
The University of Manchester Research

The Archive and Package (arcp) URI scheme

DOI:
10.5281/zenodo.1320264
10.1109/eScience.2018.00018

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Soiland-Reyes, S., & Cáceres, M. (2018). The Archive and Package (arcp) URI scheme. In 2018 IEEE 14th
International Conference on e-Science (e-Science) [18] IEEE. https://doi.org/10.5281/zenodo.1320264,
https://doi.org/10.1109/eScience.2018.00018

Published in:
 2018 IEEE 14th International Conference on e-Science (e-Science)

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:08. Jun. 2022

https://doi.org/10.5281/zenodo.1320264
https://doi.org/10.1109/eScience.2018.00018
https://www.research.manchester.ac.uk/portal/en/publications/the-archive-and-package-arcp-uri-scheme(eb6dee14-e754-46c0-b82c-3ab54715d24c).html
https://doi.org/10.5281/zenodo.1320264
https://doi.org/10.1109/eScience.2018.00018


The Archive and Package (arcp) URI scheme
1st Stian Soiland-Reyes

School of Computer Science
The University of Manchester

Manchester, UK
https://orcid.org/0000-0001-9842-9718

2nd Marcos Cáceres
Mozilla Corporation
Melbourne, Australia
https://marcosc.com/

Abstract—The arcp URI scheme is introduced for location-
independent identifiers to consume or reference hypermedia and
linked data resources bundled inside a file archive, as well as
to resolve archived resources within programmatic frameworks
for Research Objects. The Research Object for this article is
available at http://s11.no/2018/arcp.html#ro

Index Terms—Uniform resource locators, Semantic Web, Per-
sistent identifiers, Identity management systems, Data com-
pression, Hypertext systems, Distributed information systems,
Content-based retrieval

I. BACKGROUND

Archive formats like BagIt [1] have been recognized as
important for preservation and transferring of datasets and
other digital resources [2]. More specific examples include
COMBINE archives [3] for systems biology, CDF [4] for
astronomy data, as well as the more general HDF5 [5] which
is also used for meteorological data. For the purpose of this
article an archive is a collection of data files with related
metadata, typically packaged in a compressed file format like
.zip or .tar.gz.

One challenge with regards to embedding
Linked Data in such archives is how to reliably
generate and resolve internal URLs, for instance
<dataset13.zip> may contain an RDF Turtle file
<metadata/description.ttl> to describe the CSV
file <data/survey.csv> — but in order to correctly
reference that file it will either have to use a relative path
<../data/survey.csv> or some pre-existing Web URL
like <http://example.com/dataset13/survey.csv>.

The Research Object Bundle [6] format suggested re-using
the app URI scheme for minting absolute URIs from relative
paths of resources within a ZIP file. The app URL scheme
[7] was originally intended for packaged web applications,
where each application would get their own namespace like
<app://c6179148-3cde-4435-8e66-304453f89d59/>

with paths resolved from the corresponding application
package ZIP file. However the app URL scheme did not

This work has been done as part of the BioExcel CoE, a project funded
by the European Commision (H2020-EINFRA-2015-1-675728).

© 2018 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.
https://doi.org/10.1109/eScience.2018.00018

progress further on the W3C Recommendation track, and this
approach was abandoned in favour of the combination of Web
App Manifest [8] and Service Workers [9]. Together these
technologies reuse the http/https origin URL of a downloaded
application manifest together with relative links, while also
allowing a web application to work offline.

II. THE ARCHIVE AND PACKAGE (ARCP) URI SCHEME

Inspired by the app URL scheme we defined the Archive
and Package (arcp) URI scheme [10], an IETF Internet-Draft
which specifies how to mint URIs to reference resources
within any archive or package, independent of archive format
or location.

The primary use case for arcp is for consuming applications,
which may receive an archive through various ways, like file
upload from a web browser or by reference to a dataset in a
repository like Zenodo or FigShare. In order to parse Linked
Data resources (say to expose them for SPