2,008 research outputs found

    Community next steps for making globally unique identifiers work for biocollections data

    Get PDF
    Biodiversity data is being digitized and made available online at a rapidly increasing rate but current practices typically do not preserve linkages between these data, which impedes interoperation, provenance tracking, and assembly of larger datasets. For data associated with biocollections, the biodiversity community has long recognized that an essential part of establishing and preserving linkages is to apply globally unique identifiers at the point when data are generated in the field and to persist these identifiers downstream, but this is seldom implemented in practice. There has neither been coalescence towards one single identifier solution (as in some other domains), nor even a set of recommended best practices and standards to support multiple identifier schemes sharing consistent responses. In order to further progress towards a broader community consensus, a group of biocollections and informatics experts assembled in Stockholm in October 2014 to discuss community next steps to overcome current roadblocks. The workshop participants divided into four groups focusing on: identifier practice in current field biocollections; identifier application for legacy biocollections; identifiers as applied to biodiversity data records as they are published and made available in semantically marked-up publications; and cross-cutting identifier solutions that bridge across these domains. The main outcome was consensus on key issues, including recognition of differences between legacy and new biocollections processes, the need for identifier metadata profiles that can report information on identifier persistence missions, and the unambiguous indication of the type of object associated with the identifier. Current identifier characteristics are also summarized, and an overview of available schemes and practices is provided

    From RESTful Services to RDF: Connecting the Web and the Semantic Web

    Full text link
    RESTful services on the Web expose information through retrievable resource representations that represent self-describing descriptions of resources, and through the way how these resources are interlinked through the hyperlinks that can be found in those representations. This basic design of RESTful services means that for extracting the most useful information from a service, it is necessary to understand a service's representations, which means both the semantics in terms of describing a resource, and also its semantics in terms of describing its linkage with other resources. Based on the Resource Linking Language (ReLL), this paper describes a framework for how RESTful services can be described, and how these descriptions can then be used to harvest information from these services. Building on this framework, a layered model of RESTful service semantics allows to represent a service's information in RDF/OWL. Because REST is based on the linkage between resources, the same model can be used for aggregating and interlinking multiple services for extracting RDF data from sets of RESTful services

    Towards MKM in the Large: Modular Representation and Scalable Software Architecture

    Full text link
    MKM has been defined as the quest for technologies to manage mathematical knowledge. MKM "in the small" is well-studied, so the real problem is to scale up to large, highly interconnected corpora: "MKM in the large". We contend that advances in two areas are needed to reach this goal. We need representation languages that support incremental processing of all primitive MKM operations, and we need software architectures and implementations that implement these operations scalably on large knowledge bases. We present instances of both in this paper: the MMT framework for modular theory-graphs that integrates meta-logical foundations, which forms the base of the next OMDoc version; and TNTBase, a versioned storage system for XML-based document formats. TNTBase becomes an MMT database by instantiating it with special MKM operations for MMT.Comment: To appear in The 9th International Conference on Mathematical Knowledge Management: MKM 201

    Report of the Stanford Linked Data Workshop

    No full text
    The Stanford University Libraries and Academic Information Resources (SULAIR) with the Council on Library and Information Resources (CLIR) conducted at week-long workshop on the prospects for a large scale, multi-national, multi-institutional prototype of a Linked Data environment for discovery of and navigation among the rapidly, chaotically expanding array of academic information resources. As preparation for the workshop, CLIR sponsored a survey by Jerry Persons, Chief Information Architect emeritus of SULAIR that was published originally for workshop participants as background to the workshop and is now publicly available. The original intention of the workshop was to devise a plan for such a prototype. However, such was the diversity of knowledge, experience, and views of the potential of Linked Data approaches that the workshop participants turned to two more fundamental goals: building common understanding and enthusiasm on the one hand and identifying opportunities and challenges to be confronted in the preparation of the intended prototype and its operation on the other. In pursuit of those objectives, the workshop participants produced:1. a value statement addressing the question of why a Linked Data approach is worth prototyping;2. a manifesto for Linked Libraries (and Museums and Archives and 
);3. an outline of the phases in a life cycle of Linked Data approaches;4. a prioritized list of known issues in generating, harvesting & using Linked Data;5. a workflow with notes for converting library bibliographic records and other academic metadata to URIs;6. examples of potential “killer apps” using Linked Data: and7. a list of next steps and potential projects.This report includes a summary of the workshop agenda, a chart showing the use of Linked Data in cultural heritage venues, and short biographies and statements from each of the participants

