be reduced any further and is defined in

any σ:

Evalue =

{((e, σ), e) | e ∈ Value}

Accessing propositional variables and integer variables is defined as (re-

member that the Var map is total, while the Prop map can be partial in the

sense that a propositional identifier can be absent from the domain of a specific

map to allow for the possibility of undefined propositional identifiers):

Eid =

{((v , σ), σ(v)) | v ∈ Prop ∧ v ∈ dom σ} ∪
{((v , σ), σ(v)) | v ∈ Var}

Arithmetic expressions:

Earith =

{((mk Arith(a, op, b), σ), [[op]](a ′, b ′)) |
((a, σ), a ′) ∈ E ∧ ((b, σ), b ′) ∈ E ∧ op ∈ {+,−,×}} ∪
{((mk Arith(a,÷, b), σ), [[÷]](a ′, b ′)) |

((a, σ), a ′) ∈ E ∧ ((b, σ), b ′) ∈ E ∧ b ′ 6= 0}



Semantic Definitions for LPF 82

Weak equality:

Eequality =

{((mk Equality(a, b), σ), [[=]](a ′, b ′)) |
((a, σ), a ′) ∈ E ∧ ((b, σ), b ′) ∈ E}

The conditional expression:

Econd =

{((mk Cond(p, a, b), σ), a ′) |
((p, σ), true) ∈ E ∧ ((a, σ), a ′) ∈ E} ∪
{((mk Cond(p, a, b), σ), b ′) |

((p, σ), false) ∈ E ∧ ((b, σ), b ′) ∈ E}

The negation operator:

Enot =

{((mk Not(p), σ), false) | ((p, σ), true) ∈ E} ∪
{((mk Not(p), σ), true) | ((p, σ), false) ∈ E}

The definedness operator δ:

Edelta =

{((mk delta(p), σ), true) | (p, σ) ∈ dom E}

The definedness operator ∆:

EDelta =

{((mk Delta(p), σ), true) |
(p, σ) ∈ dom E} ∪
{((mk Delta(p), σ), false) |

(p, σ) ∈ ({(p, σ) | σ ∈ Σ} \ {(p, σ) | (p, σ) ∈ dom E})}

The disjunction operator which can cope with “gaps” that can arise is

defined as:

Eor =

{((mk Or(p, q), σ), true) | ((p, σ), true) ∈ E} ∪
{((mk Or(p, q), σ), true) | ((q , σ), true) ∈ E} ∪
{((mk Or(p, q), σ), false) | ((p, σ), false) ∈ E ∧ ((q , σ), false) ∈ E}

Notice that “gaps” are handled by non-denoting propositional expressions

being absent from the domain of E : The existential quantifier:

Eexists =

{((mk Exists(x , p), σ), true) |
true ∈ rng ({(p, σ † {x 7→ i}) | i :Z}� E)} ∪
{((mk Exists(x , p), σ), false) |

rng ({(p, σ † {x 7→ i}) | i :Z}� E) = {false}}
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The definitions of Efunccall and Epredcall are now considered.

The small-step SOS definition illustrates how logical formulae are evaluated

which includes rules to compute the result of functions. But here in the DS

definitions functions (and predicates) are relations where the result can be

obtained by a lookup if such a result is defined.

Function call expressions are now defined as:

Efunccall = {((mk FuncCall(f , al), σ), res) |
∀i : inds al · ((al(i), σ), vl(i)) ∈ E ∧
(vl , res) ∈ σ(f )}

where vl is the set of results (each vl(i)) from evaluating each al(i). Notice

that if an argument to be passed to the function is undefined, then the result

of the function call is undefined.

The definition needed for Epredcall is virtually the same as the definition

of Efunccall .

This has achieved what was expected which is that for example for every

σ ∈ Σ:

((mk Arith(1,÷, 1), σ), 1) ∈ E

but:

(mk Arith(1,÷, 0), σ) /∈ dom E

It is, however, interesting to note that the fixed point construction of the

function/predicate denotations can be thought of as a bottom up construction

of what is done in the SOS definitions by abandoning infinite expansion of the

function/predicate calls.

Another version of E is defined in Figure 3.8, which is of the form:

E : Expr∆ → P(Σ× Value)

E(e) 4 . . .

The denotational function E is a function from expressions to a set of

memory stores and constant values (results), which assigns a meaning to each

expression construct that is being considered. The E semantic function defi-

nition maps expressions to relations over interpretations and results. The E
semantic function for each expression construct yields a set of pairs of σ and

the corresponding result value, for every σ ∈ Σ where the expression is defined.

If under a particular σ the expression is undefined then a pair involving that

σ will not appear in the returned set of σ and Value pairs.



Semantic Definitions for LPF 84

It is this second DS definition that is used throughout the paper from this

point forward. The modified version of E makes for clearer more concise proofs,

especially when considering logical equivalence. Section 3.5 shows that the two

versions of E are equivalent.

Also in this definition as expected, for any σ ∈ Σ:

(σ, 1) ∈ E(mk Arith(1,÷, 1))

but:

σ /∈ dom E(mk Arith(1,÷, 0))

It is useful to record that the definition of any relation E(e) is deterministic

(or “functional”).

Lemma 1. For any expression e it follows that (σ, v1) ∈ E(e)∧ (σ, v2) ∈ E(e)

⇒ v1 = v2.

Proof. This follows from the fact that there is exactly one rule for each type

of expression construct. Even though the case for the disjunction operator is

defined by the use of two set unions, the domains of the relations only overlap

in the case of mk Or(true, true) where the result is the same regardless. In

all of the other cases that are defined by the use of a set union, the domains

of the relations never overlap. 2

3.5 Relationships between the Semantic Definitions

This section will be used to record important results between the semantic

definitions that have been presented in the previous sections.

A relationship between the big-step SOS definition and the small-step SOS

definition is illustrated in the following lemma.

Lemma 2. If a result is returned from applying the big-step SOS definition,

i.e. (e, σ)
e−→ v , then the same result can be returned from applying the reflex-

ive, transitive relation
E−→ from the small-step SOS definition, i.e. (e, σ)

E−→ v ,

where e ∈ Expr , σ ∈ Σ, and v is a constant value (Value).

Proof. The proof follows by cases:

• e ∈ Value: The rule is the same;

• e ∈ Prop: The rule is the same;

• e ∈ Var : The rule is the same;
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E : Expr∆ → P(Σ× Value)

E(e) 4

cases e of
e ∈ Value→ {(σ, e) | σ ∈ Σ}
e ∈ Prop→ {(σ, σ(e)) | σ ∈ Σ ∧ e ∈ dom σ}
e ∈ Var→ {(σ, σ(e)) | σ ∈ Σ}

mk Arith(a, op, b)→ {(σ, [[op]](a ′, b ′)) |
(σ, a ′) ∈ E(a) ∧ (σ, b ′) ∈ E(b) ∧

op ∈ {+,−,×}} ∪
{(σ, [[÷]](a ′, b ′)) |

(σ, a ′) ∈ E(a) ∧ (σ, b ′) ∈ E(b) ∧
∧ op = ÷ ∧ b ′ 6= 0}

mk Equality(a, b)→ {(σ, [[=]](a ′, b ′)) |
(σ, a ′) ∈ E(a) ∧ (σ, b ′) ∈ E(b)}

mk Cond(p, a, b)→ {(σ, a ′) |
(σ, true) ∈ E(p) ∧ (σ, a ′) ∈ E(a)} ∪

{(σ, b ′) |
(σ, false) ∈ E(p) ∧ (σ, b ′) ∈ E(b)}

mk Not(p)→ {(σ, true) | (σ, false) ∈ E(p)} ∪
{(σ, false) | (σ, true) ∈ E(p)}

mk delta(p)→ {(σ, true) | σ ∈ dom E(p)} ∪
mk Delta(p)→ {(σ, true) | σ ∈ dom E(p)} ∪

{(σ, false) | σ ∈ (Σ \ dom E(p))}
mk Or(p, q)→ {(σ, true) | (σ, true) ∈ E(p)} ∪

{(σ, true) | (σ, true) ∈ E(q)} ∪
{(σ, false) | (σ, false) ∈ E(p) ∧

(σ, false) ∈ E(q)}
mk Exists(x , p)→ {(σ, true) |

σ ∈ Σ ∧
true ∈

rng ({σ † {x 7→ i} | i :Z}� E(p))} ∪
{(σ, false) |

σ ∈ Σ ∧
rng ({σ † {x 7→ i} | i :Z}� E(p)) =
{false}}

mk FuncCall(f , al),
mk PredCall(f , al)→ {(σ, r) |

f ∈ (Fn ∪ Pred) ∧
σ ∈ Σ ∧
∀i : inds al · (σ, vl(i)) ∈ E(al(i)) ∧
(vl , r) ∈ σ(f )}

end

Figure 3.8: The E semantic function definition which defines the semantics of
LPF.
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• mk Not(p): The big-step rules return a Boolean value if p can be eval-

uated to a Boolean value. The Not A rule serves the purpose of per-

forming one evaluation step on p at a time, where repeated application

followed by applying a negation elimination rule is in effect performing

the same function as the big-step (p, σ)
e−→ true/false transitions. The

small-step elimination rules can return the same Boolean value if p can

be evaluated to a Boolean value;

• mk Cond(p, a, b): Follows in a similar way to the negation case;

• mk Or(p, q): If true is returned by the big-step SOS rule then either p

or q has been evaluated to true. The Or L and the Or R small-step

SOS rules allow for repeated evaluation of p and q , and if p or q is

evaluated to true then the Or E1 and the Or E2 small-step SOS rules

if applied ensure that the same result is returned (the rules coincide

with the semantics of the big-step SOS rules). The situation follows in

a similar way when false is returned in the big-step SOS definition;

• mk Equality(a, b): Follows in a similar way to the disjunction case;

• mk Arith(a, op, b): Follows in a similar way to the disjunction case, since

the guard in the division case of b ′ not being zero is present in both SOS

definitions;

• mk Exists(x , p): The big-step SOS rules are defined using quantifiers,

which is a shorthand for disjunctions/conjunctions. If a result is returned

by one of these big-step rules then either p is true for some i ∈ Z,

or p is false for every i ∈ Z (the quantifiers carry the problem with

undefinedness as mentioned for the big-step disjunction logical operator).

If a result is returned by the big-step SOS rules, then it is guaranteed by

the use of the sets in the small-step SOS rules, that the same result can

be returned, since in the small-step SOS rules no order of evaluation is

specified, the choice that is made by the let expression is arbitrary;

• mk FuncCall(id , args): If an argument in either definition (big-step SOS

and small-step SOS) cannot be evaluated to an integer value then the

functions definition expression is not evaluated, both the big-step SOS

rule and the small-step SOS rule have a guard to ensure that each argu-

ment is evaluated to an integer value. If all arguments can be evaluated

to an integer value then the result follows as discussed in the negation

case; and
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• mk PredCall(id , args): Follows in a similar way to the function call case.

2

Of course note that the small-step SOS definition can return results that the

big-step SOS definition cannot, for instance, the big-step SOS definition could

send control down an undefined operand to the disjunction logical operator.

If this was to happen in the small-step SOS definition, then only the one

single evaluation step would be made, then control could be passed to a rule

corresponding to the other operand to the disjunction logical operator, which

could be defined and true. No strategy has been defined to determine the

selection of a small-step SOS rule in the small-step SOS definition presented,

when multiple rules are available to be selected. This issue is considered in the

mechanisation of the big-step SOS definition and the small-step SOS definition

in Maude, in Section 5.1.

A relationship between the small-step SOS definition and the second E
definition is illustrated in the following lemma. Functions and predicates are

dealt with differently between the SOS definition and the E semantic def-

inition. In the SOS definition: Fn
m−→ Func, while in the E definition:

Fn
m−→ Function, where a Func is a record with an Expr field that needs

evaluating (the FuncCall semantic/transition rules have to compute a value)

while Function = P(Z∗ × Z), so the functions result is not evaluated, it is

checked whether for the arguments a result exists.

Certainly, any function mapped to by a Fn can be made to coincide. The

set of Fn is the same, and for each f ∈ Fn, there is a Func and a Function

(depending on the definition), taking the same number of arguments, and the

corresponding Func and Function return the same result for the same argu-

ments, that is, given f ∈ Fn, then if mk FuncCall(f , [args ]), σ)
E−→ r then

(σ, r) ∈ E(mk FuncCall(f , [args ])), (so, ([args ], r) ∈ σ(f )) must hold. Addi-

tionally, if evaluating a σ(f ).result in the SOS rules and it is a “gap”, that

is, that no defined result can be computed, then for the same arguments that

the function is being applied with, a result should not be defined in the corre-

sponding Function definition, for instance, given the standard zero function,

([0], 0) ∈ σ(zero), but ([−1], r) /∈ σ(zero), for any r ∈ Z. The same can apply

to predicates.

Lemma 3. If a result is returned from applying the small-step SOS rules,

i.e. (e, σ)
E−→ v , then (σ, v) ∈ E(e), where e ∈ Expr , σ ∈ Σ, and v is a con-

stant value (Value). It is assumed that all function definitions and predicate

definitions coincide.
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Proof. The aim is to show that if an expression is evaluated to a Value

through a transition relation
E−→ then the same Value will be returned in the

DS definition. The proof follows by cases, for any σ ∈ Σ:

• e ∈ Value: In the SOS definition no further evaluation takes place since

e is evaluated fully, and in the DS definition (e, σ) ∈ E(e) and thus no

change is made to e.

• e ∈ Prop: If (e, σ)
E−→ v , then e ∈ dom σ and v = σ(e), and by the

definition of E it follows that (σ, v) ∈ E(e).

• mk Or(p, q): If (mk Or(p, q), σ)
E−→ true then either p evaluated to

true, or q evaluated to true. By the definition of E , (σ, true) ∈ E(mk

Or(p, q)) results from either case. The false case follows in a similar way.

• mk Exists(x , p): If (mk Exists(x , p), σ)
E−→ true then for some i ∈

Z, (p, σ † {x 7→ i}) E−→ true. The let expression makes an arbitrary

selection for which i to evaluate p for. This coincides with the exists

case of the E semantic function definition, where true ∈ ({p, σ † {x 7→
i} | i :Z}�E(p)). The false case in E needs false to be the value denoted

for p for each i ∈ Z. This coincides with the SOS definition for the false

case of the existential quantifier.

• If (mk FuncCall(id , args), σ)
E−→ v , then since Func and Function are

assumed to coincide, and all argument(s) must denote otherwise a “gap”

would have occurred (v would not have been output), then by the defi-

nition of E it follows that, (σ, v) ∈ E(mk FuncCall(id , args)), since the

functions coincide.

The rest of the cases follow in a similar way and are not outlined here. 2

The two E definitions are shown to be equivalent in the following lemma.

Lemma 4. Let E1 be the first definition of E presented, and let E2 be the

second definition of E presented, then E1 and E2 are equivalent, that is, given

e ∈ Expr , σ ∈ Σ, and where v is a constant value (Value), then ((e, σ), v) ∈ E1

iff (σ, v) ∈ E2(e).

Proof. Note that Σ is defined the same in both E1 and E2. The proof follows

by the following cases for any σ ∈ Σ:

• e ∈ Value: Since a constant value is defined within any σ it follows that

((e, σ), e) ∈ E1 and (σ, e) ∈ E2(e);
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• e ∈ Prop: If e ∈ dom σ then ((e, σ), σ(e)) ∈ E1 and (σ, σ(e)) ∈ E2(e),

otherwise both give rise to “gaps” and thus (e, σ) /∈ dom E1 and σ /∈
dom E2(e);

• mk Or(p, q), where p and q are both Boolean expressions (ensured by

the context conditions): If it follows that ((p, σ), true) ∈ E1 and thus

(σ, true) ∈ E2(p), then it follows by the definition of both E1 and E2 that

((mk Or(p, q), σ), true) ∈ E1 and (σ, true) ∈ E2(mk Or(p, q)). The

other cases follow in a similar way.

• mk FuncCall(f , al):

1. If one of the arguments al(i) is a “gap” (i.e. it is not the case that

((al(i), σ), vl(i)) ∈ E1 and thus (σ, vl(i)) ∈ E2(al(i))) then in both

E1 and in E2 a “gap” arises; and

2. If for every argument al(i) it follows that ((al(i), σ), vl(i)) ∈ E1

and thus (σ, vl(i)) ∈ E2(al(i)), then either (vl , r) /∈ σ(f ) and thus

in both E1 and in E2 the function call expression gives rise to a

“gap”, or (vl , r) ∈ σ(f ), and thus by the definition of E1, ((mk

FuncCall(f , al), σ), r) ∈ E1, and by the definition of E2, (σ, r) ∈
E2(mk FuncCall(f , al)).

The rest of the cases follow in a similar way and are not outlined here. 2

3.6 Conclusions

This chapter provided semantic definitions: SOS definitions (both big-step and

small-step) and DS definitions, which formally capture the semantics of LPF.

The SOS definitions illustrate the process of evaluating expressions according

to the semantics of LPF. The DS definitions provide set theoretic definitions

of the values that are denoted by expressions, again according to the semantics

of LPF.

The benefits of providing such definitions are to have a precise semantic

definition of LPF. This allows one to be clear about the semantics of LPF before

attempting to provide a mechanisation of LPF. Additionally, the semantic

definitions can form the basis of mechanisations. The SOS definitions form

the basis of mechanisations in Chapter 5.

A DS definition of LPF is the key underlying basis used to facilitate some

of the key work that is presented in the remainder of this thesis. The second

DS definition that captures LPF is used in future chapters for two purposes. In

Chapter 4 it is used to formally compare the semantics of different approaches
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to coping with partial terms, which arise for example from the application of

partial functions. As part of this the second LPF DS definition is modified to

formally define the semantics of the different approaches to coping with partial

terms. It is interesting to note that only small changes need making to the

LPF E DS definition and to the Σ variable, and function and predicate def-

inition map, to be able to move between the different approaches considered

to coping with partial terms. These DS definitions aid in making comparisons

and identifying relationships between the different approaches to coping with

partial terms, that is, to show how theorems can be moved between the dif-

ferent approaches. Additionally, in Chapter 6 the second LPF E DS definition

is used to illustrate the issues in applying selected two-valued classical logic

based proof techniques to LPF, to precisely define concepts, and to prove the

changes to modifications made to carry the proof techniques over to LPF.

Notice that it is straightforward to remove the restrictions introduced dur-

ing this chapter in allowing only Boolean values and integer values. Such a

restriction was introduced to simplify the semantic definitions presented, but

at the same time it was ensured that the issues that surround partial functions

could still be adequately illustrated.
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It is useful to formally compare numerous approaches introduced in Chapter 2

to coping with logical formulae that can include references to partial terms.

The E semantic function definition presented in Figure 3.8, which uses the

variable and definition map Σ to capture the semantics of LPF, is used in

this chapter as a semantic basis with which to conduct a formal comparison

between different approaches to coping with partial terms.

The result of this work will first be an E semantic function definition for

each approach considered in this chapter. Such E semantic function defini-

tions formally illustrates the outputs from the different expressions that can

be constructed, that is, that they describe the effect of executing each available

expression construct, (expressions are mapped to relations over interpretations

and results). The use of such E semantic function definitions is proposed as a

way of formally comparing different approaches to coping with partial terms.

Justifications for the choice of LPF for the mechanisation aim of this work are

put forward from the comparison work in this chapter.

It is beneficial to provide such semantic function definitions, as precise defi-

nitions of the different approaches to coping with partial terms can be provided,

which are often not made clear. The semantic function definitions are used to

derive some formal comparisons between the different approaches. Compar-

isons are made on the meaning of expressions in the different approaches, and

on properties that hold in the different non-classical logic approaches. They

are also used to illustrate how to move theorems between different approaches

to coping with partial terms.

Consideration is given to the changes that need making to the E semantic

function definition and to the Σ map to capture different approaches to coping

with partial terms. It is interesting to note that only rather small changes

need making to E and to Σ to move between the different approaches, but

from these subtle changes different advantages and drawbacks occur. The

definitions provide a way to quickly and easily be able to compare the meaning

of different expressions that are written within the different approaches.
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Since only small changes need making to the LPF E semantic function

definition to define the semantic function definitions of the other approaches

to coping with partial terms, this allows for the differences between the ap-

proaches to be explained in terms of changes to the E semantic function defini-

tions and to the Σ map definitions. In effect the semantic function definitions

precisely and succinctly capture the crucial points and the differences between

the different approaches.

The E semantic function definition was created as a more concise alternative

to the SOS definitions to pinpoint precisely the semantics of LPF. Additionally,

such an E semantic function definition could be used as a basis under which to

conduct proof. This is done in Chapter 6. It turned out that this E semantic

function definition (along with the Σ map) provided a good semantic basis

for formally illustrating the semantics of the different approaches to coping

with partial terms, and with which to draw comparisons between the different

approaches.

(Some initial collaborative work on a very early preliminary draft of a sub-

set of Section 4.1 was done with my supervisors and is published in [JLS12b].

Specifically, a subset of the EC , ED , and the E∃ semantic function defini-

tions. Such semantic function definitions have been overhauled with significant

changes and significant extensions in this chapter, including the modification

of cases, and the inclusion of further detail such as function call and predi-

cate call expression cases. A small subset of the E semantic function definition

named EL also appeared in that paper. The work is supplemented in this chap-

ter with further semantic function definitions for numerous other approaches

to coping with partial terms, and with comparisons and the identification of

ways to move theorems between the different approaches.)

4.1 Alternative Semantic Definitions

Numerous semantic function definitions in the style of the E semantic function

definition for LPF are presented in this section. Each formally captures the

semantics of an approach to coping with logical formulae that can contain

references to partial terms, which were introduced in Chapter 2.

The earlier subsections of this chapter present the different E semantic

function definitions in the order that was used in Chapter 2. Section 4.1.8

pinpoints the changes that are made for each of the new E semantic function

definitions compared to the LPF E semantic function definition, and the Σ

variable and definition map.

The four different sequent interpretations are defined formally in Section 4.2,

using the LPF Σ variable and definition map.
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From these formal definitions comparisons between the different approaches

in terms of the meaning of expressions in the different approaches, and in

properties that hold in the different non-classical logic approaches are made.

The semantic definitions are then used to show how to move theorems between

the different approaches.

4.1.1 Relations

In this approach function applications are to be written in terms of the mem-

bership of the graph of the function, for instance, f (x ) = y is to be written

as (x , y) ∈ f . This forces the result of a function application to be a defined

Boolean value (true or false).

First, in the E semantic function definition the definition of Σ allows for

propositional variables Prop to be absent from the domain of a σ to allow for

undefined propositional identifiers to occur. But, all Var identifiers are already

assumed always to denote. To ensure that all propositional variables denote

let ΣR be the set of mappings that contains denotations for all used elements

of Id :

ΣR = {σ | σ: Σ ∧ dom σ = Id}

so all Prop and Var identifiers used in each σ ∈ ΣR map to an appropriate

value. Additionally, all Fn and Pr identifiers map to a Function or Predicate

respectively.

Secondly, the set of expressions needs modifying. Taking Expr∆ as the

starting point of building up the ER semantics, the first step is to remove the

δ logical operator and the ∆ logical operator from consideration. Addition-

ally, the function call expression construct and the predicate call expression

construct need removing. Thus ExprR
1 is defined as Expr∆ with the aforemen-

tioned expression constructs removed. Furthermore, the conditional expression

is no longer considered in this chapter, and is removed from ExprR
1 .

FuncCall and PredCall need to be constructed in a different way in this

approach:

FuncMem :: function : Fn

args : Expr ∗

result : Value

and:

PredMem :: predicate : Pr

args : Expr ∗

result : Value

Any FuncMem expression has the name of the function, the arguments

to be passed into the function, as well as the expected result of the function,
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(args , result) ∈ function, but again abstract syntax has been used. The context

conditions follow in a similar way as for FuncCall and for PredCall , with the

result being of the type integer or Boolean respectively.

Then ExprR is defined so that:

ExprR = ExprR
1 | FuncMem | PredMem

Compared to the E semantic function definition the function call case needs

changing in the ER semantic function definition to prevent “gaps” from arising.

The function call case of the ER semantic function definition is defined as:

mk FuncMem(f , al , r)→
{(σ, true) | σ ∈ ΣR ∧
∀i : inds al · (σ, vl(i)) ∈ ER(al(i)) ∧
(vl , r) ∈ σ(f )} ∪

{(σ, false) | σ ∈ ΣR ∧
∀i : inds al · (σ, vl(i)) ∈ ER(al(i)) ∧
(vl , r) /∈ σ(f )} ∪

{(σ, false) | σ ∈ ΣR ∧
∃i : inds al · σ /∈ dom ER(al(i))}

where the first set returns true if the arguments/result pair is a member of

the graph of the function. The second set returns false if the arguments/result

pair is not a member of the graph of the function. The third set returns false

if an argument is a “gap”. So, mk FuncMem(zero, [−1], 0), (([−1], 0) ∈ zero),

is false given the usual definition of the zero function.

If one is to write f (g(y)) the definition is more verbose as g(y) needs to be

written in terms of membership of a function (a Boolean result), and functions

are still restricted to integer arguments only by the context conditions. So,

([y ], r1) ∈ g and ([r1], r2) ∈ f must be written.

If the result value is not known, then existential quantifiers must be used:

∃r :Z · ([0], r) ∈ zero

and so on.

The predicate and arithmetic cases need changing in a similar way to avoid

“gaps” from arising. The equality case needs no changes making to it because,

the four causes of “gaps” in the definitions (propositional variables, functions,

predicates, and arithmetic expressions) are now all total.

The ER semantic function is presented in Figure 4.1.

Note that in the ER semantic function definition (and in the EC , ED , E∃,
and E== semantic functions definitions that follow), no change has been made
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ER : ExprR → P(ΣR × Value)

ER(e) 4

cases e of
e ∈ Value→ {(σ, e) | σ ∈ ΣR}
e ∈ Prop→ {(σ, σ(e)) | σ ∈ ΣR}
e ∈ Var→ {(σ, σ(e)) | σ ∈ ΣR}

mk Arith(a, op, b)→ ∗
mk Equality(a, b)→ {(σ, [[=]](a ′, b ′)) |

(σ, a ′) ∈ ER(a) ∧ (σ, b ′) ∈ ER(b)}
mk Not(p)→ {(σ, true) | (σ, false) ∈ ER(p)} ∪

{(σ, false) | (σ, true) ∈ ER(p)}
mk Or(p, q)→ {(σ, true) | (σ, true) ∈ ER(p)} ∪

{(σ, true) | (σ, true) ∈ ER(q)} ∪
{(σ, false) | (σ, false) ∈ ER(p) ∧

(σ, false) ∈ ER(q)}
mk Exists(x , p)→ {(σ, true) |

σ ∈ ΣR ∧ true ∈
rng ({σ † {x 7→ i} | i :Z}� ER(p))} ∪

{(σ, false) |
σ ∈ ΣR ∧
rng ({σ † {x 7→ i} | i :Z}� ER(p)) =
{false}}

mk FuncMem(f , al , r),
mk PredMem(f , al , r)→ {(σ, true) | f ∈ (Fn ∪ Pred) ∧

σ ∈ ΣR ∧
∀i : inds al · (σ, vl(i)) ∈ ER(al(i)) ∧
(vl , r) ∈ σ(f )} ∪

{(σ, false) | f ∈ (Fn ∪ Pred) ∧
σ ∈ ΣR ∧
∀i : inds al · (σ, vl(i)) ∈ ER(al(i)) ∧
(vl , r) /∈ σ(f )} ∪

{(σ, false) | f ∈ (Fn ∪ Pred) ∧
σ ∈ ΣR ∧
∃i : inds al · σ /∈ dom ER(al(i))}

end

* The arithmetic case needs changing in a similar way to the function case to
avoid any “gaps” from arising.

Figure 4.1: The ER function definition which defines the semantics for the
viewing function application in terms of the membership of a graph approach
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to the semantics of the disjunction case other than the renaming of E with E i ,
where necessary. Since these five approaches all use the two-valued classical

logic logical operators no change is necessary. The logical operators are all

guarded from undefined truth values in this semantic function definition. Thus

such a definition is equivalent to the following definition:

mk Or(p, q)→
{(σ, true) | (σ, true) ∈ ER(p) ∧ (σ, true) ∈ ER(q)} ∪
{(σ, true) | (σ, true) ∈ ER(p) ∧ (σ, false) ∈ ER(q)} ∪
{(σ, true) | (σ, false) ∈ ER(p) ∧ (σ, true) ∈ ER(q)} ∪
{(σ, false) | (σ, false) ∈ ER(p) ∧ (σ, false) ∈ ER(q)}

and therefore the shorter definition has been used.

The logical operators can be defined in ER as in E as the changes discussed

above ensure that the logical operators will not be presented with any unde-

fined operands. Notice that when all operands to the logical operators are

defined the logical operator cases of the LPF E semantic function definition

will return the same results as two-valued classical logic. In other words when

all operands to the logical operators are defined the result obtained in LPF

coincides with the result that would be obtained in two-valued classical logic.1

It can be shown that ER never yields a “gap”.

Lemma 5. For any expression e ∈ ExprR it is the case that ER(e) is total,

i.e. for every expression e and each σ ∈ ΣR there exists a tuple (σ, v) ∈ ER(e).

Proof. The proof is similar to that of Lemma 6. 2

Additionally, ER is deterministic, see Lemma 1.

4.1.2 Forcing all Terms to Denote

These approaches ensure that the two-valued classical logic logical operators

and quantifiers can be used by ensuring that all functions and predicates de-

note, that is, they yield a result for every member of their domain. As discussed

earlier there are two approaches to achieving this.

Underspecification

The underspecification approach ensures that each function yields an integer

for every member of its domain. A term that applies a partial function with

arguments from outside of its defined domain should denote an unspecified but

definite integer value. For instance, zero(−1) is to denote an unspecified but

1What differs between the three-valued logics considered later in this chapter is how the
logical operators cope with undefined operands.
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definite integer value; it should not be possible to know, or to be able to prove

which integer value is yielded.

To ensure that all propositional variables do denote, let ΣC be the set of

mappings that contain denotations for all used elements of Id :

ΣC = {σ | σ: Σ ∧ dom σ = Id ∧
fun constraintC (σ) ∧ pred constraintC (σ)}

The first conjunct ensures that all Prop and Var identifiers used in each σ ∈
ΣC map to an appropriate value, e.g. no undefined propositional variables can

occur. Additionally, all Fn and Pr identifiers map to a Function or Predicate

respectively.

Functions and Predicates can still be partial thus any Function and Predicate

referenced by any i ∈ dom σ for all σ ∈ ΣC needs underspecifying, (the graphs

of the partial functions need extending), so that for any σ ∈ ΣC the following

function is satisfied:

fun constraintC : ΣC → B

fun constraintC (σ) 4

∀id : dom σ · id ∈ Fn ⇒
((len params(σ(id)) = 0 ∧ ∃r :Z · ([], r) ∈ σ(id)) ∨

(let n = len params(σ(id)) in

∀d : {[i1, . . . , in ] | i1:Z, . . . , in :Z} ·∃r :Z · (d , r) ∈ σ(id)))

which ensures that for any argument passed into any function there will be

a defined result yielded. The function params used in the definition of fun

constraintC returns the number of parameters of the function.

Up until now partial functions have been underspecified (or overspecified

which is an approach discussed in the following subsection) without stating

how. It is left to an implementation to define how it is done. Ensuring that only

total functions and under/overspecified functions (partial functions modelled

as total functions) are present has been performed by ensuring that only func-

tions that satisfy fun constraintC are considered. How to under/overspecify

partial functions relies on knowing the defined domain of partial functions.

The defined domain of partial functions is not always obvious. An alternative

definition of the EC semantic function definition (and the ED overspecification

semantic function definition presented later) would have been to avoid the use

of fun constraintC , and to have an extra case for the function call case of the

semantic function definitions, which would return an unknown but definite

value r ∈ Z if no result is defined, and so on.

The function pred constraintC also needs to be satisfied in the definition
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of ΣC . The function pred constraintC would be defined in a similar way to

the fun constraintC function.

Thus the only functions and predicates that can be referenced in any σ ∈
ΣC are total functions and predicates, and those functions and predicates that

are underspecified (and are thus made total), by ensuring that they yield a

defined, but unspecified and definite, value for all arguments from outside of

their defined domain.

Next Expr∆ is taken as the starting point of building up this semantic

definition. The first step is to remove the δ logical operator and the ∆ log-

ical operator from consideration. Additionally, the conditional expression is

removed as it is no longer being considered in this chapter. Thus ExprC is

defined as Expr∆ with the aforementioned expressions removed.

The EC semantic function is presented in Figure 4.2. The big change made

to define the EC semantic function from the E semantic function other than

the introduction of the constraints on ΣC which take care of ensuring that

all used variables are defined, and that all present functions and predicates

return a value for all members of their domain, is to ensure that division by

zero returns an unspecified definite value r ∈ Z (such a value should remain

unknown):

mk Arith(a, op, b)→
{(σ, [[op]](a ′, b ′)) | (σ, a ′) ∈ EC (a) ∧ (σ, b ′) ∈ EC (b) ∧

op ∈ {+,−,×}} ∪
{(σ, [[÷]](a ′, b ′)) | (σ, a ′) ∈ EC (a) ∧ (σ, b ′) ∈ EC (b) ∧

op = ÷ ∧ b ′ 6= 0} ∪
{(σ, r) | (σ, a ′) ∈ EC (a) ∧ (σ, b ′) ∈ EC (b) ∧

op = ÷ ∧ b ′ = 0 ∧ r ∈ Z}
where r ∈ Z is to return a definite (but unspecified) value from the set Z.

The rest of the definition is relatively the same as in the E semantic func-

tion, since ΣC takes the brunt of the changes when formally defining the se-

mantics for the underspecification approach to coping with logical formulae

that can contain references to partial terms.

Notice how the equality predicate is guarded from undefined operands due

to the underspecification of all partial functions and predicates, and the un-

derspecification of the division arithmetic case. It is known that equality will

always yield a defined result whenever all of its operands denote a proper de-

fined value. In the underspecification approach the ability to continue using

two-valued classical logic is maintained. No change needs making in EC to the

logical operators from how they were defined in E .

The definition of EC avoids “gaps” from being introduced and thus it can
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EC : ExprC → P(ΣC × Value)

EC (e) 4

cases e of
e ∈ Value→ {(σ, e) | σ ∈ ΣC}
e ∈ Prop→ {(σ, σ(e)) | σ ∈ ΣC}
e ∈ Var→ {(σ, σ(e)) | σ ∈ ΣC}

mk Arith(a, op, b)→ {(σ, [[op]](a ′, b ′)) |
(σ, a ′) ∈ EC (a) ∧ (σ, b ′) ∈ EC (b) ∧

op ∈ {+,−,×}} ∪
{(σ, [[÷]](a ′, b ′)) |

(σ, a ′) ∈ EC (a) ∧ (σ, b ′) ∈ EC (b) ∧
op = ÷ ∧ b ′ 6= 0} ∪

{(σ, r) |
(σ, a ′) ∈ EC (a) ∧ (σ, b ′) ∈ EC (b) ∧

op = ÷ ∧ b ′ = 0 ∧ r ∈ Z}
mk Equality(a, b)→ {(σ, [[=]](a ′, b ′)) |

(σ, a ′) ∈ EC (a) ∧ (σ, b ′) ∈ EC (b)}
mk Not(p)→ {(σ, true) | (σ, false) ∈ EC (p)} ∪

{(σ, false) | (σ, true) ∈ EC (p)}
mk Or(p, q)→ {(σ, true) | (σ, true) ∈ EC (p)} ∪

{(σ, true) | (σ, true) ∈ EC (q)} ∪
{(σ, false) | (σ, false) ∈ EC (p) ∧

(σ, false) ∈ EC (q)}
mk Exists(x , p)→ {(σ, true) |

σ ∈ ΣC ∧ true ∈
rng ({σ † {x 7→ i} | i :Z}� EC (p))} ∪

{(σ, false) |
σ ∈ ΣC ∧
rng ({σ † {x 7→ i} | i :Z}� EC (p)) =
{false}}

mk FuncCall(f , al),
mk PredCall(f , al)→ {(σ, r) |

f ∈ (Fn ∪ Pred) ∧
σ ∈ ΣC ∧
∀i : inds al · (σ, vl(i)) ∈ EC (al(i)) ∧
(vl , r) ∈ σ(f )}

end

Figure 4.2: The EC function definition which defines the semantics for the
underspecification approach
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be shown that EC can never yield “gaps”.

Lemma 6. For any expression e ∈ ExprC it is the case that EC (e) is total,

i.e. for every expression e and each σ ∈ ΣC there exists a tuple (σ, v) ∈ EC (e).

Proof. By structural induction over ExprC .

Base cases: By the definition of ExprC there are five base cases to consider,

e ∈ Value, e ∈ Prop, e ∈ Var , mk FuncCall(f , al) where f ∈ Fn and mk

PredCall(P , al) where P ∈ Pr :

1. e ∈ Value: the only constants defined in the language are the set of inte-

ger values {. . . ,−1, 0, 1, . . .} and the set of Boolean values {true, false}.
These values are always defined and thus they are always defined in any

given σ.

2. e ∈ Prop: ΣC is restricted so that every used element of Id (Prop ∈ Id)

is in the domain of each σ ∈ ΣC . Thus it follows that every used Prop

maps to a proper Boolean value.

3. e ∈ Var : follows in a similar way to case 2.

4. mk FuncCall(f , al), where f ∈ Fn: it is known that Fn ∈ Id and due

to the restriction placed on ΣC it is also known that each used Fn in

the domain of each σ ∈ ΣC maps to a Function object. It is then the

case that each Function in each σ ∈ ΣC yields an integer as a result

for every argument in its domain (due to fun constraintC ), and thus

every Function denotes irrespective of the argument(s) passed into the

function.

5. mk PredCall(P , al), where P ∈ Pr : follows in a similar way to case 4.

Inductive cases: By the definition of ExprC , it is known that the inductive

cases that need considering are arithmetic, equality, negation, disjunction and

existential quantification. The proofs of the arithmetic cases, disjunction and

existential quantification are presented below and similar reasoning can be

applied to the equality and negation cases.

1. Consider the arithmetic cases. Clearly addition, subtraction and mul-

tiplication are defined for any two integers, and thus in these cases the

arithmetic expression will be defined as by the induction hypothesis a

and b are both defined. For the division case by the induction hypoth-

esis a and b are both defined, and the two set unions for division cover
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all cases, in the first case a defined result is returned by the standard

division operators, and in the second case a defined result is returned

through the arbitrary choice of an integer value.

2. Consider the mk Or(p, q) case. By the induction hypothesis it is the case

that p and q are both defined. By the context conditions it is known

that both p and q are Boolean-valued expressions. Thus by the induction

hypothesis p and q must denote one of two values, true and false. It is

known that the definition of EC defines a result for the ∨ logical operator

whenever the operands denote one of the two values true or false. It

therefore follows by the definition of EC that the expression mk Or(p, q)

is defined as required.

3. Consider the mk Exists(x , p) case. By the induction hypothesis it is

the case that p is defined. If x is not free in p, since by the induction

hypothesis p is defined and by the context conditions that p is a Boolean-

valued expression, p must therefore always denote either true or false

in any σ ∈ ΣC . It therefore follows that for every σ, true or false will

always be a member of rng EC (p). If x is not free in p by the definition

of EC it follows that mk Exists(x , p) will always be defined as required,

as the extra mapping for x in σ is irrelevant to the result.

If x occurs free in p, then it must be the case that x ∈ Var , since the

type Id is disjoint. It follows that the free variable x will subsequently be

bound and it is known that quantification is only performed over the set

of proper (i.e. defined) integer values. Thus by the definition of EC , when

σ is updated to override the mapping for x , x will only ever be mapped

to an integer value. Since by the induction hypothesis p is defined and

since x is a defined integer variable (all Var in ΣC denote), it must follow

by the definition of EC that mk Exists(x , p) is defined as required.

2

The definition EC is deterministic, since definite but unspecified defined

values are assumed to be returned, see Lemma 1.

In Chapter 2, two underspecification approaches are discussed, returning a

definite value (used to guide the discussion in this section so far), and returning

an arbitrary value. To define this arbitrary value approach in the arithmetic

case of EC , re-interpret r ∈ Z from returning a definite value to returning

an arbitrary value, but such a value is still unknown/unspecified. Any par-

tial functions and partial predicates need extending so that they still satisfy
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fun constraintC and pred constraintC respectively, but where it is to be that

an arbitrary defined result will be yielded. With such an extension the EC

semantic function can still never yield any “gaps” (see Lemma 6), but the EC

semantic function will not be deterministic, since:

mk Equality(mk Arith(5,÷, 0),mk Arith(5,÷, 0))

can yield both true and false if an arbitrary but still unspecified value is re-

turned. It is also the case that the law of the excluded middle does not hold,

because:

mk Or(

mk Equality(mk Arith(5,÷, 0), 0),

mk Equality(mk Arith(5,÷, 0), 0))

can yield both true and false, if an arbitrary underspecified value is returned.

Overspecification

The alternative approach to forcing all terms to denote is to ensure that each

partial function is overspecified, so that a default (known) value is returned

whenever a function is applied with arguments from outside of its actual de-

fined domain. For instance, 5/0 = 0.

The ΣC definition can be used in the definition of ED but the way that the

graph of the functions is extended will change.

The ED semantic function is defined in Figure 4.3. As in the case of defining

the semantics for the underspecification approach the brunt of the changes

when defining the overspecification approach are made to ΣC . In fact the ED

semantic function follows in basically the same way as the EC semantic function

except for the arithmetic cases, where for division by zero a definite/known

integer value 0 is returned:

mk Arith(a, op, b)→
{(σ, [[op]](a ′, b ′)) | (σ, a ′) ∈ ED(a) ∧ (σ, b ′) ∈ ED(b) ∧

op ∈ {+,−,×}} ∪
{(σ, [[÷]](a ′, b ′)) | (σ, a ′) ∈ ED(a) ∧ (σ, b ′) ∈ ED(b) ∧

op = ÷ ∧ b ′ 6= 0} ∪
{(σ, 0) | (σ, a ′) ∈ ED(a) ∧ (σ, b ′) ∈ ED(b) ∧

op = ÷ ∧ b ′ = 0}

The choice to return 0 is just an arbitrary choice. Any defined value could

have been chosen here to be returned for the division by zero case.

It can be shown that ED never yields a “gap”.
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ED : ExprC → P(ΣC × Value)

ED(e) 4

cases e of
e ∈ Value→ {(σ, e) | σ ∈ ΣC}
e ∈ Prop→ {(σ, σ(e)) | σ ∈ ΣC}
e ∈ Var→ {(σ, σ(e)) | σ ∈ ΣC}

mk Arith(a, op, b)→ {(σ, [[op]](a ′, b ′)) |
(σ, a ′) ∈ ED(a) ∧ (σ, b ′) ∈ ED(b) ∧

op ∈ {+,−,×}} ∪
{(σ, [[÷]](a ′, b ′)) |

(σ, a ′) ∈ ED(a) ∧ (σ, b ′) ∈ ED(b) ∧
op = ÷ ∧ b ′ 6= 0} ∪

{(σ, 0) |
(σ, a ′) ∈ ED(a) ∧ (σ, b ′) ∈ ED(b) ∧

op = ÷ ∧ b ′ = 0}
mk Equality(a, b)→ {(σ, [[=]](a ′, b ′)) |

(σ, a ′) ∈ ED(a) ∧ (σ, b ′) ∈ ED(b)}
mk Not(p)→ {(σ, true) | (σ, false) ∈ ED(p)} ∪

{(σ, false) | (σ, true) ∈ ED(p)}
mk Or(p, q)→ {(σ, true) | (σ, true) ∈ ED(p)} ∪

{(σ, true) | (σ, true) ∈ ED(q)} ∪
{(σ, false) | (σ, false) ∈ ED(p) ∧

(σ, false) ∈ ED(q)}
mk Exists(x , p)→ {(σ, true) |

σ ∈ ΣC ∧ true ∈
rng ({σ † {x 7→ i} | i :Z}� ED(p))} ∪

{(σ, false) |
σ ∈ ΣC ∧
rng ({σ † {x 7→ i} | i :Z}� ED(p)) =
{false}}

mk FuncCall(f , al),
mk PredCall(f , al)→ {(σ, r) |

f ∈ (Fn ∪ Pred) ∧
σ ∈ ΣC ∧
∀i : inds al · (σ, vl(i)) ∈ ED(al(i)) ∧
(vl , r) ∈ σ(f )}

end

Figure 4.3: The ED semantic function definition which defines the semantics
for the overspecification approach
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Lemma 7. For any expression e ∈ ExprC it is the case that ED(e) is total,

i.e. for every expression e and each σ ∈ ΣC there exists a tuple (σ, v) ∈ ED(e).

Proof. The proof is similar to that of Lemma 6. It is the case that ΣC only

has reference to functions and predicates that yield a result for every argument

in their domain, (either a total function or a partial function overspecified).

Additionally, the division by zero case for an arithmetic expression returns a

defined value, namely 0. 2

Additionally, ED is deterministic, see Lemma 1.

In the E semantic function definition, functions are defined to return the

same results whenever they are applied with the same arguments in a given

σ ∈ Σ; E is deterministic. The definite value underspecification approach and

the overspecification approach are both deterministic. However, the arbitrary

value underspecification approach is not deterministic.

The Well-Definedness Approach

In this approach validity and well-definedness are proven separately. The LPF

E semantic function definition is used as a basis to define the WD approach. It

is ensured that E (only considering ExprC though) is total by only considering

those expressions e ∈ ExprC such that:

∀σ: Σ · ∃v : Value · (σ, v) ∈ E(e)

4.1.3 Semi-Classical Approaches

Semantic function definitions for two related approaches, the existential equal-

ity approach, and the strong equality approach are both presented in this

section.

Existential Equality

In this approach terms can be undefined. The aim is to catch such unde-

finedness at the predicate level, and in doing so guarding the logical operators

from any undefinedness that may arise. Recall that the notion of equality used

in the definition of E is weak/strict, that is, if either (or both) operands are

undefined then the result of the equality is undefined. Existential equality is

defined to return false if either operand is undefined, as discussed Chapter 2.

Other predicates need treating in a similar way to that discussed for existential

equality.

The set of expressions first needs extending, so Expr∃ is defined as:
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Expr∃ = ExprC | ExEquality

where the abstract syntax and the context condition for ExEquality are defined

in the same way as for Equality .

The ΣR variable and definition map should be used in the definition of the

E∃ semantic function definition, since propositional variables should denote, to

ensure that no “gaps” can arise in such Boolean expressions.

The E∃ semantic function is presented in Figure 4.4 and in Figure 4.5.

In Figure 4.4, the notion of equality used is existential equality which is

defined in E∃ as:

mk ExEquality(a, b)→
{(σ, [[=]](a ′, b ′)) | (σ, a ′) ∈ E∃(a) ∧ (σ, b ′) ∈ E∃(b)} ∪
{(σ, false) | σ ∈ (ΣR \ dom E∃(a))} ∪
{(σ, false) | σ ∈ (ΣR \ dom E∃(b))}

where the first case is the usual equality case already presented. The second

and the third case ensure that whenever one of the operands to ExEquality is

undefined that a defined value false is returned.

The function case of E∃ is the same as in E . Additionally, the arithmetic

case of E∃ is the same as in E . This is because “gaps” in this approach can

still arise in terms, just not in predicates.

The predicate case of E∃ though needs changing from what was presented

in E , to ensure that any undefinedness that arises does not propagate upwards

to the logical operators:

mk PredCall(P , al)→
{(σ, r) | σ ∈ ΣR ∧
∀i : inds al · (σ, vl(i)) ∈ E∃(al(i)) ∧
(vl , r) ∈ σ(P)} ∪

{(σ, false) | σ ∈ ΣR ∧
∀i : inds al · (σ, vl(i)) ∈ E∃(al(i)) ∧
vl /∈ dom σ(P)} ∪

{(σ, false) | σ ∈ ΣR ∧
∃i : inds al · σ ∈ (ΣR \ dom E∃(al(i)))}

The first set of this predicate call case of E∃ returns the value r yielded by

the predicate if all arguments are defined and the predicate yields a value when

applied with those arguments. The second set ensures that the truth value

false is returned if the predicate does not yield a result despite all arguments

being applied to the predicate denoting, with the third set returning false if

an argument applied to the predicate is undefined (does not denote a proper

value).
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E∃ : Expr∃ → P(ΣR × Value)

E∃(e) 4

cases e of
e ∈ Value→ {(σ, e) | σ ∈ ΣR}
e ∈ Prop→ {(σ, σ(e)) | σ ∈ ΣR}
e ∈ Var→ {(σ, σ(e)) | σ ∈ ΣR}

mk Arith(a, op, b)→ {(σ, [[op]](a ′, b ′)) |
(σ, a ′) ∈ E∃(a) ∧ (σ, b ′) ∈ E∃(b) ∧

op ∈ {+,−,×}} ∪
{(σ, [[÷]](a ′, b ′)) |

(σ, a ′) ∈ E∃(a) ∧ (σ, b ′) ∈ E∃(b) ∧
op = ÷ ∧ b ′ 6= 0}

mk Equality(a, b)→ {(σ, [[=]](a ′, b ′)) |
(σ, a ′) ∈ E∃(a) ∧ (σ, b ′) ∈ E∃(b)}

mk ExEquality(a, b)→ {(σ, [[=]](a ′, b ′)) |
(σ, a ′) ∈ E∃(a) ∧ (σ, b ′) ∈ E∃(b)} ∪

{(σ, false) | σ ∈ (ΣR \ dom E∃(a))} ∪
{(σ, false) | σ ∈ (ΣR \ dom E∃(b))}

mk Not(p)→ {(σ, true) | (σ, false) ∈ E∃(p)} ∪
{(σ, false) | (σ, true) ∈ E∃(p)}

mk Or(p, q)→ {(σ, true) | (σ, true) ∈ E∃(p)} ∪
{(σ, true) | (σ, true) ∈ E∃(q)} ∪
{(σ, false) | (σ, false) ∈ E∃(p) ∧

(σ, false) ∈ E∃(q)}. . .
end

Figure 4.4: The E∃ semantic function definition which defines the semantics
for the approach of forcing all predicates to denote using existential equality
(part 1)
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E∃ : Expr∃ → P(ΣR × Value)

E∃(e) 4

cases e of
. . .

mk Exists(x , p)→ {(σ, true) |
σ ∈ ΣR ∧
true ∈

rng ({σ † {x 7→ i} | i :Z}� E∃(p))} ∪
{(σ, false) |

σ ∈ ΣR ∧
rng ({σ † {x 7→ i} | i :Z}� E∃(p)) =
{false}}

mk FuncCall(f , al)→ {(σ, r) | σ ∈ ΣR ∧
∀i : inds al · (σ, vl(i)) ∈ E∃(al(i)) ∧
(vl , r) ∈ σ(f )}

mk PredCall(P , al)→ {(σ, r) | σ ∈ ΣR ∧
∀i : inds al · (σ, vl(i)) ∈ E∃(al(i)) ∧
(vl , r) ∈ σ(P)} ∪

{(σ, false) | σ ∈ ΣR ∧
∀i : inds al · (σ, vl(i)) ∈ E∃(al(i)) ∧
vl /∈ dom σ(P)} ∪

{(σ, false) | σ ∈ ΣR ∧
∃i : inds al · σ ∈

(ΣR \ dom E∃(al(i)))}
end

Figure 4.5: The E∃ semantic function definition which defines the semantics
for the approach of forcing all predicates to denote using existential equality
(part 2)
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Weak equality has been kept in the E∃ semantic function definition because

it still needs to be written in function definitions. The non-strict existential

equality notion is defined in E∃ to cope with any partial terms that can arise

in logical formulae. Thus a user has to be aware of multiple notions of equality

when reasoning about logical formulae that can contain reference to partial

terms in such an approach. If the weak notion of equality (Equality) is removed

from Expr∃ and thus as a case from E∃, then it can be shown that E∃ is total

over Boolean expressions.

Unlike EC and ED , E∃ is not always total over integer expressions, since

functions and the division arithmetic case can still cause “gaps”, that is, in-

teger terms can still be undefined in the E∃ semantic function. However, all

predicates are forced to denote other than the weak equality construct where

a “gap” can still result, but the existential notion of equality is to be used for

reasoning about logical formulae that can contain references to partial terms.

Lemma 8. For any Boolean expression e, where e excludes any reference

to Equality , then E∃(e) is total, i.e. for every Boolean expression e and each

σ ∈ ΣR, there must exist a tuple (σ, v) ∈ E∃(e).

Proof. The proof is similar to that of Lemma 6. 2

E∃ is also deterministic, see Lemma 1.

Strong Equality

Strong equality can be defined in a similar way to existential equality. Recall

that the difference between strong equality and existential equality is that

strong equality yields the truth value true when both of its operands do not

denote, but existential equality in such a case would yield the truth value false

when both of its operands do not denote.

As for the E∃ semantic function, the E== semantic function can be defined

using ΣR.

As for existential equality the set of expressions must be extended, so

Expr== is defined as:

Expr== = ExprC | StEquality

where the abstract syntax and the context conditions for StEquality are the

same as those for Equality .

In Figure 4.6 and in Figure 4.7 the full E== semantic function is presented

where the main change is the following case:
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mk StEquality(a, b)→
{(σ, [[=]](a ′, b ′)) | (σ, a ′) ∈ E==(a)∧ (σ, b ′) ∈ E==(b)}∪
{(σ, true) | σ ∈ (ΣR \ dom E==(a)) ∧

σ ∈ (ΣR \ dom E==(b))} ∪
{(σ, false) | σ ∈ (ΣR\dom E==(a))∧σ ∈ dom E==(b)}∪
{(σ, false) | σ ∈ dom E==(a)∧σ ∈ (ΣR\dom E==(b))}

The nature of the interpretation that is given to strong equality leads to

a more complicated definition than that which was required for existential

equality. For existential equality if any operand is undefined then false is

returned, while for strong equality false is only to be returned if the one operand

is not defined, if both operands are undefined then true is to be returned.

The predicate call case of the E== semantic function also needs to ensure

that no “gap” can arise, since a defined result must always be returned. The

predicate call case of the E∃ semantic function definition could be used as when

a predicate does not denote then the value false is returned. However, consider

a predicate 6=6= (strong inequality) being defined then when both arguments

do not denote the value true would be expected to be returned. This leads to

a more complicated predicate call case than that needed for the predicate call

case of the E∃ semantic function, since an extra set is needed to ensure that if

all operands do not denote, then the truth value true should be returned, and

additionally, the set that returned false needs extending, (the set that returned

false when at least one operand did not denote a proper value). This set needs

extending to ensure that not only does at least the one operand not denote a

proper value, but that at least one operand does denotes a proper value, to

ensure that no two sets that define the semantics for the E== semantic function

overlap. This is similar to the reason for the more complicated case definition

that is needed for strong equality, compared to the case definition that was

needed for existential equality.

The same notes about the weak equality case still being present that were

discussed for the E∃ semantic function definition also apply to the E== seman-

tic function definition. Unlike EC and ED , E== is not always total over integer

expressions (like E∃), since functions and the arithmetic division case can still

cause “gaps” to arise.

Lemma 9. For any Boolean expression e, where e excludes any reference

to Equality then, E==(e) is total, i.e. for every Boolean expression e and each

σ ∈ Σ, there must exist a tuple (σ, v) ∈ E==(e).

Proof. The proof is similar to that of Lemma 6. 2
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E== : Expr== → P(ΣR × Value)

E==(e) 4

cases e of
e ∈ Prop→ {(σ, σ(e)) | σ ∈ ΣR}
e ∈ Var→ {(σ, σ(e)) | σ ∈ ΣR}

mk Arith(a, op, b)→ {(σ, [[op]](a ′, b ′)) |
(σ, a ′) ∈ E==(a) ∧

(σ, b ′) ∈ E==(b) ∧
op ∈ {+,−,×}} ∪

{(σ, [[÷]](a ′, b ′)) |
(σ, a ′) ∈ E==(a) ∧

(σ, b ′) ∈ E==(b) ∧
op = ÷ ∧ b ′ 6= 0}

mk Equality(a, b)→ {(σ, [[=]](a ′, b ′)) |
(σ, a ′) ∈ E==(a) ∧ (σ, b ′) ∈ E==(b)}

mk StEquality(a, b)→ {(σ, [[=]](a ′, b ′)) |
(σ, a ′) ∈ E==(a) ∧ (σ, b ′) ∈ E==(b)} ∪

{(σ, true) | σ ∈ (ΣR \ dom E==(a)) ∧
σ ∈ (ΣR \ dom E==(b))} ∪

{(σ, false) | σ ∈ (ΣR \ dom E==(a)) ∧
σ ∈ dom E==(b)} ∪

{(σ, false) | σ ∈ dom E==(a) ∧ σ ∈ (ΣR

\ dom E==(b))}
mk Not(p)→ {(σ, true) | (σ, false) ∈ E==(p)} ∪

{(σ, false) | (σ, true) ∈ E==(p)}
mk Or(p, q)→ {(σ, true) | (σ, true) ∈ E==(p)} ∪

{(σ, true) | (σ, true) ∈ E==(q)} ∪
{(σ, false) | (σ, false) ∈ E==(p) ∧

(σ, false) ∈ E==(q)}. . .
end

Figure 4.6: The E== semantic function definition which defines the semantics
for the approach of forcing all predicates to denote using strong equality (part
1)



Comparison of Approaches to Coping with Partial Terms 112

E== : Expr== → P(ΣR × Value)

E==(e) 4

cases e of
. . .

mk Exists(x , p)→ {(σ, true) |
σ ∈ ΣR ∧
true ∈

rng ({σ † {x 7→ i} | i :Z}� E==(p))} ∪
{(σ, false) |

σ ∈ ΣR ∧
rng ({σ † {x 7→ i} | i :Z}� E==(p)) =
{false}}

mk FuncCall(f , al)→ {(σ, r) | σ ∈ ΣR ∧
∀i : inds al · (σ, vl(i)) ∈ E==(al(i)) ∧
(vl , r) ∈ σ(f )}

mk PredCall(P , al)→ ∗
end

* Refer to the discussion on E==.

Figure 4.7: The E== semantic function definition which defines the semantics
for the approach of forcing all predicates to denote using strong equality (part
2)

E== is also deterministic, see Lemma 1.

4.1.4 Weak Kleene Logic

In this approach if any operand to a logical operator is undefined then the

entire expression is undefined. This is the strict interpretation that is given

to the logical operators. Thus, defined results are only returned when both

operands are defined.

Since partial functions and partial predicates can be defined in this ap-

proach the definition of Σ that is used in the LPF E semantic function can

be used. The semantic function for this weak Kleene approach is presented in

Figure 4.8.

The main changes made are to the disjunction logical operator case:

mk Or(p, q)→
{(σ, true) | (σ, true) ∈ EW (p) ∧ σ ∈ dom EW (q)} ∪
{(σ, true) | σ ∈ dom EW (p) ∧ (σ, true) ∈ EW (q)} ∪
{(σ, false) | (σ, false) ∈ EW (p) ∧ (σ, false) ∈ EW (q)}

since both operands p and q must denote in a given σ for a defined result to

be returned.

Furthermore, the existential quantifier case changes:
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mk Exists(x , p)→
{(σ, true) | σ ∈ Σ ∧

let d = rng ({σ † {x 7→ i} | i :Z}� EW (p)) in

d = {true} ∨ d = {true, false}} ∪
{(σ, false) | σ ∈ Σ ∧

rng ({σ † {x 7→ i} | i :Z}� EW (p)) = {false}}

since an undefined result (“gap”) gives rise to a “gap” it is necessary to ensure

that in the true case that p is always defined for any i ∈ Z. The false case

remains unchanged from the definition that it was given in the E semantic

function definition.

The other logical operator that is present in the EW semantic function,

namely the negation logical operator case, does not need to be changed from

what was presented in the E semantic function definition.

4.1.5 McCarthy’s Conditional Operators

The first variable in the conditional expressions is usually referred to as the

“inevitable variable” because, if it is undefined, then the entire expression is

undefined since conditional expressions are strict in their first argument. This

means that disjunction and conjunction are no longer commutative.

Additionally, quantifiers are problematic with respect to undefined values.

Thus, ∃i : {0, 1}·i/i = 1 may not have the same truth value as 1/1 = 1 ∨ 0/0 =

1. While propositional logic operators are strict in their first operand, an or-

der of evaluation for quantifiers is not at all obvious in McCarthy’s conditional

operator approach. One solution could be to take the strict interpretation of

the quantifiers (as in the weak Kleene approach EW ) to complete the semantic

function for McCarthy’s conditional operator approach, but the evaluation or-

der for the quantifiers in McCarthy’s conditional operator approach is generally

devised to match the underlying application/program.

Since partial functions and partial predicates can be defined in this ap-

proach the definition of Σ that is used in the LPF E semantic function can

be used. The semantic function for McCarthy’s approach is presented in Fig-

ure 4.9.

The main change made for the definition of EM is to the disjunction case:

mk Or(p, q)→
{(σ, true) | (σ, true) ∈ EM (p)} ∪
{(σ, true) | (σ, false) ∈ EM (p) ∧ (σ, true) ∈ EM (q)} ∪
{(σ, false) | (σ, false) ∈ EM (p) ∧ (σ, false) ∈ EM (q)}

to provide an operand evaluation policy that is strict in the first operand.

Notice that the interpretation that is given to the negation logical operator is
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EW : ExprC → P(Σ× Value)

EW (e) 4

cases e of
e ∈ Value→ {(σ, e) | σ ∈ Σ}
e ∈ Prop→ {(σ, σ(e)) | σ ∈ Σ ∧ e ∈ dom σ}
e ∈ Var→ {(σ, σ(e)) | σ ∈ Σ}

mk Arith(a, op, b)→ {(σ, [[op]](a ′, b ′)) |
(σ, a ′) ∈ EW (a) ∧ (σ, b ′) ∈ EW (b) ∧

op ∈ {+,−,×}} ∪
{(σ, [[÷]](a ′, b ′)) |

(σ, a ′) ∈ EW (a) ∧ (σ, b ′) ∈ EW (b) ∧
op = ÷ ∧ b ′ 6= 0}

mk Equality(a, b)→ {(σ, [[=]](a ′, b ′)) |
(σ, a ′) ∈ EW (a) ∧ (σ, b ′) ∈ EW (b)}

mk Not(p)→ {(σ, true) | (σ, false) ∈ EW (p)} ∪
{(σ, false) | (σ, true) ∈ EW (p)}

mk Or(p, q)→ {(σ, true) | (σ, true) ∈ EW (p) ∧
σ ∈ dom EW (q)} ∪

{(σ, true) | σ ∈ dom EW (p) ∧
(σ, true) ∈ EW (q)} ∪

{(σ, false) | (σ, false) ∈ EW (p) ∧
(σ, false) ∈ EW (q)}

mk Exists(x , p)→ {(σ, true) |
σ ∈ Σ ∧
let d =

rng ({σ † {x 7→ i} | i :Z}� EW (p))
in

d = {true} ∨
d = {true, false}} ∪

{(σ, false) |
σ ∈ Σ ∧
rng ({σ † {x 7→ i} | i :Z}� EW (p)) =
{false}}

mk FuncCall(f , al),
mk PredCall(f , al)→ {(σ, r) |

f ∈ (Fn ∪ Pred) ∧
σ ∈ Σ ∧
∀i : inds al · (σ, vl(i)) ∈ EW (al(i)) ∧
(vl , r) ∈ σ(f )}

end

Figure 4.8: The EW semantic function definition which defines the semantics
of the weak Kleene approach
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the same as in the E semantic function definition and as in the EW semantic

function definition.

4.1.6  Lukasiewicz’s Logic

This approach differs from the LPF (strong Kleene) approach E for the propo-

sitional operators, since a different interpretation is given to the implication

logical operator. Since p ⇒ Lq is not logically equivalent to ¬  Lp ∨ L q , the

E  L semantic function will need to include an implication case.

First it is necessary to extend ExprC to take into account the implication

logical operator:

Expr  L = ExprC | Implies

where the abstract syntax and the context condition for Implies is the same

as for Or .

The E  L semantic function is presented in Figure 4.10 and in Figure 4.11.

Since implication can no longer be defined as ¬ p ∨ L q this logical operator

needs adding to E  L. The implication case in the E  L semantic function is

defined as:

mk Implies(p, q)→
{(σ, true) | (σ, false) ∈ E  L(p)} ∪
{(σ, true) | (σ, true) ∈ E  L(q)} ∪
{(σ, true) | σ ∈ (Σ\dom E  L(p))∧σ ∈ (Σ\dom E  L(q))}∪
{(σ, false) | (σ, true) ∈ E  L(p) ∧ (σ, false) ∈ E  L(q)}

where the final true case considers every σ ∈ Σ where both operands p and q

are undefined.

A case does not need introducing for the non-monotone ⇔  L logical

operator, since the syntactic definition to (p ⇒ Lq)∧ L (q ⇒ Lp) holds. Recall

that ⊥B ⇔  L⊥B is true.

The rest of the expression cases in the E  L semantic function are the same

as they are defined in the E semantic function, but with rewriting E to E  L in

the different expression construct cases.

4.1.7 Bochvar’s External Logic

In this approach the results of formulae are forced to take one of two values

true or false.

Since partial functions and partial predicates can be defined in this ap-

proach the definition of Σ that is used in the LPF E semantic function can be

used. The semantic function for Bochvar’s external approach is presented in

Figure 4.12 and in Figure 4.13, where ExprB is defined as:

ExprB = ExprC | d | e



Comparison of Approaches to Coping with Partial Terms 116

EM : ExprC → P(Σ× Value)

EM (e) 4

cases e of
e ∈ Value→ {(σ, e) | σ ∈ Σ}
e ∈ Prop→ {(σ, σ(e)) | σ ∈ Σ ∧ e ∈ dom σ}
e ∈ Var→ {(σ, σ(e)) | σ ∈ Σ}

mk Arith(a, op, b)→ {(σ, [[op]](a ′, b ′)) |
(σ, a ′) ∈ EM (a) ∧ (σ, b ′) ∈ EM (b) ∧

op ∈ {+,−,×}} ∪
{(σ, [[÷]](a ′, b ′)) |

(σ, a ′) ∈ EM (a) ∧ (σ, b ′) ∈ EM (b) ∧
op = ÷ ∧ b ′ 6= 0}

mk Equality(a, b)→ {(σ, [[=]](a ′, b ′)) |
(σ, a ′) ∈ EM (a) ∧ (σ, b ′) ∈ EM (b)}

mk Not(p)→ {(σ, true) | (σ, false) ∈ EM (p)} ∪
{(σ, false) | (σ, true) ∈ EM (p)}

mk Or(p, q)→ {(σ, true) | (σ, true) ∈ EM (p)} ∪
{(σ, true) | (σ, false) ∈ EM (p) ∧

(σ, true) ∈ EM (q)} ∪
{(σ, false) | (σ, false) ∈ EM (p) ∧

(σ, false) ∈ EM (q)}
mk Exists(x , p)→ ∗

mk FuncCall(f , al),
mk PredCall(f , al)→ {(σ, r) |

f ∈ (Fn ∪ Pred) ∧
σ ∈ Σ ∧
∀i : inds al · (σ, vl(i)) ∈ EM (al(i)) ∧
(vl , r) ∈ σ(f )}

end

* Depends on the underlying application/program, or it could be defined as in
the mk Exists(x , p) expression case of the EW semantic function.

Figure 4.9: The EM semantic function definition which defines the semantics
of McCarthy’s conditional operators approach
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E  L : Expr  L → P(Σ× Value)

E  L(e) 4

cases e of
e ∈ Value→ {(σ, e) | σ ∈ Σ}
e ∈ Prop→ {(σ, σ(e)) | σ ∈ Σ ∧ e ∈ dom σ}
e ∈ Var→ {(σ, σ(e)) | σ ∈ Σ}

mk Arith(a, op, b)→ {(σ, [[op]](a ′, b ′)) |
(σ, a ′) ∈ E  L(a) ∧ (σ, b ′) ∈ E  L(b) ∧

op ∈ {+,−,×}} ∪
{(σ, [[÷]](a ′, b ′)) |

(σ, a ′) ∈ E  L(a) ∧ (σ, b ′) ∈ E  L(b) ∧
∧ op = ÷ ∧ b ′ 6= 0}

mk Equality(a, b)→ {(σ, [[=]](a ′, b ′)) |
(σ, a ′) ∈ E  L(a) ∧ (σ, b ′) ∈ E  L(b)}

mk Not(p)→ {(σ, true) | (σ, false) ∈ E  L(p)} ∪
{(σ, false) | (σ, true) ∈ E  L(p)}

mk Or(p, q)→ {(σ, true) | (σ, true) ∈ E  L(p)} ∪
{(σ, true) | (σ, true) ∈ E  L(q)} ∪
{(σ, false) | (σ, false) ∈ E  L(p) ∧

(σ, false) ∈ E  L(q)}. . .
end

Figure 4.10: The E  L semantic function definition which defines the semantics
of Lukasiewicz’s approach (part 1)
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E  L : Expr  L → P(Σ× Value)

E  L(e) 4

cases e of
. . .

mk Implies(p, q)→ {(σ, true) | (σ, false) ∈ E  L(p)} ∪
{(σ, true) | (σ, true) ∈ E  L(q)} ∪
{(σ, true) | σ ∈ (Σ \ dom E  L(p)) ∧

σ ∈ (Σ \ dom E  L(q))} ∪
{(σ, false) | (σ, true) ∈ E  L(p) ∧

(σ, false) ∈ E  L(q)}
mk Exists(x , p)→ {(σ, true) |

σ ∈ Σ ∧
true ∈

rng ({σ † {x 7→ i} | i :Z}� E  L(p))} ∪
{(σ, false) |

σ ∈ Σ ∧
rng ({σ † {x 7→ i} | i :Z}� E  L(p)) =
{false}}

mk FuncCall(f , al),
mk PredCall(f , al)→ {(σ, r) |

f ∈ (Fn ∪ Pred) ∧
σ ∈ Σ ∧
∀i : inds al · (σ, vl(i)) ∈ E  L(al(i)) ∧
(vl , r) ∈ σ(f )}

end

Figure 4.11: The E  L semantic function definition which defines the semantics
of Lukasiewicz’s approach (part 2)
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where the abstract syntax and the context conditions for both d and e are

defined as for δ and ∆.

In the EB semantic function d is defined as:

mk d(p)→
{(σ, true) | (σ, true) ∈ EB(p)} ∪
{(σ, false) | (σ, false) ∈ EB(p)} ∪
{(σ, false) | σ ∈ (Σ \ dom EB(p))}

where true is returned when p is true, and false is returned in the other two

possible interpretations for p, that is, when p is false or undefined. The e
operator is defined in a similar way.

The negation, disjunction, and the existential quantifier expression cases

all need re-interpreting in the EB semantic function definition, since no “gaps”

should arise from these operators. For instance, the negation logical operator

requires a third set:

mk Not(p)→
{(σ, true) | (σ, false) ∈ EB(p)} ∪
{(σ, true) | σ ∈ (Σ \ dom EB(p))} ∪
{(σ, false) | (σ, true) ∈ EB(p)}

The alternative would be to define negation in the same way as the weak

Kleene/Bochvar’s internal system negation operator in the EW semantic func-

tion definition, but with the use of d:

mk Not(p)→
{(σ, true) | (σ, false) ∈ EB(mk d(p))} ∪
{(σ, false) | (σ, true) ∈ EB(mk d(p))}

This alternate approach defines such expression constructs in the EB se-

mantic function as they are defined in [Boc81] through the definitions of weak

Kleene/Bochvar’s internal system and the use of d. For instance, p ∨B q can

be defined as: dp ∨W dq .

Disjunction could be defined either as:
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mk Or(p, q)→
{(σ, true) | (σ, true) ∈ EB(p)} ∪
{(σ, true) | (σ, true) ∈ EB(q)} ∪
{(σ, false) | (σ, false) ∈ EB(p) ∧

σ /∈ dom EB(q)} ∪
{(σ, false) | σ /∈ dom EB(p) ∧

(σ, false) ∈ EB(q)} ∪
{(σ, false) | (σ, false) ∈ EB(p) ∧

(σ, false) ∈ EB(q)} ∪
{(σ, false) | σ ∈ (Σ \ dom EB(p)) ∧

σ ∈ (Σ \ dom EB(q))}

or alternatively through the use of the d logical operator in a way close to the

definition of disjunction in the E semantic function definition:

mk Or(p, q)→
{(σ, true) | (σ, true) ∈ EB(mk d(p))} ∪
{(σ, true) | (σ, true) ∈ EB(mk d(q))} ∪
{(σ, false) | (σ, false) ∈ EB(mk d(p)) ∧

(σ, false) ∈ EB(mk e(q))}

Additionally, the quantifier case will need changing as illustrated in Fig-

ure 4.13.

A p ↔B q logical operator is also available which is true when p has the

same strength as q . This logical operator is similar to p ⇔ q (in LPF)

except that formulae such as true ↔B ⊥B are false, and formulae such as

⊥B ↔B false and ⊥B ↔B ⊥B are true. The logical operator ↔B can be

defined in the standard way through (p ⇒Bq) ∧B (q ⇒Bp).

4.1.8 Concluding Remarks

Only small changes are needed to be made to the LPF E semantic function

definition presented in Section 3.4 to be able to formally define the semantics

of the other approaches to coping with partial terms. The structure of E has

been maintained in each of the E i semantic function definitions.

To further illustrate the cases that needed changing, Table 4.1 outlines the

cases that changed for each E i semantic function definition from what was

originally presented in the E semantic function definition.

Recall that:

• ER - Relations;

• EC - Underspecification;
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EB : ExprB → P(Σ× Value)

EB(e) 4

cases e of
e ∈ Value→ {(σ, e) | σ ∈ Σ}
e ∈ Prop→ {(σ, σ(e)) | σ ∈ Σ ∧ e ∈ dom σ}
e ∈ Var→ {(σ, σ(e)) | σ ∈ Σ}

mk Arith(a, op, b)→ {(σ, [[op]](a ′, b ′)) |
(σ, a ′) ∈ EB(a) ∧ (σ, b ′) ∈ EB(b) ∧

op ∈ {+,−,×}} ∪
{(σ, [[÷]](a ′, b ′)) |

(σ, a ′) ∈ EB(a) ∧ (σ, b ′) ∈ EB(b) ∧
op = ÷ ∧ b ′ 6= 0}

mk Equality(a, b)→ {(σ, [[=]](a ′, b ′)) |
(σ, a ′) ∈ EB(a) ∧ (σ, b ′) ∈ EB(b)}

mk d(p)→ {(σ, true) | (σ, true) ∈ EB(p)} ∪
{(σ, false) | (σ, false) ∈ EB(p)} ∪
{(σ, false) | σ ∈ (Σ \ dom EB(p))}

mk e(p)→ {(σ, true) | (σ, false) ∈ EB(p)} ∪
{(σ, false) | (σ, true) ∈ EB(p)} ∪
{(σ, false) | σ ∈ (Σ \ dom EB(p))}

mk Not(p)→ {(σ, true) | (σ, false) ∈ EB(p)} ∪
{(σ, true) | σ ∈ (Σ \ dom EB(p))} ∪
{(σ, false) | (σ, true) ∈ EB(p)}. . .

end

Figure 4.12: The EB semantic function definition which defines the semantics
of Bochvar’s External approach (part 1)
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EB : ExprB → P(Σ× Value)

EB(e) 4

cases e of
. . .

mk Or(p, q)→ {(σ, true) | (σ, true) ∈ EB(p)} ∪
{(σ, true) | (σ, true) ∈ EB(q)} ∪
{(σ, false) | (σ, false) ∈ EB(p) ∧

σ /∈ dom EB(q)} ∪
{(σ, false) | σ /∈ dom EB(p) ∧

(σ, false) ∈ EB(q)} ∪
{(σ, false) | (σ, false) ∈ EB(p) ∧

(σ, false) ∈ EB(q)} ∪
{(σ, false) | σ ∈ (Σ \ dom EB(p)) ∧

σ ∈ (Σ \ dom EB(q))}
mk Exists(x , p)→ {(σ, true) |

σ ∈ Σ ∧
true ∈

rng ({σ † {x 7→ i} | i :Z}� EB(p))} ∪
{(σ, false) |

σ ∈ Σ ∧
true /∈

rng ({σ † {x 7→ i} | i :Z}� EB(p))}
mk FuncCall(f , al),
mk PredCall(f , al)→ {(σ, r) |

f ∈ (Fn ∪ Pred) ∧
σ ∈ Σ ∧
∀i : inds al · (σ, vl(i)) ∈ EB(al(i)) ∧
(vl , r) ∈ σ(f )}

end

Figure 4.13: The EB semantic function definition which defines the semantics
of Bochvar’s External approach (part 2)
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ER EC ED E∃ E== EW EM E  L EB
Σ change X X X X X
Expr changea) X X X X X
e ∈ Value
e ∈ Prop X X X X X
e ∈ Var
mk Arith(a, op, b) X X X
mk Equality(a, b)b) X X
mk Not(p) X
mk Or(p, q) X X X
mk Exists(x , p) X X X
mk FuncCall(f , al) X
mk PredCall(P , al) X X X
Additionalc) X X

a) Not considering the omission of the δ logical operator, the ∆ logical operator,
and the conditional expression construct.
b) Includes the addition of other equality expression constructs.
c) Are any additional expression constructs needed, excluding any additional
equality constructs as this is considered in another case.