    Expressing the tacit knowledge of a digital library system as linked data

    Get PDF
    Library organizations have enthusiastically undertaken semantic web initiatives and in particular the data publishing as linked data. Nevertheless, different surveys report the experimental nature of initiatives and the consumer difficulty in re-using data. These barriers are a hindrance for using linked datasets, as an infrastructure that enhances the library and related information services. This paper presents an approach for encoding, as a Linked Vocabulary, the "tacit" knowledge of the information system that manages the data source. The objective is the improvement of the interpretation process of the linked data meaning of published datasets. We analyzed a digital library system, as a case study, for prototyping the "semantic data management" method, where data and its knowledge are natively managed, taking into account the linked data pillars. The ultimate objective of the semantic data management is to curate the correct consumers' interpretation of data, and to facilitate the proper re-use. The prototype defines the ontological entities representing the knowledge, of the digital library system, that is not stored in the data source, nor in the existing ontologies related to the system's semantics. Thus we present the local ontology and its matching with existing ontologies, Preservation Metadata Implementation Strategies (PREMIS) and Metadata Objects Description Schema (MODS), and we discuss linked data triples prototyped from the legacy relational database, by using the local ontology. We show how the semantic data management, can deal with the inconsistency of system data, and we conclude that a specific change in the system developer mindset, it is necessary for extracting and "codifying" the tacit knowledge, which is necessary to improve the data interpretation process

    Programming patterns and development guidelines for Semantic Sensor Grids (SemSorGrid4Env)

    No full text
    The web of Linked Data holds great potential for the creation of semantic applications that can combine self-describing structured data from many sources including sensor networks. Such applications build upon the success of an earlier generation of 'rapidly developed' applications that utilised RESTful APIs. This deliverable details experience, best practice, and design patterns for developing high-level web-based APIs in support of semantic web applications and mashups for sensor grids. Its main contributions are a proposal for combining Linked Data with RESTful application development summarised through a set of design principles; and the application of these design principles to Semantic Sensor Grids through the development of a High-Level API for Observations. These are supported by implementations of the High-Level API for Observations in software, and example semantic mashups that utilise the API

    The Archive and Package (arcp) URI scheme

    Get PDF
    The arcp URI scheme is introduced for location-independent identifiers to consume or reference hypermedia and linked data resources bundled inside a file archive, as well as to resolve archived resources within programmatic frameworks for Research Objects. Research Object: http://s11.no/2018/arcp.html#ro Cite as: Stian Soiland-Reyes, Marcos CĂĄceres (2018): The Archive and Package (arcp) URI Scheme. 2018 IEEE 14th International Conference on e-Science (e-Science). https://doi.org/10.1109/eScience.2018.00018Author-prepared preprint. Web version: http://s11.no/2018/arcp.html Publisher version: https://doi.org/10.1109/eScience.2018.0001

    Linked Data - the story so far

    No full text
    The term “Linked Data” refers to a set of best practices for publishing and connecting structured data on the Web. These best practices have been adopted by an increasing number of data providers over the last three years, leading to the creation of a global data space containing billions of assertions— the Web of Data. In this article, the authors present the concept and technical principles of Linked Data, and situate these within the broader context of related technological developments. They describe progress to date in publishing Linked Data on the Web, review applications that have been developed to exploit the Web of Data, and map out a research agenda for the Linked Data community as it moves forward
    • 

    corecore