Table 4.1: An outline of the changes made to the LPF semantic function
definition to define the other semantic function definitions

• ED - Overspecification;

• E∃ - Existential equality;

• E== - Strong equality;

• EW - Weak Kleene logic (Bochvar’s Internal logic operators);

• EM - McCarthy’s conditional operators;

• E  L -  Lukasiewicz’s logic; and

• EB - Bochvar’s External logic.

4.2 Comparing the Sequent Interpretations

In this section a formal semantic comparison of the different interpretations

that can be given to a sequent `, is presented. The LPF E semantic function

definition and the definition of Σ used in the E semantic function definition are

used to perform the comparison. Recall that the four different interpretations

that can be given to a sequent are SS , SW , WW and WS . These four different

sequent interpretations are briefly introduced in Section 2.2.5.

In terms of the E semantic function, logical consequence (Γ ` e) can be

defined through the following set definitions, where Γ (a set of assumptions)
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is a possibly empty set of expressions, that is, Γ = {e1, . . . , en}, and where e

(the goal) is a single formula. Two sets S and W will first be presented as

they are used in the definition of multiple sequent interpretations.

The set S represents all interpretations where each assumption is true:

S = {σ | σ ∈ Σ ∧ (σ, true) ∈ E(e1 ∧ . . . ∧ en)}

The set W represents all interpretations where the assumptions are unde-

fined:

W = {σ | σ ∈ (Σ \ dom E(e1 ∧ . . . ∧ en))}

4.2.1 SS

This is the sequent interpretation that is used in LPF. Given all of the inter-

pretations where each assumption is true, then e should be true in all of those

interpretations, that is, there exists no σ such that all formulae in Γ are true,

while the formula e is false or undefined:2

S ⊆ {σ | σ ∈ Σ ∧ (σ, true) ∈ E(e)}

4.2.2 SW

With the SW sequent interpretation the formula e should be true or undefined

in all of those interpretations where each assumption is true S :

S ⊆ ({σ | σ ∈ Σ ∧ (σ, true) ∈ E(e)} ∪ {σ | σ ∈ (Σ \ dom E(e))})

4.2.3 WW

With the WW sequent interpretation the same condition as in the SW sequent

interpretation must hold. But additionally, the following condition must hold.

Given all of those interpretations where the assumptions are undefined, then

e should be true or undefined in all of those interpretations:

W ⊆ ({σ | σ ∈ Σ ∧ (σ, true) ∈ E(e)} ∪ {σ | σ ∈ (Σ \ dom E(e))})

Thus (non-formally):

(SW ) ∧ (WW )

2While in two-valued classical logic this is equivalent to the assertion e1 ∧ . . .∧ en ⇒ e,
this does not hold in LPF, cf. ⇒ -I .
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4.2.4 WS

With the WS sequent interpretation the same condition as in the SS sequent

interpretation must hold. But additionally, the following condition must hold.

Given all of those interpretations where the assumptions are undefined, then

e should be true in all of those interpretations:

W ⊆ {σ | σ ∈ Σ ∧ (σ, true) ∈ E(e)}

Thus:

(SS ) ∧ (WS )

4.3 Comparisons between the Different Approaches to

Coping with Partial Terms

In this section two comparisons are presented on the different approaches to

coping with logical formulae that can contain references to partial terms. The

first comparison is on the values that are denoted in each of the different ap-

proaches for a number of different expressions, including a term expression,

predicate expressions, as well as quantified expressions. The second compari-

son is performed on the non-classical logic approaches considered. Here differ-

ent properties of the non-classical logics are compared, which include checking

whether for example the logics are monotone and whether the standard CNF

transformations still hold/are still compatible with the semantics of the non-

classical logics that are being considered. The E [i ] semantic function definitions

aided greatly with performing such comparisons.

4.3.1 Comparison 1: The Values Denoted in the Different Ap-

proaches

The expressions used in this comparison are:

1. zero(−1);

2. zero(−1) = 0;

3. zero(−1) = zero(−1);

4. Property 1.1 (the zero function implication example):

∀i :Z · i ≥ 0 ⇒ zero(i) = 0

5. Property 1.3 (the zero function disjunction example):

∀i :Z · zero(i) = 0 ∨ zero(−i) = 0.
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This set of five expressions ensures that term expressions, predicate ex-

pressions and quantified expressions are all accounted for. Additionally, these

expressions are adequate to illustrate the main differences between the vari-

ous approaches to coping with logical formulae that can contain references to

partial terms.

Table 4.2 illustrates the effect of coping with undefinedness in different

expression constructs. This is done by illustrating the resulting values of the

five different expressions listed above which contain references to partial terms

in each of the different approaches considered.

Note that any changes to expressions 1 to 5 are made as necessary for

the different approaches that are considered. For example, when the quanti-

fier bounds approach is considered the quantification becomes over the set of

natural numbers N, and when the strong equality approach is considered the

notion of equality becomes ==.
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1 2 3 4 5
Relations false false false true true

Quantifier Bounds ⊥a)
Z ⊥B ⊥B true denied b)

The WD approach rejected c) rejected rejected true true

Underspecification (determined value) >d)
Z >B true true true

Underspecification (arbitrary value) >Z >B >B true true
Overspecification 0e) true true true true
PFOL (plus the existential equality approach) ⊥Z false false true true
Strong equality ⊥Z false true true true
LCF ⊥Z false true true true
Predicate Underspecification ⊥Z >B true true true
Weak Kleene (Bochvar Internal) ⊥Z ⊥B ⊥B ⊥B ⊥B
McCarthy’s Conditional Operators ⊥Z ⊥B ⊥B true ⊥B
LPF (strong Kleene logic) ⊥Z ⊥B ⊥B true true
 Lukasiewicz’s approach ⊥Z ⊥B ⊥B true true
Bochvar’s External approach ⊥Z ⊥B ⊥B true true

a) ⊥T : Stands for a “gap” where T is the type of the expression.
b) Since i is of the type natural number N, −i cannot be expressed. If −i (i ∈ N), is defined to be 0 for example, then this example is
true.
c) rejected : The Well-definedness conditions cannot be proved.
d) >T : Stands for an unspecified/undetermined value of the type T . Such an unspecified value is defined but the actual value is not
known.
e) Assuming that here the value that is returned when the zero function is applied with an argument from outside of its defined domain
(i < 0) is 0.

Table 4.2: A comparison of numerous approaches to coping with partial terms
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4.3.2 Comparison 2: Non-classical Logic Comparisons

All of the non-classical logic approaches discussed are now considered under

the assumption that the sequent interpretation used is the SS sequent interpre-

tation (justified in Section 2.3) as is used in LPF. The comparison is performed

without any use of the ∆ logical operator. Recall that:

• EW - Weak Kleene logic (Bochvar’s Internal logic operators);

• EM - McCarthy’s conditional operators;

• E - LPF (strong Kleene logic);

• E  L -  Lukasiewicz’s logic; and

• EB - Bochvar’s External logic.

The results are presented in Table 4.3, where the terms used in the table

are described below:

• ⇒ contrapositive: Is p ⇒ q equivalent to ¬ q ⇒ ¬ p?

• ∨ and ∧ commutativity: Are the disjunction and conjunction operators

commutative?

• Law of the excluded middle: Does the law of the excluded middle hold?

• Quantifiers: Can the quantifiers be written in terms of disjunctions and

conjunctions?

• Deduction theorem: Does the deduction theorem hold?

• Trivial sequent: Does the trivial sequent hold?

• CNF transformations: Do the standard CNF transformations hold?

• PNF transformations: Do the standard PNF transformations hold?

• The standard syntactic definitions: Do the standard syntactic definitions:

p ∧ q being equivalent to ¬ (¬ p ∨ ¬ q); p ⇒ q being equivalent to

¬ p ∨ q ; p ⇔ q being equivalent to (p ⇒ q) ∧ (q ⇒ p); and ∀i · p
being equivalent to ¬∃i · ¬ p hold?

• Tautologies: Are there any tautologies in the language?

• Monotone operators: Are the logical operators monotone?
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EW EM E E  L EB
⇒ contrapositive X X X X
∨ and ∧ commutativity X X X X
Law of the excluded middle X
Quantifiers X a) X X X
Deduction theorem X
CNF transformations X X Xb) Xc)

PNF transformations X X X X
The standard syntactic definitions X X X
Tautologies d) X X
Monotone operators X X X
Uniformity Xe) X X X
Normality X X X X X

a) Depends on the underlying order of evaluation that is given to the quanti-
fiers. If the strict interpretation is given then this follows in EM as it does in
EW .
b) Except that replacing p ⇒ Lq with ¬  Lp ∨ L q cannot be done, and a more
sophisticated translation is needed, refer to Section 4.4.
c) For instance, p is not logically equivalent to ¬ B¬ Bp, p ∨B p is not logically
equivalent to p, and the absorption properties do not maintain logical equiva-
lence. Undefinedness is treated as false when given as an operand to a logical
operator.
d) Recall that there can be no tautologies in E , without the use of the ∆ logical
operator.
e) In a restricted way compared to for example E , (the first operand only in
EM ).

Table 4.3: A comparison of three-valued logic approaches to coping with partial
terms

• Uniformity: Are the results as defined as possible, that is, can a result

be determined from a single operand where possible (for example, the

truth of one disjunct is sufficient for the truth of the disjunction)? and

• Normality: When all operands to the logical operators are defined, that

is, true and false, do the logical operators yield the same result as the

two-valued classical logical operators will yield?

Note that there is no case when a logical value can be determined for the

⇔ logical operator from a single logical value (operand); thus this logical

operator is uniform by default.

As can be seen from Table 4.3, with the EM semantic function fewer of the

desired properties hold in comparison to the other approaches. Basic logical

properties/laws are lost, which means that using familiar notations such as

clausal form becomes more complicated due to the sequential (strict in the
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first operand) semantics of the logical operators in this approach. Questions

are also undoubtedly raised about quantifiers in this approach, as discussed

earlier.

The other approaches maintain more of the standard logical laws. However,

with the EW approach the logical operators are strict (undefinedness in any

operand leads to overall undefinedness), while the other approaches employ

non-strict logical operators. Thus, the other approaches allow for more defined

results to be returned, which is undoubtedly favoured.

The E  L approach is the closest approach to the E approach. What differs

is that ⊥B ⇒ L⊥B is true in the E  L approach to coping with partial terms.

This change alone brings about a number of distinct differences between the

two approaches.

In the E  L approach, tautologies (due to the implication logical operator)

can be constructed. However, this is at the expense of standard syntactic def-

initions not holding and the loss of monotonicity. A loss of standard syntactic

definitions holding, ensures that any reasoning that takes place in such a three-

valued logic becomes even less familiar for a user who may be familiar with

two-valued classical logic. The loss of monotonicity is a drawback as results

can be contradicted through further evaluations.

The EB approach looks pleasing, but again suffers from the lack of mono-

tonicity.

The E approach appears like a favourable compromise. The logical opera-

tors are the strongest possible monotonic extension of the familiar two-valued

classical logic logical operators. Standard logical laws are maintained in this

approach. This ensures that while the three-valued logic is unfamiliar, it is

not a too drastic change from that of two-valued classical logic, compared to

the other approaches.

4.4 Relationships between the Different Approaches to

Coping with Partial Terms and LPF

The E [i ] semantic function definitions provided above can be made use of to aid

in pinpointing relationships between the different approaches to coping with

logical formulae that can contain references to partial terms, in particular how

formulae can be translated between the different approaches. The focus is on

relationships between the different approaches considered and the preferred

approach of LPF.

This is beneficial because for instance, McCarthy’s conditional operator

logic approach (with the sequential interpretation of binary logic operators) is

used in tool support such as in the VDM Toolset [ELL94] and in the Overture
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toolset [LBF+10] (as discussed in Section 2.4), and LPF (with the parallel

evaluation of the binary logic operators) has been favoured here for proof

support. LPF as shown has more desirable logical properties to be used for

proof support, as documented in Table 4.3 in Section 4.3.

Recall that all of the logical operators in the non-classical logic approaches

considered, coincide with the corresponding two-valued classical logic logical

operators when all of their corresponding operands are defined.

4.4.1 Relationship with Two-Valued Classical Logic using Over-

specification

Recall that the overspecification approach is where a known defined value is

returned by a partial function, when it is applied with arguments from outside

of its defined domain.

Since all of the proof rules in LPF are also valid proof rules in two-valued

classical logic and since LPF is normal, it follows that any theorem of LPF is

a theorem in two-valued classical logic, providing every partial function and so

on is overspecified. In other words if Γ ` p in LPF, then Γ ` p in two-valued

classical logic.

However, it does not hold the other way around. For instance:

p ∨ ¬ p

is not a theorem of LPF.

A theorem of two-valued classical logic with the overspecification semantics

needs translating from:

p

to:

p ∨ ¬∆p

For instance, if:

1/0 = 0

is a theorem in the overspecification approach in two-valued classical logic then

it needs translating to:

1/0 = 0 ∨ ¬∆(1/0 = 0)
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to be a theorem in LPF.

This is the same as stating:

δp ` p

The relationship with the underspecification approach follows in a similar

way.

However, such a relationship does not follow in the same way when con-

sidering  Lukasiewicz’s logic. A theorem of  Luksiewicz’s logic may not be a

theorem of two-valued classical logic with overspecified functions. Consider,

1/0 being undefined the following is a theorem in  Lukasiewicz’s approach:

1/0 = 0 ⇒ L1/0 = 1

If division is overspecified so that 1/0 yields 0, then in classical logic:

true ⇒ false

which is false.

4.4.2 Relationship with the Well-Definedness Approach

A formula is valid in the WD approach (see Section 2.2.2) if WD(e) is valid

in two-valued logic and e is valid in two-valued logic. In the WD approach

one has to prove WD and validity separately. In LPF one proves validity and

definedness at the same time.

4.4.3 Relationship with Two-Valued Classical Logic using Strong

Equality

In [FJ08] the authors explore the relationship between theorems provable in

LPF using weak equality and two-valued classical logic using existential equal-

ity, providing the translations from the one approach to the other and vice

versa (note that they use δ instead of ∆, but give δ the semantics of ∆). Since

in this thesis weak equality, existential equality, and strong equality are dis-

cussed the translations between theorems provable in LPF using weak equality

and two-valued classical logic using strong equality are defined.

Consider the formula:

true ∨ 1/0 = 1/0

which is a theorem in LPF. If the weak equality is rewritten as a strong equality,

then the strong equality will guard the logical operator from a non-denoting
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truth value (1/0 == 1/0 will denote true), and thus this will also be a theorem

in two-valued classical logic with strong equality. Therefore, to convert a

theorem of LPF into two-valued classical logic with strong equality just rewrite

any weak equality used to the strong equality equivalent. Doing so cannot

cause the value of a formula to change from true to false.

Since the strong equality will always yield true or false the logical operators

will be guarded from any partial terms. Of course the same is required for every

relational operator/predicate and not just for the equality relational operator

that is being considered in the examples.

However, not all theorems of two-valued classical logic with strong equality

are theorems in LPF so “extra” work is required when converting the other

way around into LPF. Consider:

true ⇒ 1/0 == 1/0

which evaluates to:

true ⇒ true

which further evaluates to true. However, in LPF (with weak equality) this

example:

true ⇒ 1/0 = 1/0

evaluates to:

true ⇒ ⊥B

which evaluates to ⊥B.

When translating a theorem of two-valued classical logic with strong equal-

ity into LPF each strong equality:

a == b

requires rewriting to:

(a = b ∧∆(a = b)) ∨ (¬∆(a = a) ∧ ¬∆(b = b))

to be a theorem of LPF.
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4.4.4 Relationship with the Weak Kleene Approach

It should be clear that the weak Kleene logic is a weaker logic than LPF. In

the weak Kleene logic if undefinedness occurs then undefinedness results. How-

ever, in the strong Kleene LPF logic undefinedness can be masked if enough

information in certain circumstances is available from the other operand. For

quantified expressions in the weak Kleene logic if the quantified formula is ever

undefined then the quantified formula is undefined. This is not always the case

for LPF, as illustrated in the E semantic function definition.

It follows that any theorem in the weak Kleene approach must be a theorem

in the LPF approach. For example, p ∨W q is true if (σ, true) ∈ EW (p) and

(σ, true) ∈ EW (q), or (σ, true) ∈ EW (p) and (σ, false) ∈ EW (q), or when

(σ, false) ∈ EW (p) and when (σ, true) ∈ EW (q). In LPF p ∨ q is true if either

(σ, true) ∈ E(p) or when (σ, true) ∈ E(q). It follows that δp ∧ δq ∧ (p ∨ q)

must be true whenever p ∨W q is true, and the disjunction cases of EW and E
return the same result whenever both operands are defined.

Both p ∨W q and p ∨ q are false in the same cases when (σ, false) ∈
E/EW (p) and when (σ, false) ∈ E/EW (q). Additionally, if a quantifier is

assigned a value of either true or false in EW , then p(i) must be true or false

for every i ∈ Z, and E is defined to return the same value in such cases.

However, any theorem in the LPF approach may not be a theorem in the

weak Kleene approach, as the logical operators are strict in the weak Kleene

approach, but are non-strict in the LPF approach. In E defined results can be

returned even in the presence of undefined operands in some cases.

Such logical operators are also those from the internal Bochvar approach.

The relationship between Bochvar’s external operators and Bochvar’s internal

operators are presented in [Boc81]. Each external logical operator can be

defined in terms of the internal logical operators through use of the d logical

operator and the e logical operator.

4.4.5 Relationship with the McCarthy Conditional Operator Ap-

proach

Consider the propositional subset of LPF and McCarthy’s conditional operator

approach. The two approaches differ as the former has a parallel evaluation

of the binary logical operators, and the latter has a sequential evaluation of

the binary logical operators. The two approaches have the same monotone

ordering given to the logical operators, and the two approaches have the same

definition for the negation logical operator.

If p ∨M q is true then p ∨ q is also true in LPF. In LPF p ∨ q is true if

either (σ, true) ∈ E(p) or (σ, true) ∈ E(q). In McCarthy’s approach, however,
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p ∨M q is true if either (σ, true) ∈ EM (p), or both (σ, false) ∈ EM (p) and

(σ, true) ∈ EM (q). Therefore, the proposition p must be defined if p ∨M q

is true in McCarthy’s approach (δp ∧ (p ∨ q) must be true). The LPF E
semantic function definition is designed to return true in the two cases that the

disjunction logical operator returns the value true in the EM semantic function

definition. The false cases match in the EM semantic function definition and

in the E semantic function definition.

Additionally, if the weak quantifier interpretation is used in McCarthy’s

approach then the theorem follows in the LPF approach as stated in the weak

Kleene section above. Furthermore, no matter what quantifier interpretation

is used in McCarthy’s EM approach then if a defined result is returned in

EM it will also be returned in the LPF E approach as the LPF quantifier

interpretation is stronger. The false case of the existential quantifier must

match in E and EM . If the quantified formula is always true then the existential

quantifier cases in E and EM must return the same result, as the order of

evaluation in such an approach becomes irrelevant. However, if the quantified

formula is ever undefined for some value, and it is true for at least the one

value then the order of evaluation devised for the interpretation in EM will

determine whether the existential quantifier is true or undefined in the EM

semantic function definition. However, no matter what order of evaluation is

given to the existential quantifier case in the EM semantic function definition,

if true is returned in EM then true will be returned in E for the existential

quantifier case, as E will return true if p(i) is true for any i ∈ Z. So, p(i) can

be undefined for any i ∈ Z as long as for at least one i ∈ Z, p(i) is true.

In summary an expression evaluation order may be present in EM , but no

such order is devised in E . Thus if a defined result true or false, is returned

from the existential quantifier case in EM then that same defined result true

or false will be returned from the existential quantifier case in E .

Consider the existential quantifier in McCarthy’s approach to have the

weak Kleene interpretation, then in LPF the following is a theorem:

∃i :Z · zero(i) = 0

but it may not be a theorem in McCarthy’s approach, since for example,

zero(−1) = 0 is undefined. This forces the whole existentially quantified ex-

pression to be undefined, despite the fact that zero(0) = 0.

It follows that any theorem in McCarthy’s approach must be a theorem in

the LPF approach. However, any theorem in the LPF approach may not be

a theorem in the McCarthy approach, due to the parallel evaluation nature of



Comparison of Approaches to Coping with Partial Terms 136

LPF.

4.4.6 Relationship with  Lukasiewicz’s Approach

A difference between the E semantic function and the E  L semantic function

comes down to the interpretation that is given to the implication logical op-

erator. Recall that ⊥B ⇒ ⊥B is undefined in E , but ⊥B ⇒ L⊥B is true in

E  L.

Therefore to translate a theorem of LPF into  Lukasiewicz’ approach no

change is necessary. Every theorem of LPF is a theorem in  Lukasiewicz’s

approach. However, when translating a theorem of  Lukasiewicz’s approach

into a theorem of LPF, it is the case that every p ⇒ Lq needs translating to

the following formula:

(¬ p) ∨ (q) ∨ (¬∆p ∧ ¬∆q)

Unfortunately, the monotonic δ operator cannot be used in this translation,

because of translating to the weaker LPF logic.

In order to translate p ⇔  Lq to LPF, since the propositional logical

operator ⇔  L is not monotone in  Lukasiewicz’s approach, translate first to:

(p ⇒ Lq) ∧ L (q ⇒ Lp)

and then to LPF as before.

4.4.7 Relationship with Bochvar’s External Approach

Recall that after applying a logical operator in LPF undefinedness can result.

However, in Bochvar’s external approach after applying a logical operator a

defined result is always returned.

Consider the propositional case first. Whenever a defined result true or false

is returned through the E semantic function definition, the same defined result

true or false will be returned through the EB semantic function definition.

Thus any propositional theorem of LPF is a theorem in Bochvar’s external

approach. However, the converse does not hold because EB would return

true for ¬ B(0/0 = 0), while a “gap” would result in the E semantic function

definition. The formula ¬ Bp needs translating to ¬ p ∨ ¬ (∆p) in LPF.

Now consider the predicate case. If the existentially quantified expression

p(i) is true for any i ∈ Z then the E semantic function definition will return

true and the EB semantic function definition will also return true. The quan-

tified expression p(i) needs to be false for all i ∈ Z for the truth value false to

be returned by the E semantic function definition. However, in the existential
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quantifier case of EB false can be returned in more cases. If a defined result

is returned through the existential quantifier case of E then the same defined

result will be returned through the existential quantifier case of EB . However,

the converse may not hold.

4.4.8 Concluding Remarks

A trend between the non-classical logic approaches can be identified. The weak

Kleene (Bochvar internal) approach is weaker than McCarthy’s logic, which

itself is weaker than the strong Kleene (LPF) logic, which is weaker than

 Lukasiewicz’s logic, which is weaker than Bochvar’s external approach logic.

Theorems can easily be translated from a weaker logic to a stronger logic.

However, the situation changes if moving theorems the other way around.

Any theorem of weak Kleene logic (where undefinedness gives rise to unde-

finedness) must also be a theorem of McCarthy’s logic, but the converse does

not hold. Consider first the propositional case, where only the binary opera-

tors change. In the former true ∨ ⊥B is not a theorem but it is in the latter.

Thus one cannot take an arbitrary theorem from McCarthy’s approach and

put it straight into the weak Kleene approach. In the McCarthy approach the

propositional operators are strengthened so that results can be determined in

certain circumstances if the first operand is defined even if the second operand

is undefined.

Consider the predicate case, in the weak Kleene approach if the quantified

formula (the predicate) is undefined for at least the one quantified value then

the entire quantified expression is undefined. This interpretation is sometimes

given in McCarthy’s approach. However, in McCarthy’s approach another

order of evaluation could be given to the quantifiers. Thus again one can-

not translate immediately from McCarthy’s approach into the weak Kleene

approach. But if a defined result is given to an existential quantifier in the

weak Kleene approach then no matter what value is assigned to the quantified

variable the predicate must be defined. Thus a theorem involving a quantifier

in the weak Kleene is a theorem in the McCarthy approach as well, but the

converse does not hold.

A theorem of the McCarthy approach must also be a theorem of LPF, but

the converse does not hold. Consider the propositional case, the difference

between the two approaches to coping with partial terms is that the former

employs a sequential interpretation and the latter employs a parallel evaluation

of the logical operators. Thus while ⊥B ∨ true is a theorem of LPF it is not a

theorem of McCarthy’s approach. Any theorem of McCarthy’s approach must

be a theorem of LPF, because for the set of all true cases of the logical operators
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in McCarthy’s approach as defined in the EM semantic function definition are

a proper subset of the true cases in the E semantic function definition, (E will

return true/false in all cases that EM returns true/false, it is just that E can

return true/false in more cases).

Consider, the predicate case. An existential quantifier must be false in

the same way in both the EM and the E approaches. However, an existential

quantifier is true in LPF regardless of whether for some value assigned to the

quantified variable the predicate is undefined, as long as the predicate is true

for some quantified value. Thus no matter what order of evaluation is given to

the quantifiers in McCarthy’s approach the stronger LPF interpretation of the

quantifiers will ensure that the same result is returned. However, the contrary

cannot hold.

A theorem of the LPF approach must be a theorem of  Lukasiewicz’s ap-

proach, but the converse does not hold. The E semantic function and the E  L

semantic function are the same other than for the implication expression eval-

uation case. The E  L semantic function implication case is stronger than in the

E semantic function since ⊥B ⇒ L⊥B is a theorem in E  L but ⊥B ⇒ ⊥B is

not a theorem in E .

A theorem of LPF and  Luksiewicz’s approach must also be a theorem of

Bochvar’s external approach, but the converses do not hold. Consider the

LPF case first. Whenever E returns a defined result then EB returns the same

defined result. The cases when the EB semantic function definition returns

a defined result can be seen to be a proper subset of the cases when the E
semantic function definition returns a defined result. This applies not only to

the propositional cases, but to the predicate cases.

For the  Lukasiewicz’s case, as mentioned the difference is the implication

case that needed defining in E  L. In the EB semantic function definition ⊥B

⇒ L⊥B is true and the same result will be returned by the EB semantic function

definition. Such an implication case did not need defining in EB because p

⇒Bq can be defined as ¬ Bp ∨B q . This is because the negation of undefined

is true, and true or anything is true in the EB semantic function definition.

In summary if a defined result is returned in EW then this same result will

be returned in EM . Additionally, if a defined result is returned in EM then this

same result will be returned in E . A result from a weaker monotonic logic will

also be returned in a stronger monotonic logic. Thus these three monotonic

logics are ordered.

Furthermore, if a defined result is returned in E then this same result will

be returned in E  L. Additionally, if a defined result is returned in E  L then this

same result will be returned in EB . The difference comes down to the fact that
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both E  L and EB are not monotonic. For instance, ⊥B ∨B false is false, but

if functions complete leaving true ∨B false, then the result will change from

false to true. Also, ⊥B ⇒ L⊥B is true, but if functions complete leaving true

⇒B false, then a result can change from true to false. This is a major reason

against utilising a non-monotonic logic for the work in Chapter 6 (and for

reasoning about the properties of partial functions in general). The stronger

of the monotonic logics E is deemed to be the most satisfactory, as the logic is

as defined as possible.

4.5 Conclusions

This chapter showed how the E semantic function definition alongside the Σ

variable and definition map, which formally capture the semantics of LPF, can

be adapted to formally capture the semantics of numerous other approaches

to coping with partial terms. The use of such definitions is proposed as a way

of formally comparing the different approaches.

These E [i ] semantic function definitions provide a way of easily identifying

the differences between the different approaches to coping with partial terms.

They allow for the differences between the different approaches to be explained

in terms of changes to E and to Σ. This is helped by only small changes needing

to be made to move between the different E [i ] semantic function definitions.

The E [i ] semantic function definitions and the Σ[i ] definitions were used

as a basis with which to conduct some comparisons between the different ap-

proaches. Specifically, comparing the meaning of expressions written in differ-

ent approaches, and comparing properties that hold in different non-classical

logic approaches. Such definitions have greatly aided in performing such com-

parisons, since they in effect precisely and succinctly capture the crucial points

and differences between the different approaches.

Issues regarding different logics can arise for example when combining dif-

ferent formal methods. Different formal methods are based upon different

logics, and therefore utilise different approaches to coping with partial terms.

The work in this chapter has looked at answering not only questions of how

different approaches to coping with partial terms compare, but identifying how

theorems can be moved between different approaches. Being able to move the-

orems between different proof tools/formal methods relies on identifying the

differences between the approaches, and this work has focused on overcoming

any mismatches in respect to the different treatments of coping with partial

terms.

Chapter 6 takes the preferred approach of LPF and investigates applying

proof procedures to it. The LPF E semantic function definition is used as the



Comparison of Approaches to Coping with Partial Terms 140

underlying basis to precisely define concepts, illustrate issues, and to conduct

proofs of the modifications made to the proof procedures to cover LPF. It would

be useful to also use these non-classical logic E i semantic function definitions to

aid in the modification of the proof procedures for the other non-classical logics

considered, and to compare the amount of extra work that is brought into these

proof procedures against that for LPF, due to the different semantics of the

non-classical logic approaches. This topic is discussed further in Section 7.2

on future work. Mechanisations of the favoured LPF approach in Maude and

in Isabelle are also considered in Chapter 5
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Mechanisations of the SOS definitions in both the Maude term-rewriting sys-

tem, and in the Isabelle proof assistant are considered in this chapter. The

Maude term-rewriting mechanisation allows for expressions to be evaluated

according to the semantics of LPF by tool. The Isabelle mechanisation allows

for proofs of key properties to be conducted in LPF.

5.1 Maude Mechanisation

Both the big-step LPF SOS semantic definition and the small-step LPF SOS

semantic definition can be used to form a basis of a mechanisation in the term

rewriting system Maude [CDE+07]. The focus of this section is on mechanising

the SOS definitions presented in Section 3.3 in the Maude term rewriting

system to allow for expressions to be evaluated by a tool, according to the

semantics of LPF. The full big-step and small-step LPF semantic definitions

are presented in Appendix A.

The work in this section on the mechanisation of the SOS definitions pre-

sented earlier provides some assurance that the definitions are correct, that

is, that they accurately capture the semantics of LPF. Expressions can be

evaluated by a tool and it can be shown that expressions evaluated through

the tool do evaluate to the expected values, or in the case that undefined ex-

pressions are evaluated that no result, that is, a “gap” results. Up until this

point example evaluations have only been performed completely manually as

in Figure 3.7.

This section illustrates how to cross over from the theoretical definitions

into a concrete mechanisation, and illustrates further how “gaps” are coped
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with, and the problems that “gaps” bring about. Further evidence as to the

need for a small-step SOS definition to accurately define the semantics of LPF

for evaluating expressions is provided by the work in this section. However,

the use of the small-step SOS definition is at the expense of further rewrite

steps/rule applications needing to be made compared to when using the big-

step SOS definition. The extent of this is shown through considering the

evaluation of a wide range of examples.

5.1.1 An Introduction to Maude

A brief introduction to Maude is presented first. For a more detailed overview

of Maude the reader should refer to [CDE+07]. Only the parts of Maude that

are used in mechanising the SOS definitions are introduced here.

Two types of modules are used here: functional modules (fmod) and system

modules (mod). A module may consist of a collection of sorts, operations, and

equations. Additionally, a system module can contain a collection of rewrite

rules.

Modules in Maude can import other modules to re-use operations etc. Mod-

ules are imported here by either:

protecting MODULE

or by:

including MODULE

The protecting keyword is used when no change is to be made to the

imported module.

A sort defines a type of data and subsort relations can also be specified,

e.g.:

sort INT .

sort NAT .

subsort NAT < INT .

Kinds are associated with sorts, where the kinds also contain any associated

error terms, they are error supersorts.

Operations are declared in modules like:

op _+_ : INT INT -> INT .
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Operations that are constructors are declared using the attribute [ctor]

before the space before the period at the end of the line. Operations can also

be flagged as associative and commutative by specifying the attributes assoc

and comm respectively in between [] which are to occur again before the space

before the period at the end of the line.

When defining equations and rewrite rules variables may be used which are

declared in the following way:

var I : INT .

Variables are placeholders, they do not store specific values.

Equations are used to simplify expressions and a set of equations should

be terminating and confluent. The equational logic underlying Maude is mem-

bership equational logic. Equations are defined in the following way:

eq 0 + I = I .

Conditional equations ensure that an equation is used for simplification

only if its condition is satisfied, e.g.:

ceq 0 <= s(I) if 0 <= I .

Equations that have been defined in modules can be reduced by Maude

using the red command, e.g.:

red 5 + -5 .

result Zero: 0

A set of rewrite rules does not need to be terminating and confluent. A

rewrite rule is used to describe a transition between states, e.g.:

sort EXAMPLE .

op term1 : -> EXAMPLE .

op term2 : -> EXAMPLE.

rl [LABEL] : term1 => term2 .

Conditional rewrite rules are declared in the following way:

crl [LABEL] : term1 => term2 if BOOLEAN_CONDITION .

The rew command can be used to get Maude to execute rewrite rules:

rew term1 .

result EXAMPLE: term2
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5.1.2 Mechanising the SOS Definitions

The mechanisation of the SOS rules into Maude follows the way they were

introduced above. First the syntax will be defined, followed by defining the

context conditions. This is followed by the semantic rules, first the big-step

SOS rules and then the small-step SOS rules.

This has not been the first attempt at mechanising SOS definitions. The

authors in [VMO06] mechanise a number of SOS definitions in Maude. This

work extends that work in providing a comparison between the big-step and

the small-step SOS definitions in terms of the number of rewrite comparisons

that are necessary, mechanising definitions that define the semantics of a three-

valued logic (showing how partial functions can be defined and coped with, and

considering interpretations that need applying to rules for instance, those that

define the disjunction logical operator, to define the parallel evaluation nature

of LPF), and through the consideration of mechanising context conditions.

Constant Values

The first task is to define the two constant types used in the SOS definitions

(both the big-step SOS definitions and the small-step SOS definitions). The

Boolean values are defined in their own module and this is done to separate

the LPF Boolean values from the default Boolean values:

fmod LPFBool is

sort LPFBOOL .

op LPFtrue : -> LPFBOOL [ctor] .

op LPFfalse : -> LPFBOOL [ctor] .

endfm

where no explicit undefined value is defined, since undefinedness is represented

as a “gap”.

The LPFInt module is implemented making use of the built-in Int module

in Maude, where a new sort (type) LPFINT is defined. The equality operation

is overwritten to return a LPFBOOL value instead of one of the default Boolean

values, and this will also need doing to similar operators such≥ etc. if they were

part of the semantic definitions being implemented. Addition and subtraction

etc. are already defined in the Int module and thus are available to be used

with LPFInt operands.

fmod LPFInt is

protecting LPFBool .



Mechanising LPF Semantic Definitions 145

protecting INT .

sort LPFINT .

subsort Int < LPFINT .

op _eq_ : LPFINT LPFINT -> LPFBOOL [comm] .

var m : LPFINT .

var n : LPFINT .

ceq m eq n = LPFtrue if (m == n) == true .

ceq m eq n = LPFfalse if (m == n) == false .

endfm

Now the two basic types of the language are defined all of the operations

that are called from within the Strachey brackets in the semantic definitions

are available for use by the semantic rules that follow later.

Syntax

The LPFExpr module defines the syntax of all the expression constructs in

Expr . A sort is given for LPFEXPR, where the values and the identifiers are

defined as subsorts of this sort.

fmod LPFExpr is

protecting STRING .

protecting LPFBool .

protecting LPFInt .

sort LPFEXPR .

sort VALUE .

sort ID .

subsort LPFBOOL < VALUE .

subsort LPFINT < VALUE .

subsort VALUE < LPFEXPR .

sort VARID .
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sort PROPID .

sort FUNID .

sort PREDID .

sort VALUEIDS .

sort DEFINITIONIDS .

subsort VARID < VALUEIDS .

subsort PROPID < VALUEIDS .

subsort FUNID < DEFINITIONIDS .

subsort PREDID < DEFINITIONIDS .

subsort VALUEIDS < ID .

subsort DEFINITIONIDS < ID .

subsort ID < LPFEXPR .

...

endfm

The identifiers are defined as strings in LPFExpr, with operations to go

from strings to identifiers:

op V(_) : String -> VARID .

where V is for variable (integer) identifiers. Operations are defined similarly

for P, F and Pr for propositional identifiers, function identifiers, and predicate

identifiers respectively. The use of V, P, F, and Pr takes care of the issue

of ensuring that the four types of identifiers are disjoint. So, for instance,

an integer variable x is written as V("x"), and a function identifier zero as

F("zero").

The syntax of the different expression constructs are then defined in the

LPFExpr module as:

sort ARITHOP .

op PLUS : -> ARITHOP .

op MINUS : -> ARITHOP .

op MULT : -> ARITHOP .

op DIV : -> ARITHOP .
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op ARITH(_, _, _) : LPFEXPR ARITHOP LPFEXPR -> LPFEXPR .

op NOT(_) : LPFEXPR -> LPFEXPR .

op OR(_, _) : LPFEXPR LPFEXPR -> LPFEXPR .

op AND(_, _) : LPFEXPR LPFEXPR -> LPFEXPR .

op EXISTS(_, _) : VARID LPFEXPR -> LPFEXPR .

op FORALL(_, _) : VARID LPFEXPR -> LPFEXPR .

op FUNCCALL(_, _) : FUNID LPFEXPR -> LPFEXPR .

and so on. Functions and predicates are here restricted to the one argument

each. This helps to simply the mechanisation, but still allows for the issues

surrounding undefinedness to be adequately illustrated. Removing such a re-

striction will be straightforward using the List module available in Maude.

The syntactic definitions are defined using equations in LPFExpr, e.g.:

var V : VARID .

var P : LPFEXPR .

var Q : LPFEXPR .

eq AND(P, Q) = NOT(OR(NOT(P), NOT(Q))) .

eq FORALL(V, P) = NOT(EXISTS(V, NOT(P))) .

and so on.

Another module is used to define the function and the predicate definitions:

fmod LPFDefinitions is

protecting LPFBool .

protecting LPFExpr .

sort FUNCDEF .

sort DEFINITIONS .

subsort FUNCDEF < DEFINITIONS .

op FUNC(_, _) : VARID LPFEXPR -> FUNCDEF .

var v : VARID .

var e : LPFEXPR .

op getParams(_) : DEFINITIONS -> VARID .

eq getParams(FUNC(v, e)) = v .
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op getExpression(_) : DEFINITIONS -> LPFEXPR .

eq getExpression(FUNC(v, e)) = e .

op zeroFunction : -> FUNCDEF .

eq zeroFunction =

FUNC(V("i"),

COND(EQUALITY(V("i"), 0),

0,

FUNCCALL(F("zero"), ARITH(V("i"), MINUS, 1)))) .

endfm

where predicates are defined in a similar way.

The operation zeroFunction is an example function definition that has

been defined, and can be used later. Other function definitions can be defined

in a similar way.

Context Conditions

The context conditions are now defined. First the names of the two types Int

and Bool are defined in a module:

fmod LPFTypes is

sort BOOLTYPE .

sort INTTYPE .

sort TYPE .

subsort BOOLTYPE < TYPE .

subsort INTTYPE < TYPE .

op BTYPE : -> BOOLTYPE .

op ITYPE : -> INTTYPE .

op ERROR : -> [TYPE] .

endfm

where the BTYPE operator and the ITYPE operator name the corresponding

type, and the ERROR type is defined as an error term.

The module for the type map is defined using the Map module, as a map

from sort VALUEIDS to the sort TYPE:

fmod LPFTypeMap is

protecting LPFExpr .

protecting LPFTypes .
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protecting MAP{VALUEIDS, TYPE} .

op typeMap1 : -> Map{VALUEIDS, TYPE} .

eq typeMap1 = insert(P("p"), BTYPE,

insert(V("i"), ITYPE, empty)) .

endfm

The operation typeMap1 is an example type map that has been defined for

use later. Further type maps can be defined in a similar way.

In order to use VALUEIDS in a map the following definition:

view VALUEIDS from TRIV to LPFExpr is

sort Elt to VALUEIDS .

endv

is required to allow for the instantiation of parameterised modules. This is

required for all other modules that are used in a map and a list.

The Def (definitions) map is defined inside another module using another

map:

fmod LPFDefMap is

protecting LPFExpr .

protecting LPFDefinitions .

protecting MAP{DEFINITIONIDS, DEFINITIONS} .

op defMap1 : -> Map{DEFINITIONIDS, DEFINITIONS} .

eq defMap1 = insert(F("zero"), zeroFunction, empty) .

endfm

The operation defMap1 is an example definition map defined for use later,

which uses the zeroFunction function definition defined as an operation from

earlier.

Now the context conditions can be defined. First a module that defines the

context conditions for expressions is defined by defining a wf-Expr operation:

fmod LPFContextConditionsExpressions is

protecting LPFBool .

protecting LPFInt .

protecting LPFExpr .

protecting LPFDefinitions .

protecting LPFTypes .
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protecting LPFTypeMap .

protecting LPFDefMap .

op wf-Expr(_, _, _) : LPFEXPR

Map{VALUEIDS, TYPE}

Map{DEFINITIONIDS, DEFINITIONS}

-> [TYPE] .

...

endfm

where all of the different expression cases that define the total wf-Expr function

are defined using equations with the use of variables:

var b : LPFBOOL .

var i : LPFINT .

var p : PROPID .

var v : VARID .

var f : FUNID .

var e1 : LPFEXPR .

var e2 : LPFEXPR .

var e3 : LPFEXPR .

var op : ARITHOP .

var vars : Map{VALUEIDS, TYPE} .

var defs : Map{DEFINITIONIDS, DEFINITIONS} .

eq wf-Expr(b, vars, defs) = BTYPE .

eq wf-Expr(i, vars, defs) = ITYPE .

eq wf-Expr(p, vars, defs) =

if $hasMapping(vars, p) then

BTYPE

else

ERROR

fi .

eq wf-Expr(v, vars, defs) =
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if $hasMapping(vars, v) then

ITYPE

else

ERROR

fi .

eq wf-Expr(ARITH(e1, op, e2), vars, defs) =

if wf-Expr(e1, vars, defs) == ITYPE and

wf-Expr(e2, vars, defs) == ITYPE then

ITYPE

else

ERROR

fi .

eq wf-Expr(EQUALITY(e1, e2), vars, defs) =

if wf-Expr(e1, vars, defs) == ITYPE and

wf-Expr(e2, vars, defs) == ITYPE then

BTYPE

else

ERROR

fi .

eq wf-Expr(COND(e1, e2, e3), vars, defs) =

if wf-Expr(e1, vars, defs) == BTYPE and

wf-Expr(e2, vars, defs) == ITYPE and

wf-Expr(e3, vars, defs) == ITYPE then

ITYPE

else

ERROR

fi .

eq wf-Expr(NOT(e1), vars, defs) =

if wf-Expr(e1, vars, defs) == BTYPE then

BTYPE

else

ERROR

fi .

eq wf-Expr(DELTA(e1), vars, defs) =
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if wf-Expr(e1, vars, defs) == BTYPE then

BTYPE

else

ERROR

fi .

eq wf-Expr(OR(e1, e2), vars, defs) =

if wf-Expr(e1, vars, defs) == BTYPE and

wf-Expr(e2, vars, defs) == BTYPE then

BTYPE

else

ERROR

fi .

eq wf-Expr(EXISTS(v, e1), vars, defs) =

if wf-Expr(e1, insert(v, ITYPE, vars), defs) == BTYPE then

BTYPE

else

ERROR

fi .

eq wf-Expr(FUNCCALL(f, e1), vars, defs) =

if $hasMapping(defs, f) and

wf-Expr(e1, vars, defs) == ITYPE then

ITYPE

else

ERROR

fi .

The PREDCALL case follows in a similar way.

The wf-Func operation is defined in another module:

fmod LPFContextConditionsDefinitions is

protecting BOOL .

protecting LPFBool .

protecting LPFInt .

protecting LPFExpr .

protecting LPFTypes .

protecting LPFTypeMap .

protecting LPFDefMap .
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protecting LPFContextConditionsExpressions .

var fun : FUNCDEF .

var f : FUNID .

var defs : Map{DEFINITIONIDS, DEFINITIONS} .

op wf-Func(_, _) : FUNCDEF

Map{DEFINITIONIDS, DEFINITIONS} ->

Bool .

eq wf-Func(fun, defs) =

wf-Expr(getExpression(fun),

insert(getParams(fun), ITYPE, empty),

defs) == ITYPE .

endfm

and the wf-Pred context condition should be defined in the same way as the

wf-Func context condition in the LPFContextConditionsDefinitions mod-

ule.

The context conditions must be satisfied before using the semantic rules

that follow. It is assumed that any expression, function, and predicate defini-

tion used with the following SOS rules satisfy the context conditions, that is,

for any expression e:

wf-Expr(e, vars, defs)

evaluates to ITYPE, or evaluates to BTYPE.

Additionally, any function definition f used:

wf-Func(f, defs)

evaluates to true, and any predicate definition P used:

wf-Pred(P, defs)

evaluates to true.

Note that a type map and a Defs map are assumed to coincide with a

σ map, but a propositional identifier can be absent from the domain of a

σ to allow for undefined propositional variables to be present, but such a

propositional identifier must map to BTYPE in the corresponding type map to

ensure the correct checking of expressions.

The following examples show the context conditions in action:
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red wf-Expr(LPFtrue,typeMap1,defMap1) .

result BOOLTYPE: BTYPE

red wf-Expr(FUNCCALL(F("zero"), 0), typeMap1, defMap1) .

result INTTYPE: ITYPE

red wf-Expr(OR(LPFtrue, 1), typeMap1, defMap1) .

result [TYPE]: ERROR

red wf-Expr(FUNCCALL(F("zero"), LPFtrue), typeMap1, defMap1) .

result [TYPE]: ERROR

red wf-Func(zeroFunction, defMap1) .

result Bool: true

Semantic Objects

The semantic object σ is defined in a similar way to the other maps introduced:

fmod LPFSigma is

protecting LPFExpr .

protecting MAP{VALUEIDS, VALUE} .

op sigma1 : -> Map{VALUEIDS, VALUE} .

eq sigma1 = insert(V("i"), 1,

insert(P("p"), LPFtrue, empty)) .

endfm

The decision has been taken to have a map σ that maps propositional

identifiers to Boolean values and variable identifiers to integer variables, and to

use the separate (already defined above) Defs map to map function identifiers

to function definitions, and predicate identifiers to predicate definitions. The

four maps defined in Σ in Section 3.3.2 are now split across two different maps,

but the same data is still represented. The use of two maps simplifies this

mechanisation, as a module already defined above for the context conditions

can be re-used without any changes needing to be made.

Semantic Rules

The modules defined up to now have been functional modules. The SOS rules

for both the big-step SOS rules and the small-step SOS rules will be defined

in system modules. This is because each SOS rule is going to be defined as

a rewrite rule. Recall that the set of SOS rules are not total, that is, they
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may not terminate when presented with “gaps”. The rewrite rules are non-

deterministic.

The big-step SOS rules are now introduced, where the semantic relation is

defined as:

mod LPFBigStepSemantics is

protecting LPFInt .

protecting LPFBool .

protecting LPFExpr .

protecting LPFDefinitions .

protecting LPFDefMap .

protecting LPFSigma .

sort BIGSTEPRELATION .

subsort VALUE < BIGSTEPRELATION .

op (_, _, _) -be> : LPFEXPR

Map{VALUEIDS, VALUE}

Map{DEFINITIONIDS, DEFINITIONS} -> [BIGSTEPRELATION] .

...

Recall that
e−→ in the big-step SOS definition is from (Expr ×Σ) to Value.

In the LPFBigStepSemantics module numerous variable placeholders need

introducing to allow for the SOS rules to be defined in Maude as rewrite rules:

var a : LPFEXPR .

var a’ : LPFEXPR .

var b : LPFEXPR .

var b’ : LPFEXPR .

var p : LPFEXPR .

var p’ : LPFEXPR .

var q : LPFEXPR .

var q’ : LPFEXPR .

var v1 : VALUE .

var v1’ : VALUE .

var v2 : VALUE .

var v2’ : VALUE .
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var vId : VARID .

var pId : PROPID .

var fId : FUNID .

var PId : PREDID .

var sigma : Map{VALUEIDS, VALUE} .

var defs : Map{DEFINITIONIDS, DEFINITIONS} .

The big-step SOS rules are then defined as rewrite rules as follows:

rl [Value_E] : (v1, sigma, defs) -be> => v1 .

crl [Prop_E] : (pId, sigma, defs) -be> => sigma[pId]

if $hasMapping(sigma, pId) .

rl [Var_E] : (vId, sigma, defs) -be> => sigma[vId] .

crl [Arith_E1] : (ARITH(a, PLUS, b), sigma, defs)

-be> => (a’ + b’)

if (a, sigma, defs) -be> => a’ /\

(b, sigma, defs) -be> => b’ .

crl [ARITH_E2] : (ARITH(a, MINUS, b), sigma, defs)

-be> => (a’ - b’)

if (a, sigma, defs) -be> => a’ /\

(b, sigma, defs) -be> => b’ .

crl [ARITH_E3] : (ARITH(a, MULT, b), sigma, defs)

-be> => (a’ * b’)

if (a, sigma, defs) -be> => a’ /\

(b, sigma, defs) -be> => b’ .

crl [ARITH_E4] : (ARITH(a, DIV, b), sigma, defs)

-be> => (a’ quo b’)

if (a, sigma, defs) -be> => a’ /\

(b, sigma, defs) -be> => b’ /\ b’ =/= 0 .

crl [Equality_E] : (EQUALITY(a, b), sigma, defs)

-be> => (a’ eq b’)

if (a, sigma, defs) -be> => a’ /\

(b, sigma, defs) -be> => b’ .
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crl [Cond_E1] : (COND(p, a, b), sigma, defs) -be> => a’

if (p, sigma, defs) -be> => LPFtrue /\

(a, sigma, defs) -be> => a’ .

crl [Cond_E2] : (COND(p, a, b), sigma, defs) -be> => b’

if (p, sigma, defs) -be> => LPFfalse /\

(b, sigma, defs) -be> => b’ .

crl [Not_E1] : (NOT(p), sigma, defs) -be> => LPFfalse

if (p, sigma, defs) -be> => LPFtrue .

crl [Not_e2] : (NOT(p), sigma, defs) -be> => LPFtrue

if (p, sigma, defs) -be> => LPFfalse .

crl [delta_E1] : (DELTA(p), sigma, defs) -be> => LPFtrue

if (p, sigma, defs) -be> => LPFtrue .

crl [delta_E2] : (DELTA(p), sigma, defs) -be> => LPFtrue

if (p, sigma, defs) -be> => LPFfalse .

crl [Or_E1] : (OR(p, q), sigma, defs) -be> => LPFtrue

if (p, sigma, defs) -be> => LPFtrue .

crl [Or_E2] : (OR(p, q), sigma, defs) -be> => LPFtrue

if (q, sigma, defs) -be> => LPFtrue .

crl [Or_E3] : (OR(p, q), sigma, defs) -be> => LPFfalse

if (p, sigma, defs) -be> => LPFfalse /\

(q, sigma, defs) -be> => LPFfalse .

crl [FuncCall_E] : (FUNCCALL(fId, a), sigma, defs)

-be> => b’

if (a, sigma, defs) -be> => a’ /\

(getExpression(defs[fId]),

insert(getParams(defs[fId]), a’, sigma), defs)

-be> => b’ .

...
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endm

The PredCall_E rule follows in a similar way to the FuncCall_E rule.

In the LPF SOS definitions an infinite number of premises are used to define

the existential quantifier. Obviously, an infinite number of premises cannot be

used in such a setting of a term-rewriting system. Thus here quantification

is only over a finite set of integer values. Only the values -1, 0, and 1 are

used. As mentioned earlier the existential quantifier is defined essentially as a

disjunction:

crl [EXISTS_Ta] : (EXISTS(vId, p), sigma, defs)

-be> => LPFtrue

if (p, insert(vId, -1, sigma), defs) -be> => LPFtrue .

...

crl [EXISTS_F] : (EXISTS(vId, p), sigma, defs)

-be> => LPFfalse

if (p, insert(vId, -1, sigma), defs) -be> => LPFfalse /\

(p, insert(vId, 0, sigma), defs) -be> => LPFfalse /\

(p, insert(vId, 1, sigma), defs) -be> => LPFfalse .

where the rules EXISTS-Tb and EXISTS-Tc follow closely to the EXISTS-Ta

rule, but with 0 and 1 instead. Due to the evaluation nature of the big-step

semantics the existential quantifier has the same problem as the disjunction

logical operator, that was mentioned earlier. This is illustrated at the end of

this section when comparing the big-step semantics in Maude with the small-

step semantics in Maude. This ad-hoc big-step existential quantifier definition

is only presented to be able to get some comparison results between the big-

step semantics and the small-step semantics. Again the small-step semantic

version is needed because control can get stuck with evaluating a term that

fails to denote a proper value.

Some sample expression evaluations are:

rew (FUNCCALL(F("zero"), 0), sigma1, defMap1) -be> .

result Zero: 0

rew (OR(

EQUALITY(FUNCCALL(F("zero"), 1), 0),

EQUALITY(FUNCCALL(F("zero"), -1), 0)),

sigma1, defMap1) -be> .

result LPFBOOL: LPFtrue
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rew (OR(

EQUALITY(FUNCCALL(F("zero"), -1), 0),

EQUALITY(FUNCCALL(F("zero"), 1), 0)),

sigma1, defMap1) -be> .

Fatal error: stack overflow.

The latter result is because of the big-step SOS definition that ensures that

once the evaluation of an operand has begun, there is no way to move control

(the evaluation) over to the other operand, and the evaluation of the non-

denoting operand has started to be evaluated. This is the problem that was

alluded to earlier when the big-step SOS definition was introduced to define

the semantics of LPF. This is the problem that the small-step SOS definition

overcomes. The small-step SOS definition is the preferred and necessary way

of defining the semantics of LPF for such a mechanisation to be faithful to the

parallel evaluation nature of LPF.

Also notice that in some cases no value is output since no further semantic

rule can be applied:

rew (ARITH(1, DIV, 0), sigma1, defMap1) -be> .

result [FindResult,LPFEXPR,BIGSTEPRELATION]:

(ARITH(1,DIV,0), ...) -be>

Trying to evaluate the expression ARITH(1, DIV, 0) terminates, but no

value is given to the expression, the evaluation is stuck.

Before being able to define the small-step SOS rules, additional expression

constructs need introducing:

• FUNCINTER;

• PREDINTER (virtually the same as FUNCINTER);

• EXISTSINTER; and

• EXISTSPAIR.

fmod LPFInterExpr is

protecting LPFBool .

protecting LPFInt .

including LPFExpr .

sort LPFINTEREXPR .
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sort FUNCINTER .

subsort FUNCINTER < LPFINTEREXPR .

subsort LPFINTEREXPR < LPFEXPR .

op FUNCINTER(_, _, _) :

LPFEXPR VARID LPFEXPR -> LPFINTEREXPR .

*** Used later.

sort EXISTSPAIR .

endfm

PredInter is defined just like FuncInter.

fmod LPFInterExprCont is

protecting LPFBool .

protecting LPFInt .

including LPFExpr .

including LPFInterExpr .

protecting LIST{EXISTSPAIR} .

sort EXISTSINTER .

subsort EXISTSINTER < LPFINTEREXPR .

op EXISTSPAIR(_, _) : LPFINT LPFEXPR -> EXISTSPAIR .

op EXISTSINTER(_, _) : VARID List{EXISTSPAIR} -> EXISTSINTER .

endfm

The small-step SOS semantic relation is defined as:

mod LPFSmallStepSemantics is

protecting LPFInt .

protecting LPFBool .

protecting LPFExpr .

protecting LPFDefinitions .

protecting LPFDefMap .

protecting LPFSigma .

protecting LPFInterExpr .

protecting LPFInterExprCont .
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sort SMALLSTEPRELATION .

sort SIDE .

subsort VALUE < SMALLSTEPRELATION .

subsort LPFEXPR < SMALLSTEPRELATION .

op (_, _, _) : LPFEXPR

Map{VALUEIDS, VALUE}

Map{DEFINITIONIDS, DEFINITIONS} -> SIDE .

op _ -se> : SIDE -> [SMALLSTEPRELATION] .

...

endm

The application of the small-step semantic relation -se> performs the one

single rewrite. The reflexive, transitive closure is also needed which is defined

as:

op _ -E> : SIDE -> [SMALLSTEPRELATION] .

crl [Base_Case] : (v1, sigma, defs) -E> => v2

if (v1, sigma, defs) -se> => v2 /\ v1 == v2 .

crl [Step_Case] : (a, sigma, defs) -E> => b

if (a, sigma, defs) -se> => a’ /\

(a’, sigma, defs) -E> => b .

where prior to this necessary variable placeholders are defined:

var a : LPFEXPR .

var a’ : LPFEXPR .

var b : LPFEXPR .

var b’ : LPFEXPR .

var p : LPFEXPR .

var p’ : LPFEXPR .

var q : LPFEXPR .

var q’ : LPFEXPR .

var v1 : VALUE .

var v2 : VALUE .
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var pId : PROPID .

var vId : VARID .

var fId : FUNID .

var PId : PREDID .

var i1 : LPFINT .

var i2 : LPFINT .

var i3 : LPFINT .

var op : ARITHOP .

var sigma : Map{VALUEIDS, VALUE} .

var defs : Map{DEFINITIONIDS, DEFINITIONS} .

The small-step SOS rules can then be defined as:

rl [Value_E] : (v1, sigma, defs) -se> => v1 .

crl [Prop_E] : (pId, sigma, defs) -se> => sigma[pId]

if $hasMapping(sigma, pId) .

rl [Var_E] : (vId, sigma, defs) -se> => sigma[vId] .

rl [Arith_E1] : (ARITH(v1, PLUS, v2), sigma, defs) -se> =>

(v1 + v2) .

rl [Arith_E2] : (ARITH(v1, MINUS, v2), sigma, defs) -se> =>

(v1 - v2) .

rl [Arith_E3] : (ARITH(v1, MULT, v2), sigma, defs) -se> =>

(v1 * v2) .

crl [Arith_E5] : (ARITH(v1, DIV, v2), sigma, defs) -se> =>

(v1 quo v2)

if v2 =/= 0 .

crl [Arith_A] : (ARITH(a, op, b), sigma, defs) -se> =>

ARITH(a’, op, b’)

if (a, sigma, defs) -se> => a’ /\

(b, sigma, defs) -se> => b’ .
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rl [Equality_E] : (EQUALITY(v1, v2), sigma, defs)

-se> => (v1 eq v2) .

crl [Equality_A] : (EQUALITY(a, b), sigma, defs)

-se> => EQUALITY(a’, b’)

if (a, sigma, defs) -se> => a’ /\

(b, sigma, defs) -se> => b’ .

rl [Cond_E1] : (COND(LPFtrue, a, b), sigma, defs) -se> => a .

rl [Cond_E2] : (COND(LPFfalse, a, b), sigma, defs) -se> => b .

crl [Cond_A] : (COND(p, a, b), sigma, defs)

-se> => COND(p’, a, b)

if (p, sigma, defs) -se> => p’ .

rl [Not_E1] : (NOT(LPFtrue), sigma, defs) -se> => LPFfalse .

rl [Not_E2] : (NOT(LPFfalse), sigma, defs) -se> => LPFtrue .

crl [Not_A] : (NOT(p), sigma, defs) -se> => NOT(p’)

if (p, sigma, defs) -se> => p’ .

rl [delta_E1] : (DELTA(LPFtrue), sigma, defs)

-se> => LPFtrue .

rl [delta_E2] : (DELTA(LPFfalse), sigma, defs)

-se> => LPFtrue .

crl [delta_A] : (DELTA(p), sigma, defs) -se> => DELTA(p’)

if (p, sigma, defs) -se> => p’ .

rl [Or_E1] : (OR(LPFtrue, q), sigma, defs)

-se> => LPFtrue .

rl [Or_E2] : (OR(p, LPFtrue), sigma, defs)

-se> => LPFtrue .

rl [Or_E3] : (OR(LPFfalse, LPFfalse), sigma, defs)
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-se> => LPFfalse .

crl [Or_A] : (OR(p, q), sigma, defs) -se> => OR(p’, q’)

if (p, sigma, defs) -se> => p’ /\

(q, sigma, defs) -se> => q’ .

rl [FuncCall_E] : (FUNCCALL(fId, v1), sigma, defs)

-se> =>

FUNCINTER(getExpression(defs[fId]),

getParams(defs[fId]), v1) .

crl [FuncCall_A] : (FUNCCALL(fId, a), sigma, defs)

-se> => FUNCCALL(fId, a’)

if (a, sigma, defs) -se> => a’ .

rl [FuncInter_E] : (FUNCINTER(v1, vId, v2), sigma, defs)

-se> => v1 .

crl [FuncInter_A] : (FUNCINTER(a, vId, v1), sigma, defs)

-se> => FUNCINTER(a’, vId, v1)

if (a, insert(vId, v1, sigma), defs) -se> => a’ .

...

The predicate call and the predicate inter rules follow in virtually the same

way as the function call and the function inter rules. Existential quantification

is considered below.

Notice that the Or_A rule is different to what was presented earlier in this

chapter, where:

crl [Or_L] : (OR(p, q), sigma, defs) -se> => OR(p’, q)

if (p, sigma, defs) -se> => p’ .

crl [Or_R] : (OR(p, q), sigma, defs) -se> => OR(p, q’)

if (q, sigma, defs) -se> => q’ .

should have been expected. However, the rewrite (SOS) rules are nondetermin-

istic. Some strategy to applying the rewrite rules is needed in a mechanisation

to ensure that both operands get a chance to be evaluated. In LPF the truth

tables are to be viewed as a parallel lazy evaluation of the operands. The

use of the Or_A semantic rule ensures that both the p and the q operands get
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a chance to be evaluated. The p operand undergoes one rewrite step, and

then the q operand undergoes one rewrite step during the application of the

Or_A rewriting rule. This combining of the Or_L and Or_R rewriting rules

into an Or_A rewriting rule provides the necessary control over the rewriting

strategy in the face of the non-deterministic rule selection choice, that still

allows for true to be returned even in the presence of a “gap” in either of the

other operands, and in a way that is still faithful to the small-step SOS rules

presented in Section 3.3.

The existential quantifier rewrite rules follow, where as discussed above a

subset of the integer values is used:

op ExistsTrue(_) : EXISTSINTER -> Bool .

eq ExistsTrue(EXISTSINTER(vId, nil)) = false .

eq ExistsTrue(EXISTSINTER(vId, EXISTSPAIR(i1, p) pairs)) =

if (p == LPFtrue) then true

else ExistsTrue(EXISTSINTER(vId, pairs)) fi .

op ExistsFalse(_) : EXISTSINTER -> Bool .

eq ExistsFalse(EXISTSINTER(vId, nil)) = true .

eq ExistsFalse(EXISTSINTER(vId, EXISTSPAIR(i1, p) pairs)) =

if (p =/= LPFfalse) then false

else ExistsFalse(EXISTSINTER(vId, pairs)) fi .

rl [EXISTS-E] : (EXISTS(vId, p), sigma, defs) -se> =>

EXISTSINTER(vId,

(EXISTSPAIR(-1, p) EXISTSPAIR(0, p) EXISTSPAIR(1, p))) .

crl [EXISTS-T] : (inter, sigma, defs) -se> => LPFtrue

if ExistsTrue(inter) .

crl [EXISTS-F] : (inter, sigma, defs) -se> => LPFfalse

if ExistsFalse(inter) .

crl [EXISTSINTER-A] : (EXISTSINTER(vId,

EXISTSPAIR(i1, a) EXISTSPAIR(i2, b) EXISTSPAIR(i3, p)),

sigma, defs) -se> =>

(EXISTSINTER(vId,

EXISTSPAIR(i1, a’) EXISTSPAIR(i2, b’) EXISTSPAIR(i3, p’)))

if (a, insert(vId, i1, sigma), defs) -se> => a’ /\

(b, insert(vId, i2, sigma), defs) -se> => b’ /\
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(p, insert(vId, i3, sigma), defs) -se> => p’ .

as for the big-step semantics, only three quantified variables are used, but

this provides an adequate basis for illustration. The use of a list will improve

this mechanisation further. Like the small-step disjunction rules overcome the

problem mentioned earlier with the big-step disjunction rules with undefined-

ness, the small-step existential quantifier rules overcome the problem with the

big-step existential quantifier rules.

When using the small-step relation directly to evaluate the expression

zero(0) the following results:

rew (FUNCCALL(F("zero"), 0), sigma1, defMap1) -se> .

LPFINTEREXPR: FUNCINTER(

COND(

EQUALITY(V("i"),0),

0,

FUNCCALL(F("zero"),

ARITH(V("i"),MINUS,1))

),

V("i"),

0)

but using the reflexive, transitive closure results in:

rew (FUNCCALL(F("zero"), 0), sigma1, defMap1) -E> .

result Zero: 0

also:

rew (OR(

EQUALITY(FUNCCALL(F("zero"), 1), 0),

EQUALITY(FUNCCALL(F("zero"), -1), 0)),

sigma1, defMap1) -E> .

result LPFBOOL: LPFtrue

and:

rew (OR(

EQUALITY(FUNCCALL(F("zero"), -1), 0),

EQUALITY(FUNCCALL(F("zero"), 1), 0)),

sigma1, defMap1) -E> .

result LPFBOOL: LPFtrue
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Comparisons

In the big-step SOS definition the evaluation could get stuck in evaluating

an undefined expression. This is overcome in the small-step SOS definition,

due such a definition allowing for the interleaving of expressions in different

branches. However, this is at a cost. The small-step SOS definition requires a

much greater number of rewrites to take place than the big-step SOS definition

requires on the same expression. This is illustrated by comparing the number

of rewrites taken by each definition in Maude on the expressions presented

in Figure 5.1. The results are presented in Table 5.1. The expressions from

Figure 5.1 are evaluated with respect to sigma1 and to defMap1 which were

introduced earlier in this section.

The SOS definitions were designed to illustrate the process of evaluating

expressions in LPF, with efficiency not playing a key role, but rather expressing

how expressions are to be evaluated.

Note that only the default rewriting strategy in Maude is being used. Thus

when a stack overflow occurs in the results in Table 5.1 it is because the Or_E1

rewriting rule has been selected, and the first operand contains the term that

fails to denote and the weak equality relational operator. In the big-step SOS

definition once the evaluation of an operand starts, control is in effect stuck in

evaluating that operand. This is the issue that the small-step SOS definition

overcomes. If the order of the Or_E1 semantic rule and the Or_E2 semantic

rule are swapped around in the definition file then some of the results will be

alternated.

Notice that for expression number 5, both definitions return LPFtrue de-

spite the fact that the first operand to the disjunction operator is undefined.

Division is defined by a conditional equation, and no further arithmetic rewrite

rule can be applied on this first undefined operand. This differs from the re-

sults obtained for expression number 10, since a function needs evaluating, and

thus further rewriting can take place on the undefined operand.

The most alarming differences between the number of rewrites being needed

between the big-step SOS rules and the small-step SOS rules occur when func-

tions are being evaluated. This is partly due to the use of FuncInter which

stores necessary information which must be retrieved each time that a rewrite

of the function definition being evaluated occurs. Such a technique is necessary

to ensure that the intended result for LPF is returned as interleaving steps in

different expression branches is necessary to express the parallel evaluation

nature of LPF.

The denotational semantic definitions E could also be used as a basis for

performing such a mechanisation of LPF in a term rewriting system like Maude.
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1. LPFtrue

2. P("p")

3. ARITH(1, PLUS, 1)

4. OR(LPFfalse, LPFtrue)

5. OR(EQUALITY(ARITH(1, DIV, 0), 1),

EQUALITY(ARITH(1, DIV, 1), 1))

6. COND(EQUALITY(ARITH(1, DIV, 1), 1), 1, 2)

7. FUNCCALL(F("zero"), 0)

8. FUNCCALL(F("zero"), 1)

9. OR(EQUALITY(FUNCCALL(F("zero"), 1), 0),

EQUALITY(FUNCCALL(F("zero"), -1), 0))

10. OR(EQUALITY(FUNCCALL(F("zero"), -1), 0),

EQUALITY(FUNCCALL(F("zero"), 1), 0))

11. EXISTS(V("i"),

OR(EQUALITY(FUNCCALL(F("zero"), 1), 0),

EQUALITY(FUNCCALL(F("zero"), -1), 0)))

12. EXISTS(V("i"),

OR(EQUALITY(FUNCCALL(F("zero"), -1), 0),

EQUALITY(FUNCCALL(F("zero"), 1), 0)))

13. EXISTS(V("i"),

OR(

EQUALITY(FUNCCALL(F("zero"), V("i")), 0),

EQUALITY(FUNCCALL(F("zero"),

ARITH(0, MINUS, V("i"))), 0)))

14. EXISTS(V("i"),

OR(

EQUALITY(FUNCCALL(F("zero"),

ARITH(0, MINUS, V("i"))), 0),

EQUALITY(FUNCCALL(F("zero"), V("i")), 0)))

Figure 5.1: The expressions used for the SOS rewrite rule comparison
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Big-Step SOS Small-Step SOS
Result Number of Rewrites Result Number of Rewrites

1 LPFtrue 7 LPFtrue 9
2 LPFtrue 11 LPFtrue 15
3 2 10 2 12
4 LPFtrue 9 LPFtrue 11
5 LPFtrue 20 LPFtrue 36
6 1 18 1 24
7 0 27 0 46
8 0 70 0 127
9 LPFtrue 76 LPFtrue 341
10 Stack Overflow n/a LPFtrue 341
11 LPFtrue 80 LPFtrue 1306
12 Stack Overflow n/a LPFtrue 1306
13 Stack Overflow n/a LPFtrue 670
14 LPFtrue 86 LPFtrue 670

Table 5.1: A number of rewrite comparisons between the big-step Structural
Operational Semantic and the small-step Structural Operational Semantic def-
initions

A lot of the code presented here for the mechanisation of the SOS definitions

in Maude could be re-used in such a mechanisation.

5.2 Isabelle Mechanisation

In [AGM92, §4] the author suggests that instead of attempting to write your

own theorem prover, it may be a better idea to try to capitalise upon an

existing tool and build an extension on top of that. This advice is followed

here.

The focus in this section is on a mechanisation of the LPF big-step SOS

rules into Isabelle/HOL [NWP02]. Isabelle is an interactive generic theorem

prover, which provides a meta-logic (Pure) which allows the formalisation of

object logics. Different object logics have been predefined for Isabelle, one of

which is Higher-Order Logic (HOL). This mechanisation of the LPF big-step

SOS definition into Isabelle/HOL can be used to prove assertions in a way

that is faithful to LPF. This preliminary work is to show how some interactive

proof support for LPF can be provided/can be derived from the LPF big-step

SOS definition.

For evaluating expressions (for instance, in a term-rewriting system), the

small-step SOS semantics are necessary to precisely capture the semantics of

LPF. For evaluating expressions to capture the parallel evaluation nature of

LPF the interleaving of steps in different expression branches is necessary and

thus for evaluating expressions the small-step SOS semantics are necessary as
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discussed earlier. In this proof setting the big-step SOS semantics are used.

This is because of the nature of the proofs that will be conducted in showing

that a given goal can be derived from given assumptions, by the user inter-

actively guiding the proof by selecting the appropriate expression branch to

follow where necessary.

The LPF big-step SOS definition were introduced in Section 3.3.1, and they

are presented in full in Appendix A.

(Gudmund Grov helped me to get started with Isabelle/HOL, and collab-

oratively a first definition of LPF in Isabelle/HOL was written using my LPF

big-step SOS definition. This definition has since been extensively modified

and extended by myself which is presented in this section. All Isabelle/HOL

proofs in this section are my own.)

Certain constructs provided in Isabelle cannot be reused here. As an ex-

ample, 1 div 0 is 0 in Isabelle. In LPF it is undefined, that is, a “gap”. It is

not known which rules provided by Isabelle can be carried over to LPF, thus it

is assumed that only the LPF rules provided below like Value_E_I and Or_E1

are used in proofs. Additionally, the Isabelle simplifier simp can be used in re-

stricted circumstances as will be illustrated in the example proofs that follow.

As also mentioned in [AF97] (discussed in Section 2.4) the classical reasoning

package appears not easy to use with LPF. The resolution proof procedure

(not in the context of Isabelle) is considered for LPF in Chapter 6.

Since all functions are total in Isabelle/HOL the standard way of writ-

ing functions is not used here. The notion of functions being total is deeply

embedded into numerous theorem proving systems. Functions instead are writ-

ten using the Func construct, called using the FuncCall construct, and can be

evaluated using the FuncCall E semantic rule.

Only a subset of the big-step SOS definition are defined in Isabelle/HOL

here for simplicity. The subset defined here though is sufficient to allow for

proofs of the following two properties to be conducted, where i is an integer:

i ≥ 0 ⇒ zero(i) = 0 (5.1)

and:

zero(i) = 0 ∨ zero(−i) = 0 (5.2)

to be discharged are defined in Isabelle/HOL here. Adding the other expression

definitions and semantic rules can be done by taking the same approach as to

what is discussed below.

The definition file is defined as follows:
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theory LPF

imports Main

begin

...

end

Main is a theory, which is the union of the predefined theories such as

arithmetic.

Some expressions are then defined using the datatype construct:

datatype Expr =

B "bool"

| I "int"

| P "string"

| V "string"

| Minus Expr Expr

| Division Expr Expr

| Equality Expr Expr

| GreaterThan Expr Expr

| GreaterThanEqual Expr Expr

| Cond Expr Expr Expr

| Not Expr

| Or Expr Expr

| Implies Expr Expr

| FuncCall "string" Expr

This datatype defines the set of expressions that semantic rules are defined

for. The first two lines B and I are the constant Boolean values and constant

integer values respectively. The following two lines P and V represent the

propositional variables and the integer variables respectively. The identifiers

themselves are just strings. For instance, the Boolean value true is B True,

and the propositional identifier p is P ’’p’’. An equality expression is to be

written as Equality a b, where a and b are expressions (Expr), and so on.

It is assumed that any expression written will pass through the context

conditions. The context conditions are not defined here in Isabelle, they are

expressed formally in Section 3.2, and they are defined in Maude in Sec-

tion 5.1. The big-step SOS rules that are introduced later ensure that if

given Equality a b, that a must evaluate to a’, where a’ is an integer, and

that b must evaluate to b’, where b’ is an integer, because both operands

must be defined for equality. Without the context conditions one can write
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Or (B True) (I 1) which since only the one operand must be true for the

disjunction to be true, Or (B True) (I 1) can be proven to be true in the

following. Such a formula though would be rejected immediately by the con-

text conditions of Section 3.2. It is thus assumed that any expression that is

to be proved would pass through the context conditions, and that a function

body expression is an integer expression, and that a predicate body expression

is a Boolean expression.

A function definition and a predicate definition are also defined as datatypes:

datatype Function = Func Expr

datatype Predicate = Pred Expr

A function definition is written as Func e, where e is the expression rep-

resenting the body of the function.

The memory store Σ is defined as:

datatype PropStore = σProp "bool"

datatype VarStore = σVar "int"

datatype FuncStore = σFn Function

datatype PredStore = σPr Predicate

The four stores that make up a Σ are separated here. Notice that these

are not maps. Each can only store a single item, for instance, a single propo-

sitional variable identifier, or a single function definition, and so on. If, for

instance, more than the one function definition is to be used within a proof

then these definitions will need extending, as at the minute only the one func-

tion definition can be present (the same applies to predicates and so on). This

simplifies the following definitions, but still allows for the issues surrounding

undefinedness to be adequately illustrated, and for proofs of Property 5.1 and

Property 5.2 to be discharged.

The semantic rules are defined making use of the following notation:

datatype Data_B = D_B

"(Expr ×
PropStore × VarStore × FuncStore × PredStore ×
bool)"

datatype Data_I = D_I

"(Expr ×
PropStore × VarStore × FuncStore × PredStore ×
int)"
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The datatype Data_B and the datatype Data_I enclose the necessary in-

formation, the expression to be evaluated, the four memory stores, and the

expected result value, either a Boolean value or an integer value.

To illustrate how the semantic rules are defined in Isabelle, consider the

following definition of the Value E semantic rule but only for an integer value

(Value_E_I), (the lemma for a Boolean value –Value_E_B– is virtually the

same, but would use eBS_B and D_B instead); the use of eBS_B (e Big-Step

Boolean) and eBS_I (e Big-Step integer) will be discussed below:

Value_E_I :

"eBS_I (D_I (I v, σProp pro, σVar var, σFn fn, σPr pr, v))"

The Prop_E semantic rule is defined as:

Prop_E :

"eBS_B (D_B (P iden, σProp pro, σVar var,

σFn fn, σPr pr, pro))"

The use of P ensures that a propositional identifier is being used. The

result pro is the given Boolean value stored at σProp. The Var E rule is

virtually the same, but using V iden and var as the first and last arguments

respectively, as well as using eBS_I and D_I since it is an integer expression.

The division semantic rule is defined as:

Division_E :

"[[eBS_I (D_I (a, σProp pro, σVar var, σFn fn, σPr pr, a’)) ;

eBS_I (D_I (b, σProp pro, σVar var, σFn fn, σPr pr, b’)) ;

b’ 6= 0 ;

v = (a’ div b’)]]

=⇒ eBS_I (D_I (Division a b, σProp pro, σVar var,

σFn fn, σPr pr, v))"

The assumptions are enclosed in [[]], which are separated by a ;. The

symbol =⇒ is meta-implication and is used to separate the assumptions from

the conclusion. Notice that if a and b have been shown to be defined, that

is, that they have evaluated to constant integer values a’ and b’ respectively,

then the Isabelle division operator is used to compute the result v. The guard

on b’ (an integer value) not being equal to 0 is of the upmost importance here,

because a’ div 0 is 0 in Isabelle, while it LPF this is reagrded as undefined.

The subtraction rule Minus_E is defined virtually the same, but obviously with

no such b’ not being equal to 0 guard.

The equality elimination semantic rule Equality_E is defined in virtually

the same way as:



Mechanising LPF Semantic Definitions 174

Equality_E :

"[[eBS_I (D_I (a, σProp pro, σVar var, σFn fn, σPr pr, a’)) ;

eBS_I (D_I (b, σProp pro, σVar var, σFn fn, σPr pr, b’)) ;

v = (a’ = b’)]]

=⇒ eBS_B (D_B (Equality a b, σProp pro, σVar var,

σFn fn, σPr pr, v))"

The greater than rule (GreaterThan_E) and the greater than equal rule

(GreaterThanEqual_E) are both defined in virtually the same way as the

Equality_E rule.

The disjunction lemmas are defined as:

Or_E1 :

"[[eBS_B (D_B (p, σProp pro, σVar var,

σFn fn, σPr pr, True))]]

=⇒ eBS_B (D_B (Or p q, σProp pro, σVar var,

σFn fn, σPr pr, True))"

Or_E2 :

"[[eBS_B (D_B (q, σProp pro, σVar var,

σFn fn, σPr pr, True))]]

=⇒ eBS_B (D_B (Or p q, σProp pro, σVar var,

σFn fn, σPr pr, True))"

Or_E3 :

"[[eBS_B (D_B (p, σProp pro, σVar var,

σFn fn, σPr pr, False)) ;

eBS_B (D_B (q, σProp pro, σVar var,

σFn fn, σPr pr, False))]]

=⇒ eBS_B (D_B (Or p q, σProp pro, σVar var,

σFn fn, σPr pr, False))"

The negation rules (Not_E1 and Not_E2) and the conditional expression

rules (Cond_E1 and Cond_E2) are both defined in virtually the same way.

Implication is defined in terms of a negation and a disjunction:

Impl_E :

"[[eBS_B (D_B (Or (Not p) q, σProp pro, σVar var,

σFn fn, σPr pr, True))]]

=⇒ eBS_B (D_B (Implies p q, σProp pro, σVar var,

σFn fn, σPr pr, True))"

The function call elimination rule is defined as:
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FuncCall_E :

"[[eBS_I (D_I (arg, σProp pro, σVar var,

σFn (Func res), σPr pr, arg’)) ;

eBS_I (D_I (res, σProp pro, σVar arg’,

σFn (Func res), σPr pr, res’))]]

=⇒ eBS_I (D_I (FuncCall iden arg, σProp pro, σVar var,

σFn (Func res), σPr pr, res’))"

An inductive predicate eBS_B is defined as:

inductive eBS_B :: "Data_B ⇒ bool"

and an inductive predicate eBS_I for integer expressions is defined as:

inductive eBS_I :: "Data_I ⇒ bool"

The eBS_B definition and the eBS_I definition are then completed using

the rules that have been presented above, like:

where

φ1

| . . .

| φn

where φi is one of the rules given above, such as Value_E_I and FuncCall_E.

The Boolean expression rules are added to the definition of eBS_B, and the

integer expression rules are added to the definition of eBS_I, as stated in the

alternative Expr definition in Section 3.2.

Proofs can now be conducted that make use of these big-step SOS rules.

A proof will here take the following form:

lemma name : "goal"

apply rule1

...

apply rulen

done

where rules are applied until the goal has been proved.

As an introductory example consider a proof of the LPF inference rule:

¬ -¬ -I
p

¬¬ p
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This proof applies the Not_E1 rule, followed by the Not_E2 rule, which

leaves a goal to be proved of p. This follows immediately by the given assump-

tion:

lemma Not_Not_I :

"[[eBS_B (D_B (p, σProp pro, σVar var,

σFn fn, σPr pr, True))]]

=⇒ eBS_B (D_B (Not (Not p), σProp pro, σVar var,

σFn fn, σPr pr, True))"

apply (rule Not_E2)

apply (rule Not_E1)

apply assumption

done

As another example the proof of Division (I 1) (I 1) being 1 follows.

lemma "eBS_I (D_I (Division (I 1) (I 1),

σProp pro, σVar var, σFn fn, σPr pr, 1))"

apply (rule Division_E)

apply (rule Value_E_I)

apply (rule Value_E_I)

apply simp

apply simp

done

The application of the Division_E rule forces four subgoals to be proved.

The first two relate to showing that the two operands are defined and denote

integer values, which follows immediately by use of the Value_E_I rule, since

both operands are the integer value I 1. Since the two operands have been

shown to be defined the Isabelle simplifier simp is used to calculate the value of

the division since the operands have been shown to be defined. The simplifier

also discharges the b not being equal to 0 subgoal.

The following is an example of a proof that cannot be discharged using the

LPF rules provided. The integer variable V ’’i’’ will be assigned the integer

value 1 from the integer value store σVar. After the Isabelle simplifier on

the penultimate line is executed the value False is inferred, since the second

defined operand to the Division operator is 0.

lemma "eBS_B (D_B (Equality (Division (V ’’i’’) (I 0)) (I 0),

σProp pro, σVar 1, σFn fn, σPr pr, True))"

apply (rule Equality_E)
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apply (rule Division_E)

apply (rule Var_E)

apply (rule Value_E_I)

apply simp

The above proof attempt has not been able to be completed.

In the following zeroFunction refers to the following:

σFn (Func

(Cond (Equality (V ’’i’’) (I 0))

(I 0)

(FuncCall ’’zero’’ (Minus (V ’’i’’) (I 1)))))

which is the definition of the zero function introduced earlier.

The following proofs shows that zero(0) evaluates to 0:

lemma "eBS_I (D_I (FuncCall ’’zero’’ (I 0),

σProp pro, σVar var, zeroFunction, σPr pr, 0))"

apply (rule FuncCall_E)

apply (rule Value_E_I)

apply (rule Cond_E1)

apply (rule Equality_E)

apply (rule Var_E)

apply (rule Value_E_I)

apply simp

apply (rule Value_E_I)

done

So, for example after applying the FuncCall_E semantic rule in the above

proof you are left with two subgoals to prove:

1. eBS_I

(D_I (I (0::int), σProp pro, σVar var,

σFn (Func

(Cond (Equality (V ’’i’’) (I (0::int)))

(I (0::int))

(FuncCall ’’zero’’

(Minus (V ’’i’’) (I (1::int)))))),

σPr pr, ?arg’))

2. eBS_I

(D_I (Cond (Equality (V ’’i’’) (I (0::int))) (I (0::int))
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(FuncCall ’’zero’’ (Minus (V ’’i’’) (I (1::int)))),

σProp pro, σVar ?arg’,

σFn (Func

(Cond (Equality (V ’’i’’) (I (0::int)))

(I (0::int))

(FuncCall ’’zero’’

(Minus (V ’’i’’) (I (1::int)))))),

σPr pr, 0::int))

variables:

pr :: Predicate

?arg’, var :: int

pro :: bool

In the above proof the subgoals were proved in the order listed. The first

relates to showing that the argument is defined. The second relates to showing

that this application of the zero function evaluates to 0.

The following proof shows that that zero(1) also evaluates to 0, where this

proof requires an extra application of the FuncCall_E rule:

lemma "eBS_I (D_I (FuncCall ’’zero’’ (I 1),

σProp pro, σVar var, zeroFunction, σPr pr, 0))"

apply (rule FuncCall_E)

apply (rule Value_E_I)

apply (rule Cond_E2)

apply (rule Equality_E)

apply (rule Var_E)

apply (rule Value_E_I)

apply simp

apply (rule FuncCall_E)

apply (rule Minus_E)

apply (rule Var_E)

apply (rule Value_E_I)

apply simp

apply (rule Cond_E1)

apply (rule Equality_E)

apply (rule Var_E)

apply (rule Value_E_I)

apply simp

apply (rule Value_E_I)

done
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Now Property 5.1 and Property 5.2 will be proved. In order to prove

Property 5.1 two inference rules are used:

zero b
zero(0) = 0

zero i

i :Z;

i 6= 0;

zero(i − 1) = k

zero(i) = k

which are assumed to be true, refer to Section 2.3 where these two inference

rules were first used in this thesis.

The following two lemmas represent the above two properties. The sorry

command is used to abandon the proof attempt since these are lemmas that

are being “assumed” true here for this work and are not being proved. The

sorry command allows the user to continue work in the proof file.

lemma zero_b :

"eBS_B (D_B (Equality (FuncCall ’’zero’’ (I 0)) (I 0),

σProp pro, σVar var, zeroFunction, σPr pr, True))"

sorry

lemma zero_i :

"[[eBS_B (D_B (Not (Equality (I i) (I 0)),

σProp pro, σVar var, zeroFunction, σPr pr, True)) ;

eBS_B (D_B (Equality

(FuncCall ’’zero’’ (Minus (I i) (I 1))) (I k),

σProp pro, σVar var, zeroFunction, σPr pr, True))]]

=⇒ eBS_B (D_B (Equality (FuncCall ’’zero’’ (I i)) (I k),

σProp pro, σVar var, zeroFunction, σPr pr, True))"

sorry

The proof will follow by using natural number induction. Since the only

numeric datatype that is being used is integer values the induction rule needs

an assumption that i ≥ 0:

zero Natural Number Induction

i ≥ 0;

zero(0) = 0;

zero(i − 1) = k ` i > 0 ⇒ zero(i) = k

zero(i) = k
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lemma zero_Natural_Number_Induction :

"[[eBS_B (D_B (GreaterThanEqual (I i) (I 0),

σProp pro, σVar var, zeroFunction, σPr pr, True)) ;

eBS_B (D_B (Equality (FuncCall ’’zero’’ (I 0)) (I 0),

σProp pro, σVar var, zeroFunction, σPr pr, True)) ;

(eBS_B (D_B (Equality

(FuncCall ’’zero’’ (Minus (I i) (I 1))) (I k),

σProp pro, σVar var, zeroFunction, σPr pr, True))

=⇒ eBS_B (D_B (Implies (GreaterThan (I i) (I 0))

(Equality (FuncCall ’’zero’’ (I i)) (I k)),

σProp pro, σVar var, zeroFunction, σPr pr, True)))]]

=⇒ eBS_B (D_B (Equality (FuncCall ’’zero’’ (I i)) (I k),

σProp pro, σVar var, zeroFunction, σPr pr, True))"

sorry

The proof of Property 5.1 follows where case distinctions are made using

case_tac. After the first case distinction the case that i < 0 is dealt with,

which follows since false ⇒ p is true. This case is concluded with the first

use of simp. After this the case that i ≥ 0 is dealt with, which follows by

induction. The subgoal i ≥ 0 and the base case subgoal are then discharged,

the former follows trivially and the latter follows by applying zero_b. To

conclude the step case another case distinction is made on i > 0. To discharge

the i > 0 case an application of zero_i is made, and the subgoal then follows

by the assumption. The i ≤ 0 case follows trivially.

lemma zero_Implication_Example :

"eBS_B (D_B (Implies (GreaterThanEqual (I i) (I 0))

(Equality (FuncCall ’’zero’’ (I i)) (I 0)),

σProp pro, σVar var, zeroFunction, σPr pr, True))"

apply (case_tac "i < (0::int)")

apply (rule Impl_E)

apply (rule Or_E1)

apply (rule Not_E2)

apply (rule GreaterThanEqual_E)

apply (rule Value_E_I)

apply (rule Value_E_I)

apply simp

apply (rule Impl_E)

apply (rule Or_E2)

apply (rule zero_Natural_Number_Induction)
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apply (rule GreaterThanEqual_E)

apply (rule Value_E_I)

apply (rule Value_E_I)

apply simp

apply (rule zero_b)

apply (case_tac "i > (0::int)")

apply (rule Impl_E)

apply (rule Or_E2)

apply (rule zero_i)

apply (rule Not_E2)

apply (rule Equality_E)

apply (rule Value_E_I)

apply (rule Value_E_I)

apply simp

apply assumption

apply (rule Impl_E)

apply (rule Or_E1)

apply (rule Not_E2)

apply (rule GreaterThan_E)

apply (rule Value_E_I)

apply (rule Value_E_I)

apply simp

done

In order to discharge the proof of Property 5.2 the ⇒ E L inference rule

is made use of:

⇒ E L
p ⇒ q ; p

q

lemma Impl_E_L :

"[[eBS_B (D_B (Implies p q, σProp pro, σVar var,

σFn fn, σPr pr, True)) ;

eBS_B (D_B (p, σProp pro, σVar var,

σFn fn, σPr pr, True))]]

=⇒ eBS_B (D_B (q, σProp pro, σVar var,

σFn fn, σPr pr, True))"

sorry

The proof of Property 5.2 then follows by making a case distinction on

i < 0, and through applying the zero_Implication_Example rule.
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lemma zero_Disjunction_Example :

"eBS_B (D_B (Or (Equality (FuncCall ’’zero’’ (I i)) (I 0))

(Equality (FuncCall ’’zero’’ ((I (-i)))) (I 0)),

σProp pro, σVar var, zeroFunction, σPr pr, True))"

apply (case_tac "i < (0::int)")

apply (rule Or_E2)

apply (rule Impl_E_L)

apply (rule zero_Implication_Example)

apply (rule GreaterThanEqual_E)

apply (rule Value_E_I)

apply (rule Value_E_I)

apply simp

apply (rule Or_E1)

apply (rule Impl_E_L)

apply (rule zero_Implication_Example)

apply (rule GreaterThanEqual_E)

apply (rule Value_E_I)

apply (rule Value_E_I)

apply simp

done

This work provided some interactive proof support for LPF, but it is by no

means a complete definition, but it does provide the foundation to facilitate

the further development of interactive proof support for LPF. Furthermore,

this preliminary work on mechanised proof support for LPF in Isabelle has

shown that Isabelle is a useful tool for providing proof support for non-classical

logics. Unfortunately due to the embedding used, large logical formulae need

to be written. Also in this preliminary work on mechanised proof support for

LPF there is not much automation available; the resolution proof procedure is

investigated in Chapter 6.

It would be useful to extend this partial mechanisation further to include

support for VDM-SL datatypes etc., as well as to address the simplifications

that have been made in this mechanisation.

5.3 Conclusions

The Maude term-rewriting system has been used to provide a mechanisation

of the big-step SOS definition for LPF, and of the small-step SOS definition

for LPF. This has provided some assurance that the semantic definitions ac-

curately formalise the semantics of LPF, as well as providing a case study on

how to incorporate SOS definitions into Maude. This mechanisation has shown



Mechanising LPF Semantic Definitions 183

precisely why the small-step SOS semantic definition is required to accurately

capture the semantics of LPF for evaluating expressions. Also a comparison

between the small-step and the big-step SOS definition implementations has

been made, comparing the number of rewrite rules executed in evaluating dif-

ferent expressions, showing the scale of how many more rewrites need to take

place with the small-step definition.

The LPF big-step SOS definition has been used as the foundation of pro-

viding interactive proof support to allow for reasoning about logical formulae

that can contain references to partial terms in LPF, using the Isabelle proof

assistant. Key properties of logical formulae that contain references to partial

functions have been discharged.
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This chapter presents an investigation into the applicability of mechanised

proof support for LPF, by focusing on the basic but fundamental two-valued

classical logic proof procedure resolution and the associated technique proof

by contradiction. An investigation of the issues that arise in applying these

techniques to LPF, and into the extent of the modifications needed to be

made to these techniques for LPF is presented. This provides key insights into

providing mechanised proof support for LPF.

Recall that there has been a lack of direct proof support for LPF over the

years. Investigating the impact of the fundamental basic techniques in LPF is

thus the essential and obvious starting point for investigating proof support for

LPF. These fundamental basic proof techniques are the foundation on which

many advanced proof techniques, (see Section 7.2.4) are built. This work
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provides the essential foundation to facilitate research into the modification of

advanced proof techniques for LPF, and for providing tool support.

The E semantic function definition presented in Figure 3.8 is used in this

chapter to aid in presenting concepts, issues that arise, as well as being the

underlying basis on which proofs are conducted. A simplified version of the

E semantic function definition is used in this chapter as the expressions mk

Arith(a, op, b) and mk Equality(a, b) are removed from consideration. This is

because the techniques used in this chapter are syntactic, so for instance, the

equality predicate is just an arbitrary predicate. The set of expressions Expr∆

considered in this chapter does not include any Arith and Equality expressions,

and is referred to as Expr from here on.

The notions of validity, satisfiability, and related definitions for LPF are in-

troduced first in this chapter. This is followed by introducing the clausal form

notation for LPF. The topics of the resolution rule of inference and refutation

procedures (proving the validity of a formula by refuting its negation [BA01])

are then considered separately, before they are addressed combined (essentially

doing a proof by contradiction). Resolution is a refutation procedure [BA01].

Below when the term resolution proof procedure is used refutation is not of

consideration. When concerned with refutation, the term resolution refutation

procedure will be used. The main contributions of this chapter is the adap-

tion of the resolution refutation procedure for LPF, presented in Section 6.5

onwards. The work prior to that in this chapter is necessary to support those

contributions.

(Some initial collaborative work with my supervisors on this work are pub-

lished in [JLS12a]1 which has been extended in this chapter. Key definitions,

methods, and results, such as the inclusion of unification constraints and dis-

charging definedness obligations using resolution for instance, are mine. Illus-

trative proofs done in respect to E and Σ, and the resolution proofs are my

own as well.)

6.1 Validity and Satisfiability

Key definitions from two-valued classical logic are re-stated before they are

formally defined for LPF.

6.1.1 Two-Valued Classical Logic Recap

An interpretation is a map that assigns a meaning to the variables, as well

as to the function and the predicate symbols that appear in a given formula.

Given a formula e:

1A shorter version of this paper has been accepted for publication elsewhere. It has been
peer-reviewed, but as of July 2013 it has not been published yet.
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• e is satisfiable iff there exists an interpretation where e evaluates to true

(such a satisfying interpretation is known as a model for e);

• e is unsatisfiable iff it is not satisfiable, that is, there exists no interpre-

tation where e evaluates to true;

• e is valid (|= e) iff e evaluates to true in every interpretation (and is thus

also satisfiable); and

• e is not valid (6|= e) iff there exists an interpretation where e does not

evaluate to true.

Two formulae e1 and e2 are logically equivalent iff e1 and e2 have the same

truth value in every interpretation. Two formulae are equi-satisfiable when e1

is satisfiable iff e2 is satisfiable (they may not be logically equivalent or even

share the same model).

Let Γ = {e1, . . . , en} be a set of formulae, where the commas are to be in-

terpreted as conjunctions. The set of formulae Γ is satisfiable iff there exists an

interpretation where each ei evaluates to true (such a satisfying interpretation

is known as a model of Γ). The set of formulae Γ is unsatisfiable iff there exists

no interpretation where Γ evaluates to true (that is, in every interpretation an

ei must not evaluate to true).

Furthermore, e is a logical consequence of Γ (Γ |= e), if e evaluates to

true, in every interpretation where Γ evaluates to true. If Γ = {} then logical

consequence is the same as validity. The notation Γ 6|= e is used when e is not

a logical consequence of Γ.

6.1.2 LPF

The above concepts will now be defined for LPF through the use of the E
(including the Σ definition) semantic function definition.

In terms of the E semantic function definition, an interpretation is a σ ∈ Σ.

Given a formula e, eσ represents (σ, true) ∈ E(e) and eσ represents (σ, false) ∈
E(e). Additionally, eΣ = {σ | σ: Σ ∧ eσ}. The concepts of validity and

satisfiability etc. are defined as:

satisfiable(e) iff ∃σ: Σ · (σ, true) ∈ E(e) (that is, eΣ 6= {})

unsatisfiable(e) iff ¬∃σ: Σ · (σ, true) ∈ E(e) (that is, eΣ = {})

valid(e) iff ∀σ: Σ · (σ, true) ∈ E(e) (that is, eΣ = Σ)
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Notice that if unsatisfiable were defined as: ∀σ: Σ · (σ, false) ∈ E(e), then

the set of unsatisfiable expressions would be smaller since a formula e not

evaluating to true in LPF, is not the same as it evaluating to false. In two-

valued classical logic, the only possible outcomes are true and false but in LPF

it is necessary to take a position on the “gaps”, that is, σ /∈ dom E(e).

In terms of the E semantics, e1 and e2 are logically equivalent iff for all

σ ∈ Σ it is the case that (σ, v) ∈ E(e1) iff (σ, v) ∈ E(e2). In the E semantics it

thus follows that e1 and e2 are logically equivalent iff E(e1) = E(e2).

Two formulae are equi-satisfiable when there exists a model for e1 iff there

is a model for e2.

Furthermore, Γσ is taken to represent eσ1 ∧. . .∧eσn , and ΓΣ = {σ | σ: Σ∧Γσ}.
Logical consequence can be defined using the more concise notation instead

of the longer set definition as was presented in Section 4.2, (the set definitions

though are semantically the same), as ΓΣ ⊆ eΣ. When Γ is empty |= e is

written and every σ ∈ Σ must make e true.

6.2 The Method of Truth Tables

For propositional logic, validity etc. can be checked by using truth tables. To

decide if two formulae are logically equivalent a truth table could be con-

structed for each formula, and the two formulae are logically equivalent if the

two corresponding truth tables are identical.

A truth table is a two dimensional array that, for a formula e, has columns

to represent each atom of e and one column to represent the results for e, with

each row of the truth table corresponding to an interpretation (an assignment

of values to the atoms) as well as the result of applying the interpretation to

e. Since only a finite number of atoms can exist within a given formula it is

possible to check all possibilities.

The performance of the truth table method is exponential because it re-

quires checking 2n interpretations, where n is the number of distinct atoms

contained within the formula. Thus for n atoms there will be 2n rows in the

corresponding truth table.

The number of rows required in a truth table for LPF increases. In terms

of the E semantics presented earlier, every assignment of values is a σ ∈ Σ

(σ’s where a propositional variable under consideration is not included in the

domain –as a maplet– must be considered to allow for undefined propositional

variables to occur). For propositional LPF, the truth table method would re-

quire checking 3n σ instances to check a formula for validity, that is, that there

will be 3n rows in the corresponding truth table. It might not be immediately

obvious why it is necessary to check the result when propositional variables
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fail to denote but consider an example like ∆¬ p ` ∆p:

p ¬ p ∆¬ p ∆p

true false true true

⊥B ⊥B false false

false true true true

Of the 3n rows in a truth table in LPF, 2n rows correspond to those rows

where all propositional variables denote (the same rows that would be present

in a two-valued classical logic truth table), and (3n)− (2n) rows correspond to

a case where at least the one propositional variable does not denote. Thus, in

LPF there are a significant number of “extra” cases to consider.

Thus, if there exists a large number of atoms in a formula then this method

is inefficient. For predicate calculus, formulae can include the use of quanti-

fiers, so the method of finite truth tables is not adequate, since an infinite

number of distinct interpretations may need to be considered. It is not possi-

ble to exhaustively search an infinite number of cases, so truth tables are not

adequate.

6.3 Clausal Form

6.3.1 Two-Valued Classical Logic Recap

Formulae are commonly reduced to a normal form, which allows for the form

of formulae to be standardised. This may be done for instance, to allow proof

procedures to be used. The normal form that is of interest here is Clausal

Form [BA01], where a set-based representation is used. A formula in clausal

form is represented as a set of clauses (an implicit conjunction of clauses),

where each clause is an implicit disjunction of literals. Thus in clausal form

a formula is represented as a set of sets of literals. Clausal form is frequently

used in (automated) theorem proving systems, for instance by the resolution

proof procedure which is considered later in this chapter.

In two-valued classical logic both propositional and predicate formulae can

be converted into clausal form. The conversion of a propositional formula

into clausal form proceeds by first converting the formula under question into

Conjunctive Normal Form (CNF ) [BA01, Har09, Bun10] so that the formula

is a conjunction of disjunctions of literals, where a literal is an atom (a positive

literal) or the negation of an atom (a negative literal), that is, a formula in CNF

is represented as: C1 ∧ . . . ∧ Cn , where each Ci is of the form: li1 ∨ . . . ∨ limj
.

Any two-valued classical propositional formula can be converted into a logically

equivalent formula in CNF.
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A propositional formula in CNF can be represented in the logically equiv-

alent clausal form set-based notation, that is, {C1, . . . ,Cn}, where each Ci is

a set of the form: {li1 , . . . , limj
}.

The conversion of a predicate formula into clausal form first requires con-

verting the formula into Prenex Normal Form (PNF ) [BA01], where any quan-

tifiers are to occur on the left to the rest of the formula (known as the matrix).

Any predicate formula can be converted into a logically equivalent formula in

PNF, where it will be of the form: Q1x1 · . . . · Qnxn ·M , where each Qi is a

universal or an existential quantifier, and M is the quantifier free matrix.

The conversion of a closed (no free variables) predicate formula into clausal

form first needs converting into PNF and then it needs Skolemising [BA01,

Har09]. Skolemising a formula removes any existential quantifiers replacing

them with either a Skolem constant or a Skolem function (over any universally

quantified variables that preceded the existential quantifier). A Skolemised

formula is equi-satisfiable to the original corresponding closed PNF formula.

The CNF conversions are to be used on the matrix in the same way as for

propositional logic. The CNF formula can then be represented in clausal form.

The universal quantifiers can then be dropped since a clausal form formula

is closed; that is, that the variables in each clause are implicitly universally

quantified.

6.3.2 LPF

This section outlines how to convert LPF formulae into clausal form. Propo-

sitional logic is considered first, followed by predicate logic. The standard

two-valued classical logic conversions needed to be able to convert a formula

into clausal form carry over to LPF, but the non-monotone ∆ operator requires

additional conversions to be able to convert an LPF formula into clausal form.

The use of ∆ can lead to large resulting clausal form formulae.

Fortunately, the use of ∆ can be limited; this is discussed in Section 6.6.

Here the logically equivalent conversions for the ∆ logical operator are pre-

sented.

These standard conversions presented in this section provide the foundation

on which research into more advanced (optimised) conversion techniques can

be conducted, that avoid such a rapid expansion of formulae.

Propositional Logic

The process of converting a propositional formula into CNF is extended from

the two-valued classical case since any ∆ that occurs needs pushing inwards so

that any ∆ in a formula that is in CNF/clausal form will only surround a literal.

Thus in LPF, what is meant by a literal is extended to also include ∆l and ¬∆l ,
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where l is an literal in the standard sense. The process of converting a formula

into CNF basically follows the standard approach [BA01], but supplemented

with the application of ∆ conversion rules:

• eliminate any propositional operators other than conjunction, disjunction

and negation by applying the standard syntactic definitions, e.g. replace

any p ⇒ q with ¬ p ∨ q ;

• push in the ∆ operator, (see the discussion below);

• use de Morgan’s Laws to force negations inwards, (see Lemma 10);

• eliminate all double negations, (see Lemma 11); and

• use the distributive laws to remove conjunctions from within disjunctions,

(see Lemma 12).

The second step where a ∆ operator is to be pushed inwards takes place

by using the following equivalences:

• ∆(p ∨ q) is logically equivalent to:

¬ ((¬ p ∧ ¬∆q) ∨ (¬∆p ∧ ¬ q) ∨ (¬∆p ∧ ¬∆q))

(i.e. the negation of the three cases that make ∆(p ∨ q) denote false),

which converted into CNF is:

(p ∨ ∆q) ∧ (∆p ∨ q) ∧ (∆p ∨ ∆q)

• ∆(p ∧ q) is logically equivalent to the CNF formula:

(¬ p ∨ ∆q) ∧ (∆p ∨ ¬ q) ∧ (∆p ∨ ∆q)

For illustration of this tranformations consider the formula:

¬∆(p ∨ q)

the ∆ should be pushed inwards first and then the negation can be pushed

inwards. For instance, the formula ¬∆(p ∨ q) is first to be converted to:

¬ ((p ∨ ∆q) ∧ (∆p ∨ q) ∧ (∆p ∨ ∆q))

which is then converted into the CNF formula:
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(¬ p ∨ ¬∆p) ∧ (¬ q ∨ ¬∆q) ∧ (¬∆p ∨ ¬∆q)

The formula:

¬∆(p ∧ q)

converted into CNF becomes:

(p ∨ ¬∆p) ∧ (q ∨ ¬∆q) ∧ (¬∆p ∨ ¬∆q)

Furthermore, given:

¬ (∆(p ∨ q ∨ r))

then the corresponding logically equivalent CNF formula is:

(¬ p ∨ ¬∆p) ∧ (¬ q ∨ ¬∆q) ∧ (¬ r ∨ ¬∆r) ∧ (¬∆p ∨ ¬∆q ∨ ¬∆r)

It is also the case that ∆¬ l can be simplified to ∆l , (see Lemma 13).

Transformations like these for ∆ are needed in the well-definedness ap-

proach for the well-definedness operator D in [Meh08]. For the work in this

chapter the introduction of ∆ can be minimised/avoided, and the size of the

transformations in places reduced; this is discussed later in this chapter when

resolution and refutation are being considered. An aim of this work is to

investigate the extent of the extra work needed for LPF when applying res-

olution and refutation, and key to this was investigating how to reduce the

introduction of the expensive ∆ operator in resolution proofs.

Illustrative proofs that show that these propositional conversions carry over

to LPF follow. All such proofs presented in this chapter are done with respect

to the E semantic function definition that was presented in Section 3.4, which

formally defines the semantics of LPF.

Lemma 10. Any formula ¬ (p ∨ q) is logically equivalent to (¬ p) ∧ (¬ q).

Proof. By the definition of E , E(¬ (p ∨ q)) expands to:

{(σ, true) | (σ, false) ∈ E(p ∨ q)} ∪ {(σ, false) | (σ, true) ∈ E(p ∨ q)}.
By the definition of E this further expands to:

{(σ, true) | (σ, false) ∈ E(p) ∧ (σ, false) ∈ E(q)} ∪
{(σ, false) | (σ, true) ∈ E(p)} ∪ {(σ, false) | (σ, true) ∈ E(q)}.
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By the definition of E , E((¬ p) ∧ (¬ q)) expands to:

{(σ, true) | (σ, true) ∈ E(¬ p) ∧ (σ, true) ∈ E(¬ q)} ∪
{(σ, false) | (σ, false) ∈ E(¬ p)} ∪ {(σ, false) | (σ, false) ∈ E(¬ q)}.

By the definition of E this further expands to:

{(σ, true) | (σ, false) ∈ E(p) ∧ (σ, false) ∈ E(q)} ∪
{(σ, false) | (σ, true) ∈ E(p)} ∪ {(σ, false) | (σ, true) ∈ E(q)}.

Thus E(¬ (p ∨ q)) = E((¬ p) ∧ (¬ q)) as required. 2

Lemma 11. Any formula ¬¬ p is logically equivalent to p.

Proof. By the definition of E , E(¬¬ p) expands to:

{(σ, true) | (σ, false) ∈ E(¬ p)} ∪ {(σ, false) | (σ, true) ∈ E(¬ p)}.
By the definition of E this further expands to:

{(σ, true) | (σ, true) ∈ E(p)} ∪ {(σ, false) | (σ, false) ∈ E(p)}.
This immediately reduces to E(p) as required (E(¬¬ p) = E(p)). 2

Lemma 12. Any formula p ∨ (q∧r) is logically equivalent to (p ∨ q)∧(p ∨ r)

Proof. By the definition of E , E(p ∨ (q ∧ r)) expands to:

{(σ, true) | (σ, true) ∈ E(p)} ∪
{(σ, true) | (σ, true) ∈ E(q ∧ r)} ∪
{(σ, false) | (σ, false) ∈ E(p) ∧ (σ, false) ∈ E(q ∧ r)}.

By the definition of E , this further expands to:

{(σ, true) | (σ, true) ∈ E(p)} ∪
{(σ, true) | (σ, true) ∈ E(q) ∧ (σ, true) ∈ E(r)} ∪
{(σ, false) | (σ, false) ∈ E(p) ∧ (σ, false) ∈ E(q)} ∪
{(σ, false) | (σ, false) ∈ E(p) ∧ (σ, false) ∈ E(r)}.

By the definition of E , E((p ∨ q) ∧ (p ∨ r)) expands to:

{(σ, true) | (σ, true) ∈ E(p ∨ q) ∧ (σ, true) ∈ E(p ∨ r)} ∪
{(σ, true) | (σ, false) ∈ E(p ∨ q)} ∪
{(σ, false) | (σ, false) ∈ E(p ∨ r)}.

By the definition of E , this further expands and simplifies to the set defi-

nition of E(p ∨ (q ∧ r)) presented above. 2

Lemma 13. Any formula ∆¬ l is logically equivalent to ∆l .

Proof. By the definition of E , E(∆¬ l) expands to:

{(σ, true) | σ ∈ dom E(¬ l)} ∪ {(σ, false) | σ ∈ (Σ \ dom E(¬ l))}.
By the definition of E this further expands to:

{(σ, true) | σ ∈ dom E(l)}∪{(σ, false) | σ ∈ (Σ \dom E(l))}, which is equiv-
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alent according to the definition of E , to E(∆l) as required. 2

Also note that p ∨ ¬ p ∨ ¬∆p is equivalent to the truth value true, (the

law of the excluded fourth, pΣ ∪ (¬ p)Σ ∪ (¬∆p)Σ = Σ). The formula ∆(∆p)

and the formula (∆p ∨ ¬∆p) are also equivalent to the truth value true.

Furthermore, the formula (∆p ∧ ¬∆p) is equivalent to the truth value false.

Remember that in LPF the simplification of the formula p ∨ ¬ p (the law

of the excluded middle) to the truth value true and the simplification of the

formula p ∧ ¬ p to the truth value false cannot be made, because of the case

when p is undefined.

All of these equivalences used when converting a formula into CNF hold in

LPF. Additionally, every propositional formula in LPF can be converted into

an equivalent formula that is in CNF.

Theorem 14. Every LPF propositional formula e ∈ Expr , can be converted

into an equivalent formula that is in CNF.

Proof. This theorem follows immediately from the fact that all of the required

conversions hold in LPF (see Lemmas 10, 11, 12 and 13). The proofs of other

laws which are not presented here follow in a similar way. 2

The conversion of a CNF formula into clausal form relies on the idem-

potence properties and the commutativity of conjunctions and disjunctions.

These properties all hold in LPF and the proof of one of these properties fol-

lows.

Lemma 15. Any formula p ∨ p is logically equivalent to p.

Proof. By the definition of E , E(p ∨ p) expands to:

{(σ, true) | (σ, true) ∈ E(p)} ∪ {(σ, true) | (σ, true) ∈ E(p)} ∪
{(σ, false) | (σ, false) ∈ E(p) ∧ (σ, false) ∈ E(p)}.

By the definition of a set, the first two sets from the set union definition

presented above are equivalent (A∪A = A) and the third set additionally can

be simplified. The resulting set union is equivalent to E(p) as required. 2

Theorem 16. Every LPF propositional formula e ∈ Expr , can be converted

into an equivalent clausal form.

Proof. This immediately follows from Theorem 14, Lemma 15, the other

idempotent property (E(p ∧ p) = E(p)), as well as the fact that the commuta-

tivity of conjunctions and disjunctions all hold in LPF which all follow by the
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definition of E . 2

In order to try to reduce the size of a resulting clausal form formula, the

absorption properties can be used, whereby both p ∧ (p ∨ q) and p ∨ (p ∧ q)

can be simplified to p. This is illustrated in the following proof.

Lemma 17. Any formula p ∧ (p ∨ q) and any formula p ∨ (p ∧ q) are

both logically equivalent to p.

Proof. First consider the case of p ∧ (p ∨ q) being logically equivalent to p.

By the definition of E , E(p ∧ (p ∨ q)) expands to:

{(σ, true) | (σ, true) ∈ E(p) ∧ (σ, true) ∈ E(p ∨ q)} ∪
{(σ, false) | (σ, false) ∈ E(p)} ∪
{(σ, false) | (σ, false) ∈ E(p ∨ q)}.

By the definition of E this further expands to:

{(σ, true) | (σ, true) ∈ E(p) ∧ (σ, true) ∈ E(p)} ∪
{(σ, true) | (σ, true) ∈ E(p) ∧ (σ, true) ∈ E(q)} ∪
{(σ, false) | (σ, false) ∈ E(p)} ∪
{(σ, false) | (σ, false) ∈ E(p) ∧ (σ, false) ∈ E(q)}.

The second set from the set union is a subset of the first set; similarly, the

fourth set from the set union is a subset of the third set. The first set (after

the trivial simplification) and the third set immediately match the expansion

of E(p), which is:

{(σ, true) | (σ, true) ∈ E(p)} ∪ {(σ, false) | (σ, false) ∈ E(p)}, and this

concludes the first case.

The proof of the other case, that is, p ∨ (p ∧ q) being logically equivalent

to p (E(p ∨ (p∧q)) = E(p)) is similar to the proof of the case presented above.

2

Predicate Logic

The process of converting a formula into PNF is as follows [BA01]:

• standardise the variables apart, i.e. rename variables, where necessary, so

that no two quantifiers bind the same variable name;

• push any negation operators inwards so that they only apply to atomic

formulae, e.g. through the use of de Morgan’s Laws and through conver-

sions such as ¬∃x · p to ∀x · ¬ p; and

• move any quantifiers out of the matrix, e.g. through conversions such as

p ∨ ∃x · q to ∃x · (p ∨ q), and p ∨ ∀x · q to ∀x · p ∨ q .
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but since predicate LPF is being considered, the standard process outlined

above for converting a two-valued classical logic formula into PNF needs ex-

tending, since any ∆ needs pushing into the matrix, before the CNF conver-

sions can be used as normal on the matrix.

Given ∆e, where e is a quantified formula, then e should first be put into

PNF and then the ∆ can be pushed inwards, followed by any further use of the

PNF conversions as required (after pushing in any ∆ any negation that was

to the left of the ∆ can be pushed in). The following equivalences are needed:

• ∆(∀i · p(i)) is logically equivalent to:

¬ (∃i · ¬∆p(i) ∧ ∀i · (p(i) ∨ ¬∆p(i)))

(i.e. the negation of the cases that make ∆(∀i ·p(i)) false, which is when

p(i) is always undefined, or when p(i) is true at least once, undefined at

least once and is always true or undefined, so p(i) is never false), which

gives rise to:

∀i ·∆p(i) ∨ ∃i · (¬ p(i) ∧∆p(i))

• ∆(∃i · p(i)) is logically equivalent to:

¬ (∃i · ¬∆p(i) ∧ ∀i · (¬ p(i) ∨ ¬∆p(i)))

Again, note that ∆(∀i · p(i)) and ∆(∃i · p(i)) are two-valued, and thus

the formulations above that maintain the presence of ∆ are needed since log-

ical equivalence is being sought. Unfortunately, they give rise to much larger

formulae. The formula ∆(∀i · p(i)) is represented in clausal form as:

{{¬ p(c),∆p(x )}, {∆p(c),∆p(x )}}

while the formula ¬∆(∀i · p(i)) is represented in clausal form as:

{{p(x ),¬∆p(x )}, {¬∆p(c)}}

where c is a Skolem constant.

Illustrative proofs to show that the above holds in LPF follow. Again such

proofs are done with respect to the E semantic function definition presented

in Section 3.4.
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Lemma 18. Any formula ¬∃x · p is logically equivalent to ∀x · ¬ p.

Proof. By the definition of E , E(¬∃x · p) expands to:

{(σ, true) | (σ, false) ∈ E(∃x · p)} ∪ {(σ, false) | (σ, true) ∈ E(∃x · p)}.
By the definition of E this further expands to:

{(σ, true) | σ ∈ Σ ∧ rng ({σ † {x 7→ i} | i :Z}) = {false}} ∪
{(σ, false) | σ ∈ Σ ∧ true ∈ rng ({σ † {x 7→ i} | i :Z}� E(p))}.

By the definition of E , E(∀x · ¬ p) expands to:

{(σ, true) | σ ∈ Σ ∧ rng ({σ † {x 7→ i} | i :Z}� E(¬ p)) = {true}} ∪
{(σ, false) | σ ∈ Σ ∧ false ∈ rng ({σ † {x 7→ i} | i :Z}� E(¬ p))}.

By the definition of E this further expands to:

{(σ, true) | σ ∈ Σ ∧ rng ({σ † {x 7→ i} | i :Z}� E(p)) = {false}} ∪
{(σ, false) | σ ∈ Σ ∧ true ∈ rng ({σ † {x 7→ i} | i :Z}� E(p))}.

The two sets formed are equivalent which concludes the result (E(¬∃x ·p) =

E(∀x · ¬ p)) as required. 2

The following proof assumes that all variables are standardised apart. Also

remember that, in the E semantic definition all quantification is performed only

over the set of integers (Z), so x in the following proof is always defined.

Lemma 19. Let p be a formula that contains no free occurrences of the

variable x . Then any formula p ∨ ∃x · q is logically equivalent to ∃x · (p ∨ q).

Proof. By the definition of E , E(p ∨ ∃x · q) expands to:

{(σ, true) | (σ, true) ∈ E(p)} ∪
{(σ, true) | (σ, true) ∈ E(∃x · q)} ∪
{(σ, false) | (σ, false) ∈ E(p) ∧ (σ, false) ∈ E(∃x · q)}.

By the definition of E this further expands to:

{(σ, true) | (σ, true) ∈ E(p)} ∪
{(σ, true) | σ ∈ Σ ∧ true ∈ rng ({σ † {x 7→ i} | i :Z}� E(q))} ∪
{(σ, false) | σ ∈ Σ ∧ (σ, false) ∈ E(p) ∧

rng {σ † {x 7→ i} | i :Z}� E(q) = {false}}.

By the definition of E , E(∃x · (p ∨ q)) expands to:

{(σ, true) | σ ∈ Σ ∧ true ∈ rng ({σ † {x 7→ i} | i :Z}� E(p ∨ q))} ∪
{(σ, false) | σ ∈ Σ ∧ rng {σ † {x 7→ i} | i :Z}� E(p ∨ q) = {false}}.

By the definition of E this further expands to:

{(σ, true) | σ ∈ Σ ∧ true ∈ rng ({σ † {x 7→ i} | i :Z}� E(p))} ∪
{(σ, true) | σ ∈ Σ ∧ true ∈ rng ({σ † {x 7→ i} | i :Z}� E(q))} ∪
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{(σ, false) | σ ∈ Σ ∧ rng {σ † {x 7→ i} | i :Z}� E(p) = {false} ∧
rng {σ † {x 7→ i} | i :Z}� E(q) = {false}}.

Since the variables have first been standardised apart and by the assump-

tion that x is not free in p, if p denotes true or false when p contains no

reference to x , then quantifying over x causes no change in the result. Thus

the two sets formed are equivalent as required. 2

Every first-order LPF formula can be converted into an equivalent formula

that is in PNF.

Theorem 20. Every LPF formula e ∈ Expr , can be converted into an

equivalent formula that is in PNF.

Proof. This follows since the conversions required for converting a two-valued

classical logic formula into PNF all hold in LPF. The proofs of these con-

versions follow in a similar way to the proofs of the conversions presented in

Lemmas 18 and 19, and because the renaming of variables (through the stan-

dardising apart process) has no effect on logical equivalence. 2

Skolemisation also carries over to LPF and furthermore, because satisfi-

ability is being sought all of the Skolem constants (0-ary functions)/Skolem

functions introduced are total. This result is key to results that are provided

later.

Theorem 21. Let S ′ be the formula formed by Skolemising the formula

S , where it is assumed that every Skolem function introduced is a distinct

function symbol not present in S . It must then follow that S and S ′ are equi-

satisfiable.

Proof. The proof follows like a two-valued classical proof, e.g. [BA01], but is

presented here with respect to E and Σ. If S contains no existential quantifier

then no change results from performing Skolemisation and the result follows

immediately. In the case that S contains at least the one existential quantifier

then there are two cases to consider:

1. If S is satisfied then S ′ must be satisfied: Suppose ∀x · ∃y · P(x , y)σ,

where σ ∈ Σ, then it needs to be shown that an interpretation σ′ ∈ Σ

exists such that ∀x ·P(x , f (x ))σ
′
. Thus for every possible value for x there

exists a value for y that causes P(x , y) to evaluate to true. A function f

such that f (x ) = y exists and the interpretation σ′ can then be defined

as σ′ = σ † {f 7→ β}, where β is a Function from each possible value

for x to a corresponding result y . There may be many witness values
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for the existential quantifier, but for a function it requires restricting

to the one such witness value, that is, one specific value for y for each

value of x , cf. the Axiom of Choice [Har09, §3.6]. It then follows that

if S is satisfied (with the existential quantifier) then S ′ is satisfied since

the mk FuncCall(f , al) case of the E semantic function definition can

return a value that would otherwise have been produced by the existential

quantifier case of the E semantic function definition.

2. If S ′ is satisfied then S must be satisfied: In the example from case 1 if

it is the case that ∀x · P(x , f (x ))σ
′

then σ′ must have an interpretation

for the Skolem function f . Therefore σ ∀x · ∃y · P(x , y) through taking

for every x , y = f (x ). 2

As usual the matrix can now be put into CNF to arrive at the clausal

form representation. The universal quantifiers can be omitted from the clausal

form representation, as still in LPF the clauses are considered to be universally

quantified.

Theorem 22. Every closed LPF formula e ∈ Expr , can be converted into a

formula that is in clausal form, such that the original formula and the formula

in clausal form are equi-satisfiable.

Proof. This is an immediate consequence of Theorems 20 and 21 and, for the

conversion of the matrix, Theorems 14 and 16. 2

6.4 Unification

Before the resolution proof procedure is discussed, the concepts of a substitu-

tion and unification are introduced. When considering the predicate calculus,

unification [Rob65, BA01, Har09, Bun10] is an integral part of the resolution

proof procedure. Here unification is only used within a resolution step.

A substitution as standard is a map of variables to terms of the form:

φ = {ψ1 7→ β1, . . . , ψn 7→ βn}

where each ψi is a distinct variable and each βi is a term.

The application of a substitution φ to a term α, denoted φ[α], is the simul-

taneous replacement of each ψi ∈ dom φ in α with the respective φ(ψi).

Unification is the process of finding a substitution that makes terms iden-

tical, that is, finding whether there exists a substitution φ for the variables in

two terms α and β, such that:

φ[α] = φ[β]
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If such a substitution exists then it is known as a unifier for α and β.

A set of terms that can be unified has what is known as a most general

unifier (mgu), which is unique up to variable renaming. A mgu for α and for

β is a unifier φ such that any other unifier φ′ for α and for β can be derived

by composing φ with a further substitution φ′′.

Not all terms can be unified. There is no unifier for the terms f (x ) and

g(y) where f and g are different function symbols. There is also no unifier for

f (x ) and f (g(x )), since x “occurs” within the larger term g(x ), cf. the occurs

check [BA01, §7.7].

Unification here has been performed on uninterpreted function symbols,

that is, that only the name and the arity of the function symbols has been

taken into account.

A unification algorithm [Rob65, Vad88, BA01] takes as input a set of terms

and if there exists a unifier for the input yields an mgu. If the input terms

are not unifiable, then the unification algorithm will terminate with the result

that there is no unifier for the input.

The issue of treating partial terms in substitutions is discussed in Sec-

tion 6.6. This is a key issue that must be resolved in order to carry the

resolution refutation procedure over to LPF.

6.5 Resolution

Resolution and refutation can now be considered in the rest of this chapter.

It is this work on resolution and refutation for LPF that carries the main

contribution of this chapter. The concepts are introduced first in the context

of two-valued classical logic, and then the procedures are considered for LPF.

6.5.1 Two-Valued Classical Logic Recap

Over the years, numerous proof procedures have been developed that can be

used to show whether a formula is (un)satisfiable in two-valued classical logic.

These include the semantic tableaux proof procedure [BA01] and the resolution

proof procedure [Rob65, BA01, Har09, Bun10]; it is the latter that is focused

on here. Resolution is used in numerous automated theorem provers and works

for both the propositional and the predicate calculus, but its real payoff is for

the latter.

The resolution rule works by taking two clauses that contain contradictory

literals (l and ¬ l) and using this knowledge to infer a new clause. This relies

on the fact that l and ¬ l cannot both be true in the same interpretation.

For propositional logic this works as follows: given two clauses C1 and C2

which both include the literal l where it is positive in one clause {l} ⊆ C1 and

negative in the other clause {¬ l} ⊆ C2, a resolvent can be inferred from these



Investigating Proof Procedures in LPF 200

two clauses which is the union of the two clauses without the complementary

(“clashing”) literal, i.e. (C1 \ {l}) ∪ (C2 \ {¬ l}). The reasoning is that if l is

true then another literal must cause C2 to be satisfied, and if l is false then

another literal must cause C1 to be satisfied.

An approach that can be used for predicate logic is binary resolution [BA01,

Har09] which utilises unification to generate “clashing clauses” that can then

be resolved. Since the clauses can contain variables, the aim is to resolve on

the most general forms of clauses. So for instance, if two literals l1 and ¬ l2

can be unified by a mgu φ, where {l1} ⊆ C1 and {¬ l2} ⊆ C2, then C1 and C2

can be resolved, inferring a new clause: (φ[C1] \ φ[{l1}]) ∪ (φ[C2] \ φ[{¬ l2}]).
The resolution proof procedure takes as input a set of clauses and repeat-

edly applies the resolution rule to infer new clause(s). The process is iterative

so new clauses inferred are added to the original set of clauses, so that they

can be used to infer further resolvents. Resolution maintains satisfiability, if

the set of clauses are satisfiable then it follows that the set of clauses after

resolving are satisfiable.

If the empty clause (2) (which is unsatisfiable) is inferred, then the set

of clauses is unsatisfiable. If the empty clause cannot be inferred, and no

more new resolvents (clauses) can be inferred, then the set of clauses must be

satisfiable. There is also the possibility that the resolution proof procedure

continues deriving new clauses forever.

Resolution is in fact a generalisation of the modus ponens rule:

modus-ponens
p; p ⇒ q

q

A technique called factoring [BA01, Rob65, Bun10] is used along with

resolution. Factoring is the merging of unifiable literals in a single clause.

Given a clause C where {l1} ⊆ C and {l2} ⊆ C then the clause φ[C \ {l2}]
can be inferred, where φ is an mgu of l1 and l2. Resolution with factoring is

refutationally complete [Rob65].

The Davis Putnam procedure [Har09] is a method which can decide the sat-

isfiability of a propositional formula in CNF, where there are three rules used.

One of which is resolution, and the other two are known as the affirmative-

negative rule and the one-literal rule which can reduce the number of liter-

als that need to be considered. These two rules are considered in the next

subsection. Preferential use of these other two rules can be useful for effi-

ciency [Har09].
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6.5.2 LPF

The proofs in this section assume no use of ∆; the ∆ operator is a meta-

level operator and it is not written in normal assertions. The ∆ operator is

introduced in a restricted circumstance when considering refutation; this is

considered in Section 6.6.

The key property underlying resolution is the cancellation of contradictory

information (literals) from clauses. In LPF (as in two-valued classical logic)

an assertion p and its negation ¬ p cannot both be true in an interpretation.

Lemma 23. The set of clauses {{p}, {¬ p}} cannot be true in an inter-

pretation, i.e. there exists no σ ∈ Σ such that (p ∧ ¬ p)σ.

Proof. By the definition of E , E(p ∧ ¬ p) expands to:

{(σ, true) | (σ, true) ∈ E(p) ∧ (σ, true) ∈ E(¬ p)} ∪
{(σ, false) | (σ, false) ∈ E(p)} ∪
{(σ, false) | (σ, false) ∈ E(¬ p)}.

By the definition of E this further expands to:

{(σ, true) | (σ, true) ∈ E(p) ∧ (σ, false) ∈ E(p)} ∪
{(σ, false) | (σ, false) ∈ E(p)} ∪
{(σ, false) | (σ, true) ∈ E(p)}.

By Lemma 1 it follows that p cannot be both true and false in any σ and

therefore the first set above is equivalent to {}, leaving no set where p ∧ ¬ p

evaluates to true in any σ ∈ Σ, that is, pΣ ∩ (¬ p)Σ = {}. 2

If two clauses C1 and C2 are true in an interpretation σ, then a resolvent

of C1 and C2 is true in the interpretation σ. This also applies to the LPF case.

First consider the proof for the propositional case in LPF.

Theorem 24. Given two propositional clauses C1 and C2 which are true

in some σ, where {l} ⊆ C1 and {¬ l} ⊆ C2 and l is a literal, then the resolvent

C3 = (C1 \ {l}) ∪ (C2 \ {¬ l}), is true in the same σ.

Proof. By assumption, C σ
1 and C σ

2 hold for some σ ∈ Σ. For an arbitrary

satisfying interpretation σ there are three cases to consider:

1. lσ: By the definition of E , it follows that both C σ
1 and ¬ lσ. Since by

assumption it is known that C σ
2 there must exist another disjunct (literal,

¬ l 6= l ′) {l ′} ⊆ C2 that ensures that C2 is satisfied, i.e. (C2 \ {¬ l})σ.

Thus C3 is satisfied (C σ
3 ) by the definition of E since {l ′} ⊆ C3 and l ′σ.

2. lσ: This follows by a similar argument to case 1, as there must exist

another disjunct (l 6= l ′) {l ′} ⊆ C1 that ensures that C1 is satisfied,
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i.e. (C1 \ {l})σ and C σ
2 holds because ¬ lσ. Thus C3 is satisfied (C σ

3 ) by

the definition of E since {l ′} ⊆ C3 and l ′σ.

3. σ /∈ dom E(l): By the definition of E , it also follows that σ /∈ dom E(¬ l).

Thus another disjunct ({l ′} ⊆ C1) must ensure that C1 is satisfied,

i.e. (C1 \ {l})σ and another disjunct ({l ′′} ⊆ C2) must ensure that C2 is

satisfied, i.e. (C2 \{¬ l})σ, where l 6= l ′ and ¬ l 6= l ′′. Thus C3 is satisfied

(C σ
3 ) by the definition of E since {l ′, l ′′} ⊆ C3 and l ′σ and l ′′σ.

Thus, in all cases for an arbitrary σ where both C σ
1 and C σ

2 hold, it is the

case that C σ
3 holds. 2

Now the predicate case is considered for LPF which, as mentioned earlier,

makes use of unification.

Corollary 25. Given two clauses C1 and C2 which are true in some σ,

where {l1} ⊆ C1 and {¬ l2} ⊆ C2 and both l1 and ¬ l2 are literals which can be

unified by an mgu φ, then a resolvent C3 = (φ[C1]\φ[{l1}])∪(φ[C2]\φ[{¬ l2}]),
is true in the same σ.

Proof. By assumption, C σ
1 and C σ

2 hold for some σ ∈ Σ. Since φ makes the

two literals l1 and l2 identical (l ′), i.e. l ′ = φ[l1] = φ[l2], it cannot be the case

that both l ′ and ¬ l ′ are true in any σ ∈ Σ by Lemma 23. The result then

follows in a similar way to Theorem 24. 2

When using the resolution refutation procedure, the use of unification does

need restricting since validity is being sought, this is achieved by the inclusion

of unification constraints. Refutation procedures in LPF are considered in

Section 6.6. The use of factoring in a refutation proof also needs protecting

through the inclusion of unification constraints.

From satisfiable clauses, only satisfiable clauses can be inferred. Thus if

a resolvent is ever the empty clause then the set of clauses must have been

unsatisfiable, i.e. there must be a contradiction.

Theorem 26. If the empty clause is ever inferred by resolution on the

set of clauses S , then S must be unsatisfiable.

Proof. The fewest number of clauses that can be used to infer the empty

clause is two where the only literal in each clause is identical (same propo-

sitional variable or they unify), only the literal is positive in the one clause

and negative in the other clause. By Lemma 23, it follows that both of these

clauses cannot be true (the set of clauses is unsatisfiable) and thus the empty
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clause (which is unsatisfiable) is inferred. 2

The other two rules mentioned earlier in the Davis-Putnam procedure also

hold in LPF, and the proofs needed for LPF follow similarly to [Har09]; they

are presented in terms of the E and Σ definitions.

Lemma 27. Suppose there is a set of clauses S and C1 ⊆ S , for which

there is a literal (positive or negative) {l} ⊆ C1 and ¬ l does not occur in any

Ci ∈ S . Let S ′ be the set of clauses formed from S by removing every clause

containing l . It follows that S and S ′ are equi-satisfiable.

Proof. There are two cases to consider:

• If S is satisfiable then S ′ is satisfiable since S ′ ⊂ S .

• If S ′ is satisfiable then S is satisfiable since every Ci ∈ S ′ is true (C σ
i ) for

at least one σ, where σ ∈ Σ. If σ is extended to σ′ so that σ′ = σ † {l 7→
true} then for each Cj ∈ S it follows that C σ′

j .

2

Lemma 28. Suppose that there is a set of clauses S and C1 ⊆ S , for

which there is a literal (positive or negative) {l} ⊆ C1 and l is the only literal

contained within C1. Let S ′ be the set of clauses formed from S by removing

¬ l from every other clause in S and removing every clause that contains l . It

follows that S and S ′ are equi-satisfiable.

Proof. There are two cases to consider:

• If S is satisfiable then S ′ is satisfiable since if l is the only literal contained

within a clause then this literal must be true (lσ) and thus C1 must be

true (C σ
1 ), if the set of clauses is satisfiable (Sσ), where σ ∈ Σ. Thus

another literal in every other Ci ⊆ S , must be true, where {¬ l} ⊆ Ci .

Since l must be true, then every clause Ci ⊆ S where {l} ⊆ Ci must be

true.

• If S ′ is satisfiable then S is satisfiable in a given σ as σ can be extended

to σ′ so that σ′ = σ † {l 7→ true}.

2
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6.6 Refutation Procedures

6.6.1 Two-Valued Classical Logic Recap

In two-valued classical logic, a formula e is valid iff ¬ e is unsatisfiable [BA01].

This well known duality between validity and satisfiability follows from the

fact that there are only two possible values (true and false) that a formula

in two-valued classical logic can take. So, if a formula e is valid then every

interpretation must make e true, and thus every interpretation must make ¬ e

false, that is, ¬ e must be unsatisfiable. Conversely, if ¬ e is satisfiable, then

there must exist at least one interpretation that makes ¬ e true and thus e

false, thus as a result e cannot be valid, that is, e is satisfiable iff ¬ e is not

valid.

The above result is important since it means that a proof procedure for

satisfiability can be used for validity (a refutation procedure [BA01]) in two-

valued classical logic. Hence the validity of a formula is proved by refuting its

negation [BA01]. Refutation procedures can be more efficient since there is

only a requirement to find the one counter example as opposed to having to

check that a formula is always true for validity.

The above approach can be extended to reason about logical consequence

in two-valued classical logic [BA01, BM99]. To show that a logical consequence

statement:

Γ |= e

holds, where Γ = {e1, . . . , en} and the commas are to be interpreted as con-

junctions, the expression e is negated and the satisfiability of the conjunction:

e1 ∧ . . . ∧ en ∧ ¬ e (6.1)

is considered, where the assumptions Γ are generally assumed to be true. For

instance, Γ could be a consistent set of axioms that are assumed to be true

independent of the theorem/goal e that is to be proved.

If formula 6.1 is unsatisfiable then Γ |= e must hold, as every interpretation

where Γ is true, must make ¬ e false and thus e true. However, if formula 6.1

is satisfiable then there must exist at least one interpretation where Γ is true,

that also makes ¬ e true, and thus e false, and as a result Γ 6|= e.

Resolution is a refutation procedure which can be used to show that a

formula is unsatisfiable [BA01]. The aim is to show that the goal e is derivable

from the set of expressions Γ (the assumptions). The goal e is negated followed

by converting all of the formulae within Γ and the formula ¬ e into clausal form.
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Resolution is then performed on the clauses within the set Γ ∪ {¬ e}, that is,

the combination of the clauses produced during the clausal form conversions

into a single set.

Resolution is refutationally complete so, if Γ |= e, then the empty clause

will (eventually) be able to be derived from the set of clauses Γ∪{¬ e}; it may

never terminate given a satisfiable set of clauses [BA01].

6.6.2 LPF

The application of a refutation procedure in LPF is complicated by the pres-

ence of “gaps” in denotations which affect the duality between validity and

satisfiability. In LPF, if ¬ e is satisfiable then e cannot be valid, but if ¬ e

is unsatisfiable then it is not possible to infer that e is valid. The following

results clarify the relationship between satisfiability and validity in LPF.

Lemma 29. In LPF, if e is valid then ¬ e is unsatisfiable.

Proof. By the definition of validity, it is known that e is valid in LPF iff

eΣ = Σ and by the definition of unsatisfiability, that e is unsatisfiable iff

eΣ = { }. By assumption it is the case that eσ for each σ ∈ Σ. By the defi-

nition of E , if eσ then ¬ eσ and since the truth value false is an unsatisfiable

value the result is concluded as required. 2

Lemma 30. In LPF, if ¬ e is unsatisfiable then e may be not valid.

Proof. This result is due to the presence of “gaps” in LPF and can be shown

using a simple counter example. Consider the Boolean formula p ∨ ¬ p and its

negation ¬ (p ∨ ¬ p) which is unsatisfiable, i.e. ¬ (p ∨ ¬ p)Σ = {}. However,

p ∨ ¬ p is not valid in LPF since any interpretation σ ∈ Σ which has a “gap” for

p, that is σ /∈ dom E(p), results in a “gap” for p ∨ ¬ p (σ /∈ dom E(p ∨ ¬ p))

and so (p ∨ ¬ p)Σ ⊂ Σ. 2

Lemma 31. In LPF, if e is not valid then ¬ e may not be satisfiable.

Proof. By the definition of validity eΣ = Σ, thus there must exist an interpre-

tation σ ∈ Σ such that eσ does not hold. The proof follows by a simple counter

example. Suppose that e is undefined for every σ ∈ Σ, that is, σ /∈ dom E(e)

for every σ ∈ Σ. Then it follows that e is not valid. By the definition of E ,

if σ /∈ dom E(e) then it follows that σ /∈ dom E(¬ e). Thus it cannot be the

case that for any σ ∈ Σ that ¬ eσ holds, that is, that ¬ e is not true for any

σ ∈ Σ. 2

Lemma 32. In LPF, if ¬ e is satisfiable then e is not valid.
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Proof. By the definition of satisfiability if ¬ eσ for some σ ∈ Σ, then by the

definition of E it follows that eσ holds. As a result it must follow that e cannot

be valid eΣ = Σ since there exists a σ ∈ Σ such that eσ. 2

Logical Consequence

Applying a refutation procedure to a logical consequence statement in LPF is

now considered. Resolution is the satisfiability proof procedure that will be

utilised. Consider the logical consequence Γ |= e in LPF:

• If there is a satisfying interpretation for e1 ∧ . . .∧ en ∧¬ e, then at least

one interpretation makes all of the expressions e1, . . . , en ,¬ e true and so

Γ |= e cannot hold, (Γ 6|= e); or

• If there is no satisfying interpretation for e1∧. . .∧en∧¬ e, then there does

not exist an interpretation that makes all the expressions e1, . . . , en ,¬ e

true. Further information is now needed to provide assurance that e is

a logical consequence of Γ, that is, to be able to conclude Γ |= e.

While for two-valued classical logic only refuting the set of clauses Γ∪{¬ e}
is required, in LPF the case that the goal e denotes a “gap” also needs refuting

(the definedness of the goal needs to be established). In other words, if Γ∪{¬ e}
is unsatisfiable then if it can be shown that e is defined in every interpretation

that makes Γ true, that is, Γ |= ∆e, then it can be inferred that Γ |= e holds.

Thus to ensure that e is true and defined when entailed by Γ, it is necessary

to prove that Γ |= e and Γ |= ∆e.

Recall that in LPF one reasons from truth to truth, and so if Γ is true

then e must be true in the same interpretation (ΓΣ ⊆ eΣ). Also recall that

the negation of ⊥B is ⊥B in LPF.

An appropriately extended refutation procedure can be used to check the

logical consequent Γ |= ∆e (recall the law of the excluded fourth). Notice that

no circularity is introduced because ∆e is guaranteed to always return either

true or false.

The use of the meta-level operator ∆ will generally not appear in any for-

mula in Γ and in the formula e; it is generally not written in normal assertions.

The logical operator ∆ is intended to only be used when it is introduced around

e in a refutation procedure to refute the “gap” case. If a ∆ logical operator

does occur in Γ then the following procedure will not break down, but an extra

resolution possibility of allowing ∆p to be resolved with ¬∆p will be needed.

The following results formalise the above discussion.

Theorem 33. If Γ ∪ {¬ e} is true then Γ 6|= e.
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Proof. By assumption e1 ∧ . . . ∧ en ∧ ¬ e can be satisfied and so it must be

the case that (e1 ∧ . . . ∧ en ∧ ¬ e)σ, for some interpretation σ ∈ Σ. Therefore

it follows by the definition of E that eσ1 , . . ., eσn and ¬ eσ and thus eσ. Thus,

there is an interpretation σ ∈ ΓΣ that makes the expression e evaluate to false

and therefore ΓΣ 6⊆ eΣ. By the definition of logical consequence it follows that

Γ 6|= e. 2

Lemma 34. If Γ ∪ {¬ e} is unsatisfiable then Γ |= e may not hold, and

thus ΓΣ 6⊂ eΣ.

Proof. Consider a counter example that illustrates that if Γ∪ {¬ e} is unsat-

isfiable then Γ |= e does not hold. Given the logical consequence |= p ∨ ¬ p,

from which by Lemma 30 it follows that (p ∨ ¬ p)Σ ⊂ Σ; but notice that

Γ = {} and so by the definition of logical consequence ΓΣ = Σ. 2

Theorem 35. If Γ ∪ {¬ e} is unsatisfiable and Γ |= ∆e, then Γ |= e.

Proof. By assumption Γ ∪ {¬ e} is unsatisfiable and so it follows that (Γ ∪
{¬ e})Σ = {}. This means that for any interpretation σ ∈ ΓΣ either: 1. ¬ eσ;

or 2. σ 6∈ dom E(¬ e). Now, by the assumption Γ |= ∆e, it follows that

ΓΣ ⊆ (∆e)Σ. Therefore, (∆e)σ holds for any interpretation σ ∈ ΓΣ. Thus

by the definition of E it follows that σ ∈ dom E(¬ e) holds and therefore

σ ∈ dom E(e) holds. Thus only possibility 1 from above can hold for any

σ ∈ ΓΣ, and so by the definition of E it follows that eσ. Therefore, ΓΣ ⊆ eΣ

and so by the definition of logical consequence it follows that Γ |= e. 2

It is clear from Lemma 34 that as well as refuting the false case as in

the two-valued classical logic case, in LPF the undefined (“gap”) case also

needs refuting. If unsatisfiable is returned by applying resolution procedure

on Γ∪{¬ e}, then the undefined “gap” case needs refuting (the definedness of

the goal needs to be established).

In order to show that Γ |= ∆e holds, one approach is to apply resolution on

the set of clauses Γ∪{¬∆e}. If unsatisfiable is returned from this proof when

refuting that e is undefined then validity (Γ |= e) can be concluded according

to Theorem 35. If satisfiable is returned from this proof when refuting that e

is undefined, then Γ 6|= ∆e and thus Γ 6|= e must be concluded by Theorem 33.

The resolution rule can be extended to cope with ∆. The following discus-

sion considers using resolution to refute the possibility of a “gap” for LPF.

An optimisation to the PNF conversion process when considering pushing

in a ∆ operator is considered first, which is applicable when ∆ is introduced

around the goal formula of a logical consequent statement mentioned above.
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This fact can be used to reduce the size of a predicate formula in clausal form.

Clausal Form Size Reduction

So far, a ∆ surrounding a quantifier is replaced with two quantifiers whereby

logical equivalence is maintained, and any occurrence of the ∆ operator is

now inside the quantifiers. When considering only universal quantifiers the

following reduces the resulting clausal form size, (what follows does not apply

to existential quantifiers).

When trying to show Γ |= e, the aim has been extended in LPF to show

that e is true and defined. If unsatisfiable is returned by resolution on the set

of clauses Γ∪{¬ e}, then it can only be the case that e is either true if defined

or undefined. Resolution on the set of clauses Γ ∪ {¬∆e} would then follow

and in this proof it is known that e cannot be false, otherwise satisfiable would

have been returned by resolution on the set of clauses Γ ∪ {¬ e}. This second

proof is to show definedness by refuting that it is undefined, and recall that ∆

can only return true or false.

Consider that the goal e is ∀i · p(i). While ∆(∀i · p(i)) is not logically

equivalent to ∀i ·∆p(i) (consider the case that p(i) is true at least once, and

undefined at least once and is always true or undefined and thus never false)

they are logically equivalent in the restricted case when ∀i · p(i) is not false.

The clausal form of ¬∆(∀i ·p(i)) would now be {{¬∆p(c)}} (¬∆(∀i ·p(i)) is

converted to ¬∀i ·∆p(i), and then to ∃i · ¬∆p(i), which is then Skolemised).

The clauses that arise from the conversion of ¬∆e, where e is a universally

quantified formula, are a proper subset of the corresponding set of clauses that

arise after applying the logically equivalent conversion rules to ¬∆e.

This is obviously not complete, but such a technique can help to reduce

the search space. It is a heuristic. Use as a first attempt, and only use a

complete second attempt if the first attempt with the reduced search space is

unsuccessful.

Refuting the Possibility of a “Gap”

If unsatisfiable is returned from applying resolution on the set of clauses

Γ ∪ {¬ e}, then Γ |= ∆e needs to be shown to hold in order to conclude

Γ |= e. To show that Γ |= ∆e holds, the first part of the approach taken here

is to refute the undefined (“gap”) case by performing resolution on the set of

clauses Γ ∪ {¬∆e}. This leads to the need for extra “resolvent” possibilities

in LPF. These include allowing resolving on the following two pairs of contra-

dictory literals: p and ¬∆p, and ¬ p and ¬∆p. The following result shows

that the ∆ “resolvent” possibilities are sound.
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Lemma 36. The literal pairs p and ¬∆p, and ¬ p and ¬∆p are contra-

dictory and their simultaneous satisfaction is impossible.

Proof. The goal is to show that pΣ∩(¬∆p)Σ = {} and (¬ p)Σ∩(¬∆p)Σ = {}.
Consider an arbitrary σ ∈ Σ:

• if σ ∈ dom E(p) holds (then also σ ∈ dom E(¬ p) holds) then by the

definition of E it follows that (∆p)σ (and (∆¬ p)σ which is equivalent to

(∆p)σ by Lemma 13); and

• if σ /∈ dom E(p) holds then by the definition of E it follows that (∆p)σ

and thus (¬∆p)σ.

Thus these literal pairs are contradictory and therefore no σ ∈ Σ can si-

multaneously satisfy both p and ¬∆p, nor both ¬ p and ¬∆p. 2

The use of these “extra” resolvent possibilities provides a way of refuting

the set of clauses Γ∪{¬∆e}. Reducing the number of circumstances to where

∆ needs introducing around the goal e is discussed later.

Theorem 35 establishes the need to show that the goal is defined. When

attempting to refute the possibility of a “gap” in the goal, it can be shown

that just refuting the clausal form of Γ ∪ {¬∆e} is not enough on its own to

establish the definedness of a goal, when considering predicate clauses and the

resolution refutation procedure. Undefinedness can still arise due to the pres-

ence of partial terms in substitutions, so here in unifiers. Thus further action

must be taken to establish the definedness of the goal, and this is considered

next; unification constraints need including in a resolvent clause because of

the possibility of undefined terms.

Reconsidering the Unrestricted Use of Unification

Goal based terms can be unified with assumption based terms in a resolution

step. Unifying can lead to substituting variables which range only over de-

fined values for terms that can be undefined in particular interpretations. The

occurrence of possible partial terms from goal clauses arising in unifiers needs

guarding against. This is done by carefully guarding the unification used in

an application of the resolution rule, to ensure that a defined Var from the

left hand assumption side Γ is not unified without restriction with a possible

partial term from the right hand goal side e. The following example illustrates

this, (recall that in E all functions and predicates are strict):

∀x · x = x |= 5/0 = 5/0
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Performing a standard resolution refutation proof with unification on the

clausal form:

{{x = x}, {¬ (5/0 = 5/0)}}

of this logical consequence statement leads to the empty clause, since x unifies

with the function 5/0.

Surrounding the goal with ∆ and performing a new resolution refutation

proof to refute the presence of a “gap” this time on the clausal form:

{{x = x}, {¬∆(5/0 = 5/0)}}

again leads to the empty clause being inferred.

But clearly this formula is not valid in LPF. As a counter example con-

sider = being interpreted as weak equality, and the standard partial division

operator. A defined term x from the assumption side has been unified with a

term 5/0 (a function application) that is undefined from the goal side of the

logical consequent. Recall that in LPF one only reasons from truth to truth,

and that the term x must be defined because it is a quantified variable and

quantification can only be over a set of proper (i.e. defined) values in LPF. It

thus must follow that the application of unification within a resolution step in

LPF, (in a resolution refutation proof), due to the presence of “gaps” needs

guarding in certain circumstances.

The approach taken is for constraint(s) to be included as literal(s) (dis-

juncts) in an inferred resolvent within a resolution refutation proof. These

constraints effectively take the form of further definedness obligations, but

this time using the δ definedness operator. A resolvent inferred by resolving

on the clauses C1 and C2 where {l1} ⊆ C1 and {¬ l2} ⊆ C2 is defined to be:

(φ[C1] \ φ[{l1}]) ∪ (φ[C2] \ φ[{¬ l2}]) ∪ θ

where l1 and l2 unify with an mgu φ, and where θ is a set of unification

constraint(s), where each ψi ∈ θ is a literal. This form of the resolvent is needed

whenever a clause from the right (goal) side (containing the potentially partial

term) is resolved (and thus unified) with a clause from the left (assumption)

side of the logical consequent, and whenever a goal clause is resolved with a

goal clause. Any resolvent that is inferred when at least one of the two clauses

resolved on is a goal clause is deemed to be a goal clause for the purposes of

introducing δ unification constraints.

The unification constraints θ can be built up by considering an mgu φ,



Investigating Proof Procedures in LPF 211

where given φ = {x1 7→ α1, . . . , xn 7→ αn}, then θ = {¬ δα1, . . . ,¬ δαn}, where

each ψi ∈ θ is a literal (a disjunct added to the resolvent). For instance, if

φ = {x 7→ f (. . .)}, where x ∈ Var and f ∈ Fn, then θ = {¬ δf (. . .)}. The

unification constraints need introducing to ensure that only valid formulae can

actually be proven valid.

In E , the δ logical operator was only provided for formulae. Thus in E ,

now the δ logical operator needs overloading so that it can also be applied to

terms. If the term α is defined then δα is to return true:

{(σ, true) | σ ∈ dom E(α)}

This is the same definition for the δ logical operator with a term operand,

as was given to the δ logical operator when it was defined with a formulae

operand, in the E semantic function definition.

Recall that the δ operator is monotone, and is true if the (integer here)

operand α is defined, otherwise it is undefined. This treatment of adding

unification constraints into the resolvent for every maplet in φ can, however,

be improved upon.

First consider that the function identifiers Fn can be seen as a shorthand

for Fn = SkolemFun | Fun, where the identifier names in SkolemFun and Fun

are disjoint. This split is illustrated explicitly for the purposes of including

the unification constraints because a Skolem function is total, but a Function

mapped to by any Fun can be a partial function, and thus an application of

any f ∈ Fun can be undefined (a term that applies a partial function can fail

to denote a proper defined value).

Therefore in certain circumstances the use of unification requires no addi-

tional constraints to be included into a resolvent, for instance, when unifying

x with y when x ∈ Var and y ∈ Var , and when unifying x with f (. . .) when

x ∈ Var and f ∈ SkolemFun. However, when unifying x with f (. . .) when

x ∈ Var and f ∈ Fun then a unification constraint (a definedness obligation)

must be introduced into any inferred resolvent arising from such a resolution

step. Notice that a predicate cannot be unified with any variable, as only

integer and propositional variables are present, in the E semantic function

definition.

The reason behind including the unification constraints in a resolvent is

that in E , for any f ∈ Fun, it can only be known that f (. . .) ∈ Z⊥ (either it

is defined and a member of Z, or it is undefined). If this term is unified with

any x ∈ Var , when it is known that all integer variables (Var) are defined in

E (all quantification is over defined values in LPF), then unification within a
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1 p ∨ ¬ p goal
2 {¬ p} }deny(clausal form(1))
3 {p}
4 2 resolve(2, 3)
5 ∆(p ∨ ¬ p) goal
6 {¬∆p} deny(clausal form(5))
7 −

Figure 6.1: An illustrative resolution refutation attempt

resolution step that allows for something that is guaranteed to be defined (in

an assumption clause) to be unified and thus resolved with something that can

be undefined from the goal, violates a condition that needs to hold in order

for the result indicated in Theorem 35 to follow.

A unification constraint can be removed (only if it is known to be defined)

by a further resolution step. In order to do this a literal of the form δα

can be included as a positive literal on the assumption side Γ of a logical

consequent statement, to state that a function (term) α is defined. This will

all be illustrated in the examples that follow in this chapter.

The use of factoring in a refutation proof also needs protecting through the

inclusion of unification constraints.

Illustrative Examples

Consider again the earlier counter example of |= p ∨ ¬ p where the empty

clause (unsatisfiability) is infered. Therefore in LPF |= ∆(p ∨ ¬ p) needs to

be shown to hold to be able to infer that |= p ∨ ¬ p holds. In the modified

LPF clausal form the negation ¬∆(p ∨ ¬ p) is represented as {{¬∆p}} after

simplification, which cannot be refuted ({{¬∆p}} is satisfiable). This is pre-

sented in Figure 6.1, where the − on line number 7 denotes that no more rule

applications apply.

As a further example reconsider Property 1.5:

∀i :Z · (i/i = 1) ∨ ((i − 1)/(i − 1) = 1)

In order to prove this property several assumptions (properties) of division

and subtraction are introduced, because the resolution is syntactic, and thus

the semantics of the functions − and / cannot be used:

∀i :Z · i = 0 ⇒ ¬ ((i − 1) = 0); ∀i :Z · ¬ (i = 0) ⇒ i/i = 1 `
∀i :Z · (i/i = 1) ∨ ((i − 1)/(i − 1) = 1)

The two function symbols − and /, as well as the predicate symbol = used

are just to be interpreted as arbitrary functions and an arbitrary predicate

respectively. Their meaning needs to be constrained by including assumptions.
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1 ∀i :Z · i = 0 ⇒ ¬ ((i − 1) = 0) assumption
2 ∀i :Z · ¬ (i = 0) ⇒ (i/i = 1) assumption
3 ∀i :Z · (i ÷ i = 1) ∨ ((i − 1)/(i − 1) = 1) goal
4 {¬ (i = 0),¬ ((i − 1) = 0)} clausal form(1)
5 {i = 0, (i/i = 1)} clausal form(2)
6 {¬ (c/c = 1)} }deny(clausal form(3))
7 {¬ ((c − 1)/(c − 1) = 1)}
8 {c = 0} resolve(5, 6)
9 {(c − 1) = 0} resolve(5, 7)
10 {¬ ((c − 1) = 0)} resolve(4, 8)
11 2 resolve(9, 10)

Figure 6.2: An illustrative resolution refutation subproof (part 1)

1 ∀i :Z · i = 0 ⇒ ¬ ((i − 1) = 0) assumption
2 ∀i :Z · ¬ (i = 0) ⇒ (i/i = 1) assumption
3 ∀i :Z · δ(i − 1) assumption
4 ∆(∀i :Z · (i/i = 1) ∨ ((i − 1)/(i − 1) = 1)) goal
5 {¬ (i = 0),¬ ((i − 1) = 0)} clausal form(1)
6 {i = 0, (i/i = 1)} clausal form(2)
7 {δ(i − 1)} clausal form(3)
8 {¬ (c/c = 1),¬∆(c/c = 1)}

}deny(clausal form(4))9 {¬ ((c − 1)/(c − 1) = 1),¬∆((c − 1)/(c − 1) = 1)}

10 {¬∆(c/c = 1),¬∆((c − 1)/(c − 1) = 1)}
11 {c = 0,¬∆(c/c = 1)} resolve(6, 8)
12 {c = 0} resolve(6, 11)
13 {(c − 1) = 0,¬∆((c − 1)/(c − 1) = 1),¬ δ(c − 1)} resolve(6, 9)
14 {(c − 1) = 0,¬ δ(c − 1)} resolve(6, 13)
15 {¬ ((c − 1) = 0)} resolve(5, 12)
16 {¬ δ(c − 1)} resolve(14, 15)
17 2 resolve(7, 16)

Figure 6.3: An illustrative resolution refutation proof establishing definedness
(part 2)

An example resolution refutation subproof of Property 1.5 is presented in

Figure 6.2, where c in this proof is a Skolem constant. Figure 6.3 presents

the same proof but which also establishes the definedness of the goal. An

additional assumption is provided in the latter proof. This is because a uni-

fication constraint/a definedness obligation is introduced, and the additional

assumption is needed to be able to discharge the unification constraint that is

introduced into the proof. The unification constraint is introduced to ensure

that the − function is total. The additional assumption states only that −
is total, which ensures that only those interpretations where − is total are

considered.

As can be seen from the two proofs the second proof with ∆ has a larger
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clausal form. Additionally, a greater number of resolvents are inferred, and

the size of the search space as expected also increases.

For the purposes of illustrating the issues surrounding the mechanisation

of the resolution refutation procedure in LPF the proofs have been presented

separately up until now. They can be combined by taking the clausal form

of (¬ e)CNF ∨ (¬∆e)CNF . The goal e is negated and put into CNF. The

goal with the occurrence of the ∆ logical operator, ¬∆e is put into CNF. By

CNF in these two instances it is meant that a propositional formula is put

into CNF, and for a predicate formula that the matrix is put into CNF, after

going through the PNF conversions, and then going through the Skolem form

conversions, and dropping any remaining universal quantifiers. The disjunction

of these two formulae that are already in CNF are then taken, and should be

put into clausal form. This ensures that if necessary that a distributivity

rule application occurs when putting this disjunction into clausal form. The

unification constraints/definedness obligations will need considering also in this

proof.

An optimisation to what has so far been presented is considered next, which

is concerned with limiting the introduction of the expensive ∆ logical operator

into proofs.

Optimisation

This optimisation considers reducing the number of cases in which ∆ needs

to be introduced around the goal. This is important because any use of a ∆

logical operator leads to a large clausal form representation of the goal, and if

cases can be identified whereby a ∆ does not need wrapping around the goal

then the size of the search space can be reduced. This optimisation does not

concern reducing the number of occasions when a unification constraint δ needs

introducing. Unification constraints still need to be introduced whenever one

of the circumstances mentioned earlier in this section arises.

By the definition of logical consequence, it follows that ΓΣ ⊆ eΣ (recall the

LPF SS-sequent interpretation), and thus resolving anything from the goal side

in resolution, with anything from the assumption side of the logical consequent,

is safe. This follows from the fact that only those σ ∈ ΓΣ are of interest in

LPF (in LPF one is only concerned with reasoning from truth to truth). If

the assumptions of a logical consequence statement are false or undefined then

there is no constraint on the goal, that is, that the goal can be true, false or

undefined.

Thus the extent to which ∆ needs to be introduced around the goal can be

limited. If a goal clause is resolved with a goal clause then ∆ needs introducing
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1 ∀i :Z · i = 0 ⇒ ¬ ((i − 1) = 0) assumption
2 ∀i :Z · ¬ (i = 0) ⇒ (i/i = 1) assumption
3 ∀i :Z · δ(i − 1) assumption
4 ∀i :Z · (i/i = 1) ∨ ((i − 1)/(i − 1) = 1) goal
5 {¬ (i = 0),¬ ((i − 1) = 0)} clausal form(1)
6 {i = 0, (i/i = 1)} clausal form(2)
7 {δ(i − 1)} clausal form(3)
8 {¬ (c/c = 1)} }deny(clausal form(4))
9 {¬ ((c − 1)/(c − 1) = 1)}
10 {c = 0} resolve(6, 8)
11 {(c − 1) = 0,¬ δ(c − 1)} resolve(6, 9)
12 {¬ ((c − 1) = 0)} resolve(5, 10)
13 {¬ δ(c − 1)} resolve(11, 12)
14 2 resolve(7, 13)

Figure 6.4: An illustrative (optimised) resolution refutation proof establishing
definedness

around the goal, to ensure that a “gap” is not inferred (resolving a goal side

clause with a goal side clause of the logical consequent, as already illustrated

causes a problem in LPF, and requires the necessary introduction of ∆ around

the goal). Definedness obligations (the unification constraints) arising from

the use of unification are needed regardless. If a goal clause is always resolved

with an assumption clause then only the unification constraints are needed, so

a ∆ will not need introducing around the goal. A resolvent formed by resolving

a goal clause with an assumption clause is deemed to be an assumption clause

for the purposes of introducing the ∆ logical operator around the goal. Since

the clausal form for ∆ can be expensive then this is a significant improvement,

since the size of the search space gets reduced.

If the goal does not need surrounding with ∆ then the unification con-

straints (which are still needed) could be taken into consideration in the first

proof on the set of clauses Γ∪{¬ e}, as illustrated in the proof in Figure 6.4. As

can be seen in the proof in Figure 6.4 fewer resolvents are needed in comparison

to the proof of the same formula that was presented in Figure 6.3.

Starting the proof without surrounding the goal with ∆ may be the best

starting point (to reduce the size of the goal formula and thus to reduce the

search space), and thus restricting goal clause on goal clause resolving. There-

fore limiting oneself to attempting to prove the goal from the assumptions that

are generally assumed to be true.

6.7 Conclusions

This chapter has presented an investigation into the applicability of mechanised

proof support for LPF, by focusing on the basic but fundamental two-valued
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classical logic proof procedure of resolution and the associated technique of

proof by contradiction. The work has highlighted the issues that arise when

applying these techniques to LPF, as well as having proposed modifications to

these techniques to cover LPF.

Clearly, when mechanising these techniques in LPF more work was going

to be needed than in a total framework of two-valued classical logic due to the

possible occurrence of partial terms. The extra work takes the form of having

to show the definedness of terms and formulae. In respect to the amount

of work needed briefly re-consider the method of truth tables where for a

propositional formula in LPF 3n rows in the truth table will be needed as

opposed to 2n rows in the truth table that are needed in two-valued classical

logic. Determining the extent of when definedness obligations need introducing

to these techniques for LPF has been undertaken. In the small examples

considered not too many more extra resolvents needed to be made in the LPF

proofs with partial terms present, in comparison to comparable proofs in two-

valued classical logic. Further comparisons would of course be beneficial this is

discussed in Section 7.2.2. This work has provided key insights into providing

mechanised proof support for a non-classical logic like LPF.

Advanced proof techniques have been developed that are built on the fun-

damental basic proof techniques considered here, see Section 7.2.4. An inves-

tigation into these advanced proof techniques has not been pursued here, as

the essential and obvious starting point was to investigate the fundamental

basic proof techniques. This investigation which has given rise to modifica-

tions to the basic techniques to cover LPF provides the essential foundation to

facilitate research into the modification of advanced proof techniques and tool

support for LPF.

The E semantic function definition that was presented in Figure 3.8 that

formally captures LPF has been used throughout this chapter, to be able

to precisely highlight the issues that arise when applying the basic selected

proof techniques in LPF. Furthermore, proofs about resolution in LPF and

of associated techniques such as CNF and clausal form conversions etc. have

been based upon this E semantic function definition. The E semantic function

definition precisely and succinctly captured the core of LPF, ensuring that

proofs could be conducted and concepts and issues illustrated with respect to

only a small but core definition that can be easily understood. Illustrative

proofs of key examples using the proposed modifications to the techniques

considered here have also been presented, which in certain cases capture the

benefit of the use of the optimisations that have been proposed in building up

the modifications to the techniques to cover LPF.
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Due to the use of resolution, a topic that needed considering was the con-

version of formulae into clausal form. Properties such as the commutativity,

and the distributivity of disjunctions and conjunctions are retained in LPF,

as well as other well known two-valued classical logic clausal form conversions,

such as Skolemisation. Because of the ∆ definedness logical operator in LPF

though, extra conversions are needed to be able to convert an LPF formula

into clausal form. The conversions that are required for ∆ to maintain logical

equivalence are expensive in regards to the size of the resulting clausal form.

This is because a ∆ needs pushing inwards so that it only surround literals. It

has been shown how to limit the introduction of ∆’s however.

A key topic that was addressed in the investigation was to consider basic

definitions like validity and unsatisfiability in LPF. The definition of unsatis-

fiability in LPF must take into account undefinedness (“gaps”). This impacts

the duality between validity and unsatisfiability that is key to certain results

in two-valued classical logic; this impacts refutation procedures. In LPF when

considering the resolution refutation procedure the definedness of the goal is

forced to be shown, leading to the introduction of δ and ∆ definedness logical

operators, to ensure that only valid formulae can actually be proven valid. It

has been shown how definedness obligations can be refuted using resolution.

The resolution rule of inferences carries over to LPF. It is the use of the

resolution refutation procedure, that forces the definedness of the goal to be

established. It is key to the results proposed here that the definedness of

the assumptions does not need to be established; recall the LPF SS sequent

interpretation.

There exists two key areas when definedness obligations must be introduced

into resolution refutation proofs to ensure that the definedness of the goal is

established: when goal clause on goal clause resolving can take place, and to

guard against possible partial terms in substitutions (here unifiers).

Due to the expense of using the ∆ definedness operator, it was vital to

show how to limit the introduction of ∆ into proofs. Only when resolving

a goal clause with a goal clause does a ∆ need introducing around the goal,

to ensure that only valid formulae can actually be proven valid. If such goal

clause on goal clause resolving is forbidden in LPF then the introduction of

the ∆ logical operator around the goal is not necessary.

One of the biggest issues that needs resolving in using the resolution refu-

tation procedure in LPF is the possible occurrence of partial terms in unifiers.

The use of unification needs to be carefully guarded, to ensure the defined-

ness of the goal being proved. Definedness obligations need introducing based

upon the occurrence of functions in a unifier. When unifying an integer vari-
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able with an integer variable no such definedness obligation needs introducing.

Because an integer variable is a quantified variable, and in LPF quantification

only ever occurs over defined sets of values. Definedness obligations, however,

do need introducing in certain cases when unifying an integer variable with a

non-Skolem function (it has been identified that Skolem functions are total).

Because in LPF it is the case that partial functions can arise, and terms that

apply partial functions can fail to denote a proper value. To cope with such

partial terms in unifiers definedness obligations need introducing into a resol-

vent. Here the δ definedness logical operator can be used, which here will only

need to surround terms; the clausal form size is the same.

An alternative technique to using LPF is that of using the Well-Definedness

(WD) approach. Such a technique also introduces extra work, that being a WD

proof. Expensive WD conditions (called D in some literature, e.g. [Meh08])

need discharging to remove the concern of undefined expressions from validity

proofs. The use of ∆ in LPF is closely related and is also expensive. In

this work a goal formula needs surrounding with ∆, only if a goal clause is

allowed to be resolved with a goal clause. Here ∆ is not needed around any

assumption formula. A function in the WD approach to coping with partial

terms requires showing every argument is well-defined, and that the domain

restriction predicates hold.

In [KK94] a mechanisation of Kleene logic for partial functions is presented.

Kleene’s logic is formalised in an order-sorted three-valued logic and a reso-

lution calculus is presented. Their work leads to a more expensive clausal

form, and thus an increased search space than what is required for the method

that has been proposed here. A thorough investigation of where undefinedness

arises has been presented here, and this has led to a reduction in the number of

definedness obligations that need introducing, and thus have to be discharged.

The example proof that is used in [KK94] is:

∀i :R · ∀j :R · ¬ (i = j ) ⇒ (((1/(i − j ))2) > 0)

and a proof of this property using the proposed method from this chapter is

presented in Figure 6.5. The example has been changed slightly to avoid using

both the R datatype and the R1 datatype, that is, the set of real numbers

without the number 0. This has forced the introduction of a disjunct ¬ (i = 0)

into assumption at line reference number 3, and into the assumption at line

reference number 4 in Figure 6.5. This proof is completed with fewer resolvents

needing to be inferred than in [KK94]. A smaller number of resolvents on such

a small example is encouraging for tackling larger examples in the future, see
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1 ∀i :R · ∀j :R · ¬ (i = j ) ⇒ ¬ (1/(i − j ) = 0) assumption
2 ∀i :R · ∀j :R · δ(i − j ) assumption
3 ∀i :R · ¬ (i = 0) ⇒ δ(1/i) assumption
4 ∀i :R · ¬ (i = 0) ⇒ i2 > 0 assumption
5 ∀i :R · ∀j :R · ¬ (i = j ) ⇒ ¬ (i − j = 0) assumption
6 ∀i :R · ∀j :R · ¬ (i = j ) ⇒ (((1/(i − j ))2) > 0) goal
7 {i = j ,¬ (1/(i − j ) = 0)} clausal form(1)
8 {δ(i − j )} clausal form(2)
9 {i = 0, δ(1/i)} clausal form(3)
10 {i = 0, i2 > 0} clausal form(4)
11 {i = j ,¬ (i − j = 0)} clausal form(5)
12 {¬ (c = d)} }deny(clausal form(6))
13 {¬ (((1/(c − d))2) > 0)}
14 {(1/(c − d)) = 0,¬ δ(1/(c − d))} resolve(10, 13)
15 {(1/(c − d)) = 0, c − d = 0,¬ δ(c − d)} resolve(9, 14)
16 {(1/(c − d)) = 0, c − d = 0} resolve(8, 15)
17 {c = d , c − d = 0} resolve(7, 16)
18 {c = d} resolve(11, 17)
19 2 resolve(12, 18)

Figure 6.5: An illustrative resolution refutation proof establishing definedness

Section 7.2.2.

Furthermore, consider the proof of Property 1.3, that is presented in Fig-

ure 6.6. Like in the LPF natural deduction style version of this proof that

was presented in Figure 2.13, definedness obligations do not play a part in

this resolution refutation proof using the method proposed here, and the proof

proceeds as it would do in two-valued classical logic.

1 ∀i :Z · i ≥ 0 ⇒ zero(i) = 0 assumption
2 ∀i :Z · i ≥ 0 ∨ −i ≥ 0 assumption
3 ∀i :Z · zero(i) = 0 ∨ zero(−i) = 0 goal
4 {¬ (i ≥ 0), zero(i) = 0} clausal form(1)
5 {i ≥ 0,−i ≥ 0} clausal form(2)
6 {¬ (zero(c) = 0)} }deny(clausal form(3))
7 {¬ (zero(−c) = 0)}
8 {¬ (c ≥ 0)} resolve(4, 6)
9 {−c ≥ 0} resolve(5, 8)
10 {zero(−c) = 0} resolve(4, 9)
11 2 resolve(7, 10)

Figure 6.6: An illustrative resolution refutation proof where definedness obli-
gations do not need introducing
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First a summary of this thesis is provided, highlighting the contributions that

have been made. Key points of how the work that is presented in this thesis

can be extended in the future are then discussed.

7.1 Summary and Conclusions

Partial functions arise frequently when reasoning about programs, and a term

that applies a partial function can fail to denote a proper value (a partial term).

Partial terms can occur in logical formulae, and reasoning about such logical

formulae that can contain references to partial terms is problematic in two-

valued classical logic. Undefinedness from terms can propagate up leading to

formulae that can fail to denote, which makes no sense in two-valued classical

logic, since the truth tables only define the logical operators for proper Boolean

values. In this work as opposed to using concrete undefined values, the term

“gap” is used, that is, the absence of a defined value, for example, a truth

value “gap”.

Numerous approaches have been proposed over the years to cope with par-

tial terms. Some of these attempt to stay within the realm of two-valued

classical logic, by ensuring that undefinedness cannot be propagated out to

the logical operators, so that the use of the two-valued classical logic logical

operators can be maintained. Other approaches are based on non-classical

logics. LPF is a non-classical (three-valued) logic, based upon Strong Kleene
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logic, where the interpretations of the logical operators are extended to cope

with undefinedness, truth value “gaps”.

An obstacle to the use of a non-classical logic like LPF for reasoning about

logical formulae that can contain references to partial terms is that a large body

of research and engineering has gone into two-valued classical logic over the

years. This has led to a wide range of mechanised (interactive and automated)

proof based tool support, and proof procedures for two-valued classical logic,

which cannot be re-used without change for LPF due to the presence of partial

functions, leading to the necessary establishment of the definedness of terms

and formulae. There is a lack of direct proof support available for LPF. An aim

of this work was to investigate the applicability of mechanised proof support

for reasoning in LPF. How this aim was addressed is summarised below.

Before this investigation could be tackled it was key to develop a semantic

foundation of LPF, to facilitate the investigation. This foundation also gave

rise to a method by which to formally compare and to investigate different

approaches to coping with partial terms. The semantic foundation has been

at the core of the rest of the work presented.

Two semantic definitions have been presented which formally capture LPF.

Both Structural Operational Semantic (SOS) definitions (a big-step definition

and a small-step definition), and denotational semantic (DS) definitions were

defined (the SOS definitions preceded the DS definitions). The SOS definitions

focus on how expressions are evaluated not just what the final results are,

while the DS definitions provide a more concise definition of the values that

are denoted by expressions [NN92]. Related proofs of the semantic definitions

have been presented which show relationships between the semantic definitions,

for example how the DS definitions coincide, and how the small-step SOS

definition and a DS definition coincide. The definitions provide clear and

precise descriptions of LPF, allowing one to be clear about the semantics of

LPF before starting with a mechanisation of LPF. Furthermore, they provide a

means to precisely describe concepts and illustrate issues, they provide a basis

on which to conduct proofs of modifications to proof procedures for LPF,

and they provide a basis on which to conduct formal comparisons between

approaches to coping with partial terms. The semantic definitions for LPF are

the foundation which underlies the rest of the work presented.

An LPF DS definition has been modified to formally define the semantics

for other approaches to coping with logical formulae that can contain references

to partial terms. The differences between the approaches can be seen clearly

by noting the changes that are made between the definitions, since in most

cases only small changes needed making between the definitions. Such defini-
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tions provided a way of formally comparing the different approaches to coping

with partial terms, and they have also been used to illustrate how theorems

can be moved between the different approaches to coping with partial terms.

Being able to move theorems between different proof tools/formal methods

relies on identifying the differences between the approaches so that they can

be used together, and this work has focused on overcoming any mismatches

in respect to the different treatments of coping with partial terms. The DS

definitions have been proposed as a way of formally comparing the different

approaches to coping with partial terms. The use of DS definitions in effect

precisely and succinctly capture the crucial points and the differences between

the approaches, facilitating a formal comparison between them.

The SOS definitions have been used as a basis of developing mechanisations

of LPF in tool support environments. One of the mechanisations utilises the

Maude term-rewriting system, allowing for expressions to be evaluated by a

tool according to the semantics of LPF. Both the big-step SOS definition, and

the small-step SOS definition were coded into Maude. This also allowed for

precise comparisons to be made between the two definitions.

Another mechanisation provided the foundation of some interactive proof

support for LPF in the Isabelle proof assistant. This was the first attempt

at providing proof support for LPF in this work. The work on coding the

big-step SOS definition into Isabelle (defining the disjunction logical operator,

and allowing for function applications etc. ), form the key foundation on which

to facilitate further development of interactive proof support for LPF. Only

a small set of expression constructs were defined in Isabelle, but enough to

ensure that fundamental properties involving applications of partial functions

could be proved. It would be useful to extend this mechanisation further to

include support for additional expression constructs and datatypes etc.

An investigation into the applicability of mechanised proof support for

LPF, focused on the basic but fundamental two-valued classical logic proof

procedure: resolution and the associated technique of proof by contradiction.

Advanced proof techniques (see Section 7.2.4), are built on the foundation pro-

vided by these basic but fundamental proof techniques. Thus an investigation

into the basic techniques was the essential and obvious starting point for ad-

dressing the issue of mechanised proof support for LPF. The work provides key

insights into the provision of mechanised proof support for a non-classical logic

like LPF, and provides the essential foundation on which to facilitate research

into the modification of advanced proof techniques for LPF, and for providing

tool support in the future. The work was to argue that when supplemented

with modifications that the key fundamental basic proof techniques can be
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re-used to conduct reasoning within LPF, and furthermore that they can be

modified efficiently for LPF.

The investigation highlighted the issues that arise when applying the reso-

lution proof procedure and the associated technique of proof by contradiction

in LPF, and determined the extent of the modifications needed to adapt them

for LPF. Outcomes of this work were thus an insight into the amount of extra

work that is brought into these techniques when they are applied in LPF, as

well as the modification of the techniques for LPF.

An LPF DS definition was used as a basis to highlight the issues that

arise, define concepts, and it was also used as the basis on which to prove the

modifications made to the resolution proof procedure to cover LPF. The use

of such a DS definition here aided greatly in being able to illustrate the issues

precisely, as well as ensuring that the proofs could be performed by relying

only on a relatively small but core underlying basis.

The issue of undefinedness is present even in the definition of basic concepts.

For instance, the definition of unsatisfiability must take into account unde-

finedness, due to the presence of partial functions and thus partial terms. This

impacts the well-known duality between validity and unsatisfiability. Since un-

definedness issues present themselves at such a low level, addressing the core

of the classical fundamental basic proof procedure resolution (with refutation)

was necessitated, which obviously needed doing before looking at any advanced

proof techniques built around them over the years.

The resolution rule of inference carries over to LPF. But, the resolution

refutation procedure does not carry over to LPF. This is an impact of the

loss of duality between validity and unsatisfiability. The definedness of the

goal must be shown in addition in LPF. The resolution refutation procedure

needs adapting with definedness obligations which need discharging to ensure

that only valid formulae can actually be proven valid. Assessing the extent of

the required introduction of definedness obligations for a resolution refutation

proof has been investigated. This has already been summarised in more detail

in the conclusion section of Chapter 6, so such detail will not be reiterated

here.

Pleasingly, the two-valued classical logic clausal form conversion techniques

considered carry over to LPF, but need supplementing with conversions for a

definedness logical operator.

The definedness obligations introduced into resolution proofs in LPF use

the ∆ and δ definedness logical operators. Due to the expense of using the

non-monotonic ∆ definedness logical operator it has been investigated how to

limit its introduction into resolution proofs in LPF. Its use can be constrained
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to only being needed when a goal clause can be resolved with a goal clause.

The occurrence of partial terms in substitutions through the use of unification

in resolution requires the introduction of definedness obligations, but these can

be introduced using the δ definedness logical operator; this does not carry the

expense of the ∆ definedness logical operator in the conversion to clausal form,

since it is only applied to terms.

Pleasingly it has been shown that the basis of the considered proof tech-

niques in two-valued classical logic can be re-used when supplemented with

vital modifications for LPF. The modifications relate to showing the defined-

ness of terms and formulae. This ensures that an implementation of them can

be built up from modifying existing code bases, and existing tool support can

be adapted instead of having to start from scratch, for instance. Definedness

obligations can be proved using resolution itself.

It is pleasing that, on the small examples tested, the LPF resolution refu-

tation procedure (with partial terms being able to arise) does not need many

more resolvents to be inferred in the proof, in comparison to the comparable

proofs conducted in two-valued classical logic, but coping with partial terms in

two-valued classical logic is problematic. In a specific example of Property 1.3

considered the proof was exactly the same as a comparable proof in two-valued

classical logic. However, what is missing is results on larger examples to get

further performance results to be able to evaluate the performance of the proof

procedures considered for LPF in more depth. This issue is discussed further

in Section 7.2.2.

The mechanisation work for LPF has started to address a major criticism

that was put towards LPF, which was a lack of proof support for LPF. This

mechanisation work has also greatly aided in the case of justifying the use of

LPF for reasoning about logical formulae that can contain reference to partial

terms.

There are several areas where this work can be extended; these are outlined

further in the next section.

7.2 Future Work

As usual there is more work that could be done. The key areas identified for

the extension of this work are:

• a further comparison of different non-classical logic approaches to coping

with partial terms based upon implementing proof procedures in them

as has been done for LPF (see Section 7.2.1);

• gaining further results on the performance/efficiency of the proof tech-
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niques considered in LPF by undertaking case studies (see Section 7.2.2);

• providing a concrete implementation of the proof techniques considered

for LPF (see Section 7.2.3); and

• extending the work on LPF to cope with equality, and considering other

advanced proof techniques that have been built around the basic funda-

mental proof techniques considered (see Section 7.2.4).

Each of these key tasks is outlined in more detail in the subsections below,

explaining why they will make significant contributions, as well as insights into

how such tasks could be completed. An indication of the effort that these tasks

are believed to involve is also made.

7.2.1 Further Comparison Results

In Chapter 4 a DS definition for LPF was modified to formally define the se-

mantics of other approaches to coping with logical formulae that can contain

reference to partial terms. This enabled some comparisons to be made be-

tween the different approaches. First on the basis of the meaning of different

expressions between the different approaches, and secondly on properties that

hold in the non-classical logic approaches. The comparisons in Chapter 2 and

Chapter 4 justified the choice of LPF for coping with partial terms.

It would also be beneficial to extend this work to compare the extra work

that arises when carrying over two-valued classical logic proof procedures to

the other non-classical logic approaches considered. Proof procedures for LPF

were investigated in Chapter 6.

This extension to the work presented in this thesis would comprise of an

investigation into the extent of the modifications needed for the resolution refu-

tation procedure for weak Kleene logic and for McCarthy’s conditional logic

etc. against that needed for LPF. For instance, how does the sequential inter-

pretation of McCarthy’s conditional logic hold up against that of the parallel

interpretation nature of LPF which provides the strongest monotonic exten-

sion of the familiar two-valued classical logic logical operators in the resolution

refutation procedure. Specifically, in terms of the size of the resulting clausal

form, the number of definedness obligations that need introducing into proofs,

and thus the amount of work that the other logics introduce compared to LPF.

The corresponding E i semantic functions definitions from Chapter 4 could

be used to aid in defining the concepts, and used for proving the modifications

made hold. Similar to how the E semantic function definition for LPF has

been used in Chapter 6.
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7.2.2 Further Performance Results

A resolution proof procedure alongside the associated technique of proof by

contradiction has been proposed that is sound in LPF. However, the only

results on the efficiency of this for LPF have come about from applying it to

small examples. Thus one obvious extension of this work is to apply it to

large case studies in order to be able to document more extensive results on

its efficiency.

A suggested case study is the Mondex Electronic Purse system [SCW00].

An attempt at mechanising the Mondex Electronic Purse system in the Z/Eves

theorem prover is discussed in [FW08]. To ensure expressions that apply par-

tial functions are defined Z/Eves generates domain checks; examples of which

are noted in [FW08].

Undertaking case studies will allow for a reasonable number of example

proofs to be conducted. This will ensure that a more conclusive idea of the

efficiency of resolution in LPF can be gained.

The time to complete such a task is linked to two key factors:

• the actual size of the case study involved; and

• whether implemented support of the procedures is available.

Thus to aid with completing such a task first undertaking all or a part of

the task that is discussed next would be beneficial.

7.2.3 Implementing the Proof Techniques Considered

In order to aid in the task of undertaking case studies/conducting proofs a con-

crete implementation of resolution (with refutation) for LPF will be beneficial.

The overall aim should be to mechanise the resolution procedure in a theorem

prover, for instance in Prover 9 [McC10]. The reason behind the choice of

Prover 9 is to have a small code base with which to modify, even though it is

not a state of the art theorem prover like E [Sch02], or Vampire [RV02].

For earlier prototypes, taking a different approach may offer considerable

benefits. In [Har09] John Harrison presents numerous fragments of OCaml

code for methods including resolution that he describes in his book. Addi-

tionally, in [BA01] Mordechai Ben-Ari presents fragments of Prolog code for

different methods including resolution that he describes in his book.

Implementing prototypes using either the aforementioned OCaml code or

the aforementioned Prolog code could be a worthwhile first step as it should

allow for a quicker implementation. This is because a smaller code base will

need to be understood and to be extended, and the code is well documented
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in the two books cited above. This can lead to earlier case study results being

able to be obtained, to get a further understanding of additional work that

results from the proof procedures in LPF before moving the ideas across to a

theorem proving system.

7.2.4 Investigating the Applicability of Further Proof Techniques

for LPF

Some of the work presented in this thesis has all been focused on applying

the basic proof procedure resolution and its associated technique of proof by

contradiction in LPF. There has been little direct proof support for LPF over

the years, so investigating the classical basic fundamental proof techniques in

LPF was the essential and obvious starting point, to be able to gain insights

into the issues that arise in applying these techniques to LPF, and to determine

the extent of the modifications needed to cover LPF.

Key insights have been gained from this work on the topic of providing

mechanised proof support for LPF. This work also provides the essential foun-

dation with which to facilitate research into advanced proof techniques for

LPF. A question that arises is: how many of the underlying ideas proposed

for the adaption of the basic proof techniques for LPF considered in the main

body of this thesis can be replayed to cover advanced proof techniques that

are built around the basic proof techniques considered? Furthermore, can

the ideas be replayed in another fundamental proof procedure of semantic

tableauxs [BA01]? Some proof techniques will be considered in more depth

below. In particular modifications to cover the demodulation proof technique

for LPF are proposed using the ideas put forth in the main body of this thesis.

In Chapter 6 the equality symbol has been used in examples, but its treat-

ment was just as a binary predicate that could be interpreted arbitrarily. So

far, when considering validity, interpretations where the equality symbol is

interpreted as something other than what equality normally means have had

to be taken into account. However, the notion of equality plays a central

role in formal methods/mathematical reasoning [Har09]. There is thus a need

to consider those interpretations where equality is constrained to its normal

meaning.

Constraining equality is a topic of future work, but key ideas to doing

so are outlined in this section. One approach when using resolution to con-

strain equality is to add axioms such as reflexivity and symmetry etc. More

efficient ways of coping with equality can be to use the demodulation or the

paramodulation rule in addition to resolution and factoring.

One can constrain equality and deal with the equality predicate in reso-
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lution by adding the following equivalence and congruence axioms Eq(Γ) to

the set of clauses, that is, considering the set of clauses Γ ∪ Eq(Γ). However,

resolution and factoring with these clauses can cause the generation of many

unnecessary clauses.

Since equality is an equivalence relation it must be reflexive:

∀x · x = x

as well as symmetric:

∀x · ∀y · x = y ⇒ y = x

and transitive:

∀x · ∀y · ∀z · x = y ∧ y = z ⇒ x = z

and congruent :

∀x · ∀y · x = y ⇒ f (x ) = f (y)

for each n-ary function, and congruent :

∀x · ∀y · x = y ∧ P(x ) ⇒ P(y)

for each n-ary predicate [Har09].

In LPF the notion of equality is weak/strict, that is, undefined if either

operand is undefined, so while in two-valued classical logic reflexivity is a

tautology it may not be in LPF as x = x can be undefined. However, because

of the use of quantification in these formulae, this notion of reflexivity can

still be used in LPF. All variables are assumed to be universally quantified

in the clausal form notation being used, and since quantification in LPF is

only over sets of proper (i.e. defined) values then this reflexivity axiom is still

holds in LPF. In effect the use of the universal quantifier is masking a typing

hypothesis x : T that needs to be present in LPF for reflexivity to hold. By

the same reasoning, the symmetry and the transitivity axioms as they are

presented above can be carried over to LPF.

However, the function congruence axiom and the predicate congruence ax-

iom do not hold in LPF since it could be the case that x and y are equal to

each other but when given as arguments to a function or to a predicate in

the consequent a “gap” may arise, which causes a “gap” to arise in the whole
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formula. The function congruence rules need changing to:

∀x · ∀y · (x = y ∧∆(f (x ))) ⇒ (f (x ) = f (y))

for each n-ary function. The predicate congruence rules need changing to:

∀x · ∀y · (x = y ∧∆(P(x )) ∧ P(x )) ⇒ (P(y))

for each n-ary predicate.

The ideas from Chapter 6 form the essential foundation on which to re-

search into the modification of advanced proof techniques for LPF. Dealing

with demodulation and paramodulation appears to just be a case of applying

similar techniques to the definedness of terms as to what has already been

presented. The following discussion on demodulation and paramodulation in-

troduces the proof techniques, and hints at an issue that may arise, as well

as how such an issue could be solved to carry these techniques over to LPF.

Further investigation and proofs of the following ideas are left as a topic of

future work.

Demodulation [WRCS67] is a form of rewriting used for simplification.

Given a clause {a = b} and a clause {P(a ′)}, then P(b) can be inferred,

where the terms a and a ′ can be unified. If a, b, and a ′ are all Vars then

this rule should carry over to LPF, as all Vars are defined. However, consider

a = b and P(f (x )), where a unifies with f (x ), but f (x ) could be undefined,

while the Var a is guaranteed to be defined. The predicate P no longer has

a possibly undefined function as an argument, but has a defined Var (from a

quantifier) as an argument. Thus to guard against this possibility a unification

constraint/a definedness obligation using the δ definedness logical operator on

f (x ) will need to be introduced in the same way as has been discussed for

resolution in Chapter 6.

Paramodulation [RW69, Har09, Bun10] is a technique that is generally used

alongside resolution as a way of handling equality. Given a clause C1, where

{a = b} ⊆ C1, where a and b are terms, and given a clause C2, where {P [a ′]} ⊆
C2, where P [a ′] is a literal (possibly negative) that contains a subterm a ′, then

a paramodulant of φ[C1]∪ φ[C2]∪ φ[P [b]] can be inferred, where φ is the mgu

of a and a ′. Note that a = b can be interpreted as either a = b or b = a, since

the equality under consideration is not oriented.

Dealing with paramodulation in LPF should be the same as for demodu-

lation by adding in unification constraints/definedness obligations using the δ

definedness logical operator.
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Additionally, a concrete implementation of these proof techniques for LPF

will be of considerable benefit, as will applying such proof techniques in case

studies to gain further extra results on the extra work that LPF carries.

It is worthwhile mentioning some similar work. In [Sch11] term rewriting

is considered in the presence of partial functions. A partial order is used, that

is, x v y iff x ≡ ⊥ ∨ x ≡ y , where every operator is monotone. The SW se-

quent interpretation semantics are used but recall that an interpretation where

true ` ⊥B occurs is valid with the SW sequent interpretation semantics, but

with such an interpretation the sequent will be invalid with the LPF SS se-

quent interpretation semantics. The author of [Sch11] uses directed rewriting,

and so x can be replaced with y , if x v y . This does not though carry over to

LPF, since it is unsound to apply such term rewriting on a goal; definedness of

the goal needs establishing in LPF. Recall that in LPF one reasons only from

truth to truth.

Further work should also look at whether any further proof techniques can

be carried over to LPF, and how efficiently. This work focused on investigating

whether selected basic but fundamental proof techniques, could be carried

over to LPF, identifying the issues that arise when applying them in LPF,

and determining the extent of the modifications that needed making to carry

them over to LPF. Extensions around these techniques have been proposed

over the years, and ensuring that this work can be made use of in LPF is a

vital task that needs undertaking, for instance, researching the application of

superposition [BG94] in LPF.

The resolution refutation procedure that has been presented in Chapter 6

is not complete. Research into the refutation completeness of it for LPF is a

valuable task. As it stands this cannot be complete due to the introduction

of definedness obligations. Further cases for resolving need identifying and

covering, for example, through the formulation of additional rule(s).



Bibliography

[AF97] Sten Agerholm and Jacob Frost. An Isabelle-based Theorem Prover

for VDM-SL. In In Proceedings of the 10th International Confer-

ence on Theorem Proving in Higher Order Logics (TPHOLs’97),

LNCS, pages 1–16. Springer-Verlag, 1997.

[Age94] Sten Agerholm. Domain Theory in HOL. In Jeffery Joyce and Carl-

Johan Seger, editors, Higher Order Logic Theorem Proving and Its

Applications, volume 780 of Lecture Notes in Computer Science,

pages 295–309. Springer Berlin Heidelberg, 1994.

[AGM92] S. Abramsky, Dov M. Gabbay, and S. E. Maibaum, editors. Hand-

book of logic in computer science (vol. 2): background: computa-

tional structures. Oxford University Press, Inc., New York, NY,

USA, 1992.

[Art96] R.D. Arthan. Undefinedness in Z: Issues for specification and proof.

In CADE-13 Workshop on Mechanization of Partial Functions,

pages 3–12. Springer-Verlag, 1996.

[BA01] Mordechai Ben-Ari. Mathematical Logic for Computer Science.

Springer-Verlag, 2 edition, 2001.

[BBS+05] Sergey Berezin, Clark Barrett, Igor Shikanian, Marsha Chechik,

Arie Gurfinkel, and David L. Dill. A practical approach to partial

functions in CVC Lite. Electronic Notes in Theoretical Computer

Science, 125:13–23, July 2005.

[BCJ84] H. Barringer, J.H. Cheng, and C.B. Jones. A logic covering unde-

finedness in program proofs. Acta Informatica, 21:251–269, 1984.

[BFL+94] J. C. Bicarregui, J. S. Fitzgerald, P. A. Lindsay, R. Moore, and

B. Ritchie. Proof in VDM: A Practitioner’s Guide. FACIT.

Springer-Verlag, 1994.

[BG94] Leo Bachmair and Harald Ganzinger. Rewrite-based equational

theorem proving with selection and simplification. Journal of Logic

and Computation, 4(3):217–247, 1994.

[Bic98] J. C. Bicarregui, editor. Proof in VDM: Case Studies. FACIT.

Springer-Verlag, 1998.



BIBLIOGRAPHY 232

[Bla80] S. R. Blamey. Partial Valued Logic. PhD thesis, Oxford University,

1980.

[BM99] Juan C. Bicarregui and Brian M. Matthews. Proof and refutation

in formal software development. In 3rd Irish Workshop on Formal

Software Development, 1999.

[Boc81] D.A. Bochvar. On a three-valued logical calculus and its application

to the analysis of the paradoxes of the classical extended functional

calculus. History and Philosophy of Logic, 2:87–112, 1981. Trans-

lated by Bergmann, Merrie.

[BT07] Clark Barrett and Cesare Tinelli. CVC3. In Werner Damm

and Holger Hermanns, editors, Proceedings of the 19th Interna-

tional Conference on Computer Aided Verification (CAV ’07), vol-

ume 4590 of Lecture Notes in Computer Science, pages 298–302.

Springer-Verlag, July 2007.

[Bun10] Alan Bundy. The Computer Modelling of Mathematical Reasoning.

University of Edinburgh, digital edition, 2010.

[But55] Ronald J. Butler. Aristotle’s sea fight and three-valued logic. The

Philosophical Review, 64(2):pp. 264–274, 1955.

[CDE+07] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln,
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Appendix A

Full LPF Semantic Definitions

The full abstract syntax (Appendix A.1), context conditions (Appendix A.2),

Structural Operational Semantic definitions, both big-step and small-step (Ap-

pendix A.3) and Denotational Semantic definitions (Appendix A.4) that de-

fine the semantics of LPF for evaluating different expression constructs are

presented in this appendix.

A.1 Abstract Syntax

A.1.1 Expression Constructs

The selected expression constructs are all presented using abstract syntax. The

available expressions are:

Expr = Value | Id | Arith | Equality | Cond | Not | delta |
Or | Exists | FuncCall | PredCall

where Value represents the two data types available:

Value = B | Z

and where Id represents propositional variable identifiers (Prop), integer vari-

able identifiers (Var), function identifiers (symbols) (Fn) and predicate iden-

tifiers (symbols) (Pr):

Id = Prop | Var | Fn | Pr

The four identifier sets are assumed to be disjoint.

The rest of the expression constructs are presented as records:

Arith :: a : Expr

op : + | − | × | ÷
b : Expr

Equality :: a : Expr

b : Expr

Cond :: p : Expr

a : Expr

b : Expr

Not :: p : Expr

delta :: p : Expr
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Or :: p : Expr

q : Expr

Exists :: x : Var

p : Expr

FuncCall :: function : Fn

args : Expr ∗

PredCall :: predicate : Pr

args : Expr ∗

A.1.2 Syntactic Definitions

As usual, assuming the extra syntax is defined as above for the other expression

constructs, the following syntactic definitions hold in LPF:

• The formula mk And(p, q) is equivalent to the formula mk Not(mk

Or(mk Not(p),mk Not(q)));

• The formula mk Implies(p, q) is equivalent to the formula mk Or(mk

Not(p), q);

• The formula mk Iff (p, q) is equivalent to the formula mk And(

mk Implies(p, q),mk Implies(q , p)); and

• The formula mk Forall(x , p) is equivalent to the formula mk Not(mk

Exists(x ,mk Not(p))).

These other operators are not defined in the semantic definitions that fol-

low, since they can be defined in terms of other operators that are defined in

the following semantic definitions. Defining these extra operators would be

trivial, but would expand the size of the presentation of the semantics without

adding clarity.

A.1.3 Function Definitions and Predicate Definitions

Function definitions and predicate definitions are also represented as records:

Func :: params : Var ∗

result : Expr

Pred :: params : Var ∗

result : Expr
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A.2 Context Conditions

A.2.1 Type Map

To be able to perform type checks in the language a Types map is used that

maps identifiers to the corresponding type Bool or Int:

Types = Prop
m−→ Bool |

Var
m−→ Int

Type = Bool | Int

In addition to the Types map a map called Defs is used that maps function

identifiers and predicate identifiers to the corresponding function definitions

and predicate definitions respectively:

Defs = Fn
m−→ Func |

Pr
m−→ Pred

The Defs map is needed to be able to make some type checks.

A.2.2 Expressions

The context condition for expressions (Expr) is defined as:

wf -Expr : Expr × Types × Defs → (Type | Error)

wf -Expr(e, vars , defs) 4

cases e of

The cases are defined below.

others Error

end

where the cases for each e ∈ Expr are defined as:

e ∈ B→ Bool

e ∈ Z→ Int

e ∈ Prop → if e ∈ dom vars

then Bool

else Error

e ∈ Var → if e ∈ dom vars

then Int

else Error
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mk Arith(a, op, b)→ let l = wf -Expr(a, vars , defs) in

let r = wf -Expr(b, vars , defs) in

if l = Int ∧ l = r ∧ op ∈ {+,−,×,÷}
then Int

else Error

mk Equality(a, b)→ let l = wf -Expr(a, vars , defs) in

let r = wf -Expr(b, vars , defs) in

if l = Int ∧ l = r

then Bool

else Error

mk Cond(p, a, b)→ let l = wf -Expr(p, vars , defs) in

let r = wf -Expr(a, vars , defs) in

let s = wf -Expr(b, vars , defs) in

if l = Bool ∧ r = Int ∧ r = s

then Int

else Error

mk Not(p)→ if wf -Expr(p, vars , defs) = Bool

then Bool

else Error

mk delta(p)→ if wf -Expr(p, vars , defs) = Bool

then Bool

else Error

mk Or(p, q)→ let l = wf -Expr(p, vars , defs) in

let r = wf -Expr(q , vars , defs) in

if l = Bool ∧ l = r

then Bool

else Error

mk Exists(x , p)→ if wf -Expr(p, vars † {x 7→ Int}) = Bool

then Bool

else Error
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mk FuncCall(id , args)→ if (∀i : inds args ·
wf -Expr(args(i), vars , defs) = Int) ∧

id ∈ dom defs ∧
len args = len defs(id).params

then Int

else Error

mk PredCall(id , args)→ if (∀i : inds args ·
wf -Expr(args(i), vars , defs) = Int) ∧

id ∈ dom defs ∧
len args = len defs(id).params

then Bool

else Error

A.2.3 Function Definitions and Predicate Definitions

The context conditions that check function definitions and predicate definitions

are defined as:

wf -Func : Func × Types × Defs → B

wf -Func(mk Func(p, r), vars , defs) 4

wf -Expr(r , {p(i) 7→ Int | i : inds p}, defs) = Int

wf -Pred : Pred × Types × Defs → B

wf -Pred(mk Pred(p, r), vars , defs) 4

wf -Expr(r , {p(i) 7→ Int | i : inds p}, defs) = Bool

A.3 Structural Operational Semantics

A big-step SOS definition and a small-step SOS definition for LPF is presented

in full in this appendix. The two SOS definitions are used to describe/model

the process of expression evaluation according to the semantics of LPF.

A.3.1 Semantic Object

A map Σ from identifiers to values, function definitions and predicate defini-

tions is defined as:

Σ = Prop
m−→ B |

Var
m−→ Z |

Fn
m−→ Func |

Pr
m−→ Pred
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where Σ is the set of all memory stores and a σ ∈ Σ represents a specific

mapping.

A Prop map can be partial to allow for undefined propositional identifiers,

that is, a propositional identifier can be absent from the domain of a specific

σ to represent an undefined propositional identifier. The other three maps are

all assumed to be total. Function definitions (Func) and predicate definitions

(Pred) can themselves be partial.

A.3.2 Big-Step Structural Operational Semantics Definition

The semantic (transition) relation is:

e−→:P((Expr × Σ)× Value)

The semantic (inference) rules follow.

Values

Value E
v ∈ Value

(v , σ)
e−→ v

Identifiers

Prop E

id ∈ Prop;

id ∈ dom σ

(id , σ)
e−→ σ(id)

Var E
id ∈ Var

(id , σ)
e−→ σ(id)

Arithmetic

Arith E1

(a, σ)
e−→ a ′;

(b, σ)
e−→ b ′;

a ′ ∈ Z;

b ′ ∈ Z;

(mk Arith(a,+, b), σ)
e−→ [[+]](a ′, b ′)
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Arith E2

(a, σ)
e−→ a ′;

(b, σ)
e−→ b ′;

a ′ ∈ Z;

b ′ ∈ Z;

(mk Arith(a,−, b), σ)
e−→ [[−]](a ′, b ′)

Arith E3

(a, σ)
e−→ a ′;

(b, σ)
e−→ b ′;

a ′ ∈ Z;

b ′ ∈ Z;

(mk Arith(a,×, b), σ)
e−→ [[×]](a ′, b ′)

Arith E4

(a, σ)
e−→ a ′;

(b, σ)
e−→ b ′;

a ′ ∈ Z;

b ′ ∈ Z;

b ′ 6= 0

(mk Arith(a,÷, b), σ)
e−→ [[÷]](a ′, b ′)

where a ∈ T in all of the SOS rules checks whether a is a member of T , that

is 0 ∈ Z is true, but mk Arith(1,+, 1) ∈ Z is false, since mk Arith(1,+, 1) has

not yet been evaluated to a constant integer value. Furthermore, [[op]](a, b) is

to be regarded as the standard mathematical result of the specified operator

op applied to two given operands a and b.

Equality

Equality E

(a, σ)
e−→ a ′;

(b, σ)
e−→ b ′;

a ′ ∈ Z;

b ′ ∈ Z
(mk Equality(a, b), σ)

e−→ [[=]](a ′, b ′)
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The Conditional Expression

Cond E1

(p, σ)
e−→ true;

(a, σ)
e−→ a ′;

a ′ ∈ Z
(mk Cond(p, a, b), σ)

e−→ a ′

Cond E2

(p, σ)
e−→ false;

(b, σ)
e−→ b ′;

b ′ ∈ Z
(mk Cond(p, a, b), σ)

e−→ b ′

Negation

Not E1
(p, σ)

e−→ true

(mk Not(p), σ)
e−→ false

Not E2
(p, σ)

e−→ false

(mk Not(p), σ)
e−→ true

The δ Operator

delta E1
(p, σ)

e−→ true

(mk delta(p), σ)
e−→ true

delta E2
(p, σ)

e−→ false

(mk delta(p), σ)
e−→ true

Disjunction

Or E1
(p, σ)

e−→ true

(mk Or(p, q), σ)
e−→ true

Or E2
(q , σ)

e−→ true

(mk Or(p, q), σ)
e−→ true
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Or E3

(p, σ)
e−→ false;

(q , σ)
e−→ false

(mk Or(p, q), σ)
e−→ false

Existenital Quantification

Exists E1
∃i :Z · (p, σ † {x 7→ i}) e−→ true

(mk Exists(x , p), σ)
e−→ true

Exists E2
∀i :Z · (p, σ † {x 7→ i}) e−→ false

(mk Exists(x , p), σ)
e−→ false

Consider the ∃ above the line as a disjunction, and the ∀ above the line

as a conjunction. See the small-step SOS definition in Appendix A.3.3 for the

alternative approach that does not define a quantifier with a quantifier.

Function Application

FuncCall E

let a = [args ′(i) | i : inds args∧
(args(i), σ)

e−→ args ′(i) ∧ args ′(i) ∈ Z] in

len args = len a;

(σ(id).result , σ † {σ(id).params(i) 7→ a(i) |
i : inds σ(id).params}) e−→ res ;

res ∈ Z
(mk FuncCall(id , args), σ)

e−→ res

Predicate Application

PredCall E

let a = [args ′(i) | i : inds args∧
(args(i), σ)

e−→ args ′(i) ∧ args ′(i) ∈ B] in

len args = len a;

(σ(id).result , σ † {σ(id).params(i) 7→ a(i) |
i : inds σ(id).params}) e−→ res ;

res ∈ B
(mk PredCall(id , args), σ)

e−→ res
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A.3.3 Small-Step Structural Operational Semantics Definition

The semantic (transition) relation is:

e−→:P((Expr × Σ)× Expr)

where
E−→ is the reflexive, transitive closure of

e−→ such that:

(e, σ)
E−→ v ⇔ e = v ∨ ∃e ′: Expr · (e, σ)

e−→ e ′ ∧ (e ′, σ)
E−→ v

The semantic (inference) rules follow.

Values

Value E
v ∈ Value

(v , σ)
e−→ v

Identifiers

Prop E

id ∈ Prop;

id ∈ dom σ

(id , σ)
e−→ σ(id)

Var E
id ∈ Var

(id , σ)
e−→ σ(id)

Arithmetic

Arith L
(a, σ)

e−→ a ′

(mk Arith(a, op, b), σ)
e−→ mk Arith(a ′, op, b)

Arith R
(b, σ)

e−→ b ′

(mk Arith(a, op, b), σ)
e−→ mk Arith(a, op, b ′)

Arith E1

a ∈ Z;

b ∈ Z
(mk Arith(a,+, b), σ)

e−→ [[+]](a, b)
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Arith E2

a ∈ Z;

b ∈ Z
(mk Arith(a,−, b), σ)

e−→ [[−]](a, b)

Arith E3

a ∈ Z;

b ∈ Z
(mk Arith(a,×, b), σ)

e−→ [[×]](a, b)

Arith E4

a ∈ Z;

b ∈ Z;

b 6= 0

(mk Arith(a,÷, b), σ)
e−→ [[÷]](a, b)

Equality

Equality L
(a, σ)

e−→ a ′

(mk Equality(a, b), σ)
e−→ mk Equality(a ′, b)

Equality R
(b, σ)

e−→ b ′

(mk Equality(a, b), σ)
e−→ mk Equality(a, b ′)

Equality E

a ∈ Z;

b ∈ Z
(mk Equality(a, b), σ)

e−→ [[=]](a, b)

The Conditional Expression

Cond A
(p, σ)

e−→ p ′

(mk Cond(p, a, b), σ)
e−→ mk Cond(p ′, a, b)

Cond E1
(mk Cond(true, a, b), σ)

e−→ a
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Cond E2
(mk Cond(false, a, b), σ)

e−→ b

Negation

Not A
(p, σ)

e−→ p ′

(mk Not(p), σ)
e−→ mk Not(p ′)

Not E1
(mk Not(true), σ)

e−→ false

Not E2
(mk Not(false), σ)

e−→ true

The δ Operator

delta A
(p, σ)

e−→ p ′

(mk delta(p), σ)
e−→ mk delta(p ′)

delta E1
(mk delta(true), σ)

e−→ true

delta E2
(mk delta(false), σ)

e−→ true

Disjunction

Or L
(p, σ)

e−→ p ′

(mk Or(p, q), σ)
e−→ mk Or(p ′, q)

Or R
(q , σ)

e−→ q ′

(mk Or(p, q), σ)
e−→ mk Or(p, q ′)
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Or E1
(mk Or(true, q), σ)

e−→ true

Or E2
(mk Or(p, true), σ)

e−→ true

Or E3
(mk Or(false, false), σ)

e−→ false

Existenital Quantification

Exists E1
∃i :Z · (p, σ † {x 7→ i}) E−→ true

(mk Exists(x , p), σ)
e−→ true

Exists E2
∀i :Z · (p, σ † {x 7→ i}) E−→ false

(mk Exists(x , p), σ)
e−→ false

or:

Expr = . . . | ExistsInter

ExistsInter :: x : Id

pairs : ExistsPair ∗

where:

ExistsPair :: i : Z
p : Expr

Exists E
(mk Exists(x , p), σ)

e−→
mk ExistsInter(x , [mk ExistsPair(i , p) | i :Z])

ExistsInter A

let j ∈ inds pairs in

(pairs(j ).p, σ † {x 7→ pairs(j ).i}) e−→ pairs ′(j ).p

(mk ExistsInter(x , pairs), σ)
e−→ mk ExistsInter(x , pairs ′)

where pairs ′ is pairs but incorporating the change made to the j th element:
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pairs ′(j ).p. Also the let statement is to make an arbitrary choice.

ExistsInter E1
true ∈ {pairs(i).p | i : inds pairs}

(mk ExistsInter(x , pairs), σ)
e−→ true

ExistsInter E2
{pairs(i).p | i : inds pairs} = {false}

(mk ExistsInter(x , pairs), σ)
e−→ false

Function Application

Expr = . . . | FuncInter

FuncInter :: result : Expr

paramid : Id∗

args : Expr ∗

FuncCall A
let i ∈ inds args in (args(i), σ)

e−→ args ′(i)

(mk FuncCall(id , args), σ)
e−→ mk FuncCall(id , args ′)

FuncCall E
[args(i) | i : inds args ∧ args(i) ∈ Z] = args

(mk FuncCall(id , args), σ)
e−→

mk FuncInter(σ(id).result , σ(id).params , args)

FuncInter A
(res , σ † {paramids(i) 7→ args(i) | i : inds paramids}) e−→ res ′

(mk FuncInter(res , paramids , args), σ)
e−→

mk FuncInter(res ′, paramids , args)

FuncInter E
res ∈ Z

(mk FuncInter(res , paramids , args), σ)
e−→ res

Predicate Application

Expr = . . . | PredInter

PredInter :: result : Expr

paramid : Id∗

args : Expr ∗
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PredCall A
let i ∈ inds args in (args(i), σ)

e−→ args ′(i)

(mk PredCall(id , args), σ)
e−→ mk PredCall(id , args ′)

PredCall E
[args(i) | i : inds args ∧ args(i) ∈ B] = args

(mk PredCall(id , args), σ)
e−→

mk PredInter(σ(id).result , σ(id).params , args)

PredInter A
(res , σ † {paramids(i) 7→ args(i) | i : inds paramids}) e−→ res ′

(mk PredInter(res , paramids , args), σ)
e−→

mk PredInter(res ′, paramids , args)

PredInter E
res ∈ B

(mk PredInter(res , paramids , args), σ)
e−→ res

A.4 Denotational Semantics

The full LPF denotation semantic definitions are presented in this appendix.

They provide set theoretic definitions of the values that are denoted by ex-

pressions.

A.4.1 Expressions

The set of expressions used here is Expr∆ which is Expr as defined previously

but with the addition of the ∆ operator.

Expr∆ = Expr | Delta

where:

Delta :: p : Expr

A.4.2 Context Conditions

The wf -Expr∆ context condition is defined as:



Full LPF Semantic Definitions 255

wf -Expr∆ : Expr∆ × Types → (Type | Error)

wf -Expr∆(e, vars) 4

cases e of
...

mk Delta(p)→ if wf -Expr(p, vars) = Bool

then Bool

else Error
...

others Error

end

The rest of the cases follow as presented for wf -Expr .

A.4.3 Semantic Object

Σ is updated to:

Σ = Prop
m−→ B |

Var
m−→ Z |

Fn
m−→ Function |

Pr
m−→ Predicate

where functions and predicates are now defined as:

Function = P(Z∗ × Z)

Predicate = P(Z∗ × B)

where function definitions Function and predicate definitions Predicate can

both still be partial. No context conditions are now needed for function defi-

nitions and for predicate definitions.

A.4.4 Denotational Semantic Definition 1

The semantic relation is defined as:

E :P((Expr∆ × Σ)× Value)

E is defined in parts:

E = Evalue ∪Eid ∪Earith ∪Eequality ∪Econd ∪Eor ∪Enot ∪Edelta ∪
EDelta ∪ Eexists ∪ Efunccall ∪ Epredcall

where:

Evalue =

{((e, σ), e) | e ∈ Value}
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Eid =

{((v , σ), σ(v)) | v ∈ Prop ∧ v ∈ dom σ} ∪
{((v , σ), σ(v)) | v ∈ Var}

Earith =

{((mk Arith(a, op, b), σ), [[op]](a ′, b ′)) |
((a, σ), a ′) ∈ E ∧ ((b, σ), b ′) ∈ E ∧ op ∈ {+,−,×}} ∪
{((mk Arith(a,÷, b), σ), [[÷]](a ′, b ′)) |

((a, σ), a ′) ∈ E ∧ ((b, σ), b ′) ∈ E ∧ b ′ 6= 0}

Eequality =

{((mk Equality(a, b), σ), [[=]](a ′, b ′)) |
((a, σ), a ′) ∈ E ∧ ((b, σ), b ′) ∈ E}

Econd =

{((mk Cond(p, a, b), σ), a ′) |
((p, σ), true) ∈ E ∧ ((a, σ), a ′) ∈ E} ∪
{((mk Cond(p, a, b), σ), b ′) |

((p, σ), false) ∈ E ∧ ((b, σ), b ′) ∈ E}

Enot =

{((mk Not(p), σ), false) | ((p, σ), true) ∈ E} ∪
{((mk Not(p), σ), true) | ((p, σ), false) ∈ E}

Edelta =

{((mk delta(p), σ), true) | (p, σ) ∈ dom E}

EDelta =

{((mk Delta(p), σ), true) |
(p, σ) ∈ dom E} ∪
{((mk Delta(p), σ), false) |

(p, σ) ∈ ({(p, σ) | σ ∈ Σ} \ {(p, σ) | (p, σ) ∈ dom E})}

Eor =

{((mk Or(p, q), σ), true) | ((p, σ), true) ∈ E} ∪
{((mk Or(p, q), σ), true) | ((q , σ), true) ∈ E} ∪
{((mk Or(p, q), σ), false) | ((p, σ), false) ∈ E ∧ ((q , σ), false) ∈ E}

Eexists =

{((mk Exists(x , p), σ), true) |
true ∈ rng ({(p, σ † {x 7→ i}) | i :Z}� E)} ∪
{((mk Exists(x , p), σ), false) |

rng ({(p, σ † {x 7→ i}) | i :Z}� E) = {false}}
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Efunccall =

{((mk FuncCall(f , al), σ), res) |
∀i : inds al · ((al(i), σ), vl(i)) ∈ E ∧
(vl , res) ∈ σ(f )}

Epredcall =

{((mk PredCall(p, al), σ), res) |
∀i : inds al · ((al(i), σ), vl(i)) ∈ E ∧
(vl , res) ∈ σ(p)}

A.4.5 Denotational Semantic Definition 2

The E semantic function is defined as:

E : Expr∆ → P(Σ× Value)

E(e) 4

cases e of

The cases are defined below.

end

where:

e ∈ Value → {(σ, e) | σ ∈ Σ}

e ∈ Prop → {(σ, σ(e)) | σ ∈ Σ ∧ e ∈ dom σ}

e ∈ Var → {(σ, σ(e)) | σ ∈ Σ}

mk Arith(a, op, b)→
{(σ, [[op]](a ′, b ′)) |

(σ, a ′) ∈ E(a) ∧ (σ, b ′) ∈ E(b) ∧
op ∈ {+,−,×}} ∪

{(σ, [[÷]](a ′, b ′)) |
(σ, a ′) ∈ E(a) ∧ (σ, b ′) ∈ E(b) ∧

op = ÷ ∧ b ′ 6= 0}

mk Equality(a, b)→
{(σ, [[=]](a ′, b ′)) |

(σ, a ′) ∈ E(a) ∧ (σ, b ′) ∈ E(b)}

mk Cond(p, a, b)→
{(σ, a ′) |

(σ, true) ∈ E(p) ∧ (σ, a ′) ∈ E(a)} ∪
{(σ, b ′) |

(σ, false) ∈ E(p) ∧ (σ, b ′) ∈ E(b)}
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mk Not(p)→
{(σ, true) | (σ, false) ∈ E(p)} ∪
{(σ, false) | (σ, true) ∈ E(p)}

mk delta(p)→
{(σ, true) | σ ∈ dom E(p)} ∪

mk Delta(p)→
{(σ, true) | σ ∈ dom E(p)} ∪
{(σ, false) | σ ∈ (Σ \ dom E(p))}

mk Or(p, q)→
{(σ, true) | (σ, true) ∈ E(p)} ∪
{(σ, true) | (σ, true) ∈ E(q)} ∪
{(σ, false) | (σ, false) ∈ E(p) ∧ (σ, false) ∈ E(q)}

mk Exists(x , p)→
{(σ, true) |

σ ∈ Σ ∧
true ∈

rng ({σ † {x 7→ i} | i :Z}� E(p))} ∪
{(σ, false) |

σ ∈ Σ ∧
rng ({σ † {x 7→ i} | i :Z}� E(p)) =

{false}}

mk FuncCall(f , al)→
{(σ, r) |

σ ∈ Σ ∧
∀i : inds al · (σ, vl(i)) ∈ E(al(i)) ∧
(vl , r) ∈ σ(f )}

mk PredCall(p, al)→
{(σ, r) |

σ ∈ Σ ∧
∀i : inds al · (σ, vl(i)) ∈ E(al(i)) ∧
(vl , r) ∈ σ(p)}



Appendix B

Selected Mathematical

VDM-SL Notation

This appendix provides details of a subset of the mathematical VDM-SL nota-

tion. The notation which is used in this thesis is based on this. This appendix

is based upon the VDM Tools Language Manual [Cor10]1 for the ASCII VDM-

SL notation, as well as [Jon90] and [JJLM91], which both present a subset of

the mathematical VDM-SL notation.

B.1 Type Definitions

A type is defined as:

N = E

where N is the name of the datatype, and E are the values that belong to it.

B.1.1 Record Type

A record (composite) type is defined as:

N :: n1 : T1

. . .

nn : Tn

where N is the name of the record, and each ni : Ti is a field with a name ni

and a type Ti .

The fields can be accessed through using the dot (.) notation, i.e. record .ni .

A mk function is used to construct a record with appropriate values for

each field:

mk N (e1, . . . , en)

where ei is a value of the corresponding type.

B.1.2 The Boolean Data Type

B is the set of Boolean values {true, false}.
The operators include, where p and q are Boolean-valued expressions:

1Available at: www.vdmtools.jp
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¬ p negation

p ∧ q conjunction

p ∨ q disjunction

p ⇒ q implication

p ⇔ q iff

p = q equality

p 6= q inequality

B.1.3 The Numeric Data Types

The numeric data types include:

N natural numbers

N1 natural numbers excluding 0

Z integers

Z1 integers excluding 0

R real numbers

R1 real numbers excluding 0

where the operators available are the standard mathematical operators, e.g. +

and ≥.

B.1.4 The Set Type

A set is defined as:

S = T -set

where T is a type.

The operators include:
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{} the empty set

{e1, . . . , en} set enumeration

{x | x : S ∧ P [x ]} a set comprehension

{1, . . . , n} a set of values from the range 1 to n

x ∈ S in set (set membership)

x /∈ S not in set

S1 ∪ S2 set union

S1 ∩ S2 set intersection

S1 \ S2 set difference

S1 ⊆ S2 subset

S1 ⊂ S2 proper subset

card S cardinality

P(S ) powerset

S1 = S2 equality

S1 6= S2 inequality

where P [x ] is a predicate that may make use of x , and x is a value of the

appropriate type.

B.1.5 The Sequence Type

A sequence is defined as:

Sq = T ∗

where T is a type.

The operators include:

[] the empty sequence

[e1, . . . , en ] sequence enumeration

[x | x : S ∧ P [x ]] a sequence comprehension

hd Sq the head element

tl Sq a sequence of tail elements

len Sq length

elems Sq the set of elements

inds Sq the set of indices

Sq1
y Sq2 sequence concatenation

Sq(i) sequence application, where i is of the type N1

Sq(i , . . . , j ) sub-sequence

Sq1 = Sq2 equality

Sq1 6= Sq2 inequality

The first sequence subscript is 1.
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B.1.6 The Map Type

A map is defined as:

M = T1
m−→ T2

where T1 and T2 are types.

The operators include:

{} the empty map

{e1 7→ c1, . . . , en 7→ cn} map enumeration

{x 7→ f (x ) | x : S ∧ P [x ]} a map comprehension, where x maps to f (x )

dom M the domain of the map

rng M the range of the map

M1 †M2 map override

M (e) map application

S � M domain restrict

M � S range restrict

M1 = M2 equality

M1 6= M2 inequality

B.1.7 The Union Type

A union type is defined as:

U = T1 | . . . | Tn

where U is the name of the type, and thus the type U contains all values of

the types T1, . . . ,Tn .

B.1.8 Pairs

The type of an ordered pair of values is defined as:

(T1 × T2)

where T1 and T2 are types.

A pair is of the form (e1, e2).

Given a set of pairs s = {(e1, e2), (e3, e4)}, then:

dom s = {e1, e3}

and:

rng s = {e2, e4}
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B.2 Expressions

B.2.1 Quantified Expressions

A universal quantification expression is defined as:

∀x : S · P [x ]

An existential quantification expression is defined as:

∃x : S · P [x ]

B.2.2 The Conditional Expression

A conditional expression is defined as:

if e

then a

else b

where e is a Boolean valued expression, and a and b are expressions of any

type.

B.2.3 The Cases Expression

The cases expression is defined as:

cases a of

p1→ b1

. . .

pn→ bn

others bn+1

end

where a is an expression, pi is a pattern matched against a, and bi is an

expression.

B.2.4 The Let Expression

There are two types of let expressions used. Firstly:

let e1 = c1, . . . , en = cn in e

which is a local definition, and:
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let x ∈ S in e

which arbitrarily selects a value x from the set S .

B.3 Function Definitions

VDM contains both implicit and explicit function definitions. Only explicit

function definitions are used in this thesis.

Explicit functions are defined as:

f : T1 × . . .× Tn → T

f (e1, . . . , en) 4 . . .

B.4 Inference Rules

An inference rule is defined as:

hypotheses

conclusion

where the hypotheses are separated by a ;. The conclusion holds when all of

the hypotheses hold. This is the form of inference rule that is used in [BFL+94].

An inference rule can also be named:

name
hypotheses

conclusion

B.5 Proofs

Selected proofs in this thesis are written in the style that is used in [BFL+94].

Such proofs are of the form:

from assumptions

1 assertion1 justifications1

2 assertion2 justifications2

. . .

infer conclusion justificationsn+1

The use of from is to identify the assumptions, which are separated by a

;. Assumptions are referred to later in subsequent proof steps as hi , where i is
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the number of the assumption based upon the order that the assumptions are

written in.

The use of infer is to identify a conclusion.

Steps within a proof are numbered, so that the assertions can be referred

to later in subsequent proof steps by their number.

The justifications are references to rules to justify an assertion/conclusion,

which are separated by a ,.

Proofs can contain subproofs:

from assumptions1

1 from assumptions2

1.1 assertion2.1 justifications2.1

1.2 assertion2.2 justifications2.2

. . .

infer conclusion2 justifications2

. . .

infer conclusion1 justifications1

An assumption hi from a subproof is referred to by n.hi , where n is the

number of the subproof. Any assumptions that are given in a subproof are only

in scope in that subproof, so for example, an assumption from assumptions2

is not in scope for use in justifications1.
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Glossary

This glossary is by no means complete. Many terms that are used widely

throughout this thesis are defined here. Terms that are not used throughout

this thesis are defined as they arise in the main content of this thesis.

Big-Step Structural Operational Semantics

A semantic definition that shows how overall results are obtained, in con-

trast to a Small-Step Structural Operational Semantic definition.

Generally referred to as a natural semantics or a big-step semantics.

Clausal Form

A formula represented as a set of sets of literals. A set of clauses (implicit

conjunction), where each clause is a set of literals (implicit disjunction).

Conjunctive Normal Form

A formula that is a conjunction of disjunctions of literals.

The defined domain of a function

The set of values to which a function may be applied, where the function

will yield a defined result.

Denotational Semantics

A semantic definition whereby “the meaning of a program is modelled by

mathematical objects that represent the effect of executing the constructs” [NN92].

Denotes a value

The value of the term (e.g. function application) for instance is defined.

The domain of a function

The set of values to which a function may be applied.

“gap”

The absence of a defined value, a term as used in [Bla80].
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Monotonicity

A operator is monotone if it denotes a defined value, and such a value will

still hold if any undefined operand was to become defined.

Non-denoting term

See undefined term.

Partial function

A function that may not yield a result for every member of its domain.

Partial term

See undefined term.

Prenex Normal Form

A predicate formula where all quantifiers occur which are then followed by

the quantifier free part of the formula (known as the matrix).

Refutation

Proving the validity of a formula by refuting its negation.

Resolution rule

A rule that takes two clauses that contain contradictory literals and from

this infers a new clause.

Small-Step Structural Operational Semantics

A semantic definition that describes how individual steps take place, in

contrast to a Big-Step Structural Operational Semantic definition.

Generally referred to as a Structural Operational Semantics or a small-step

semantics.

Strictness

A construct that is undefined if any of its operands are undefined, e.g. strict

equality, is undefined if either of its operands are undefined.

Total function

A function that is defined on all values that are within its domain.

Undefined term

A term that does not denote a value.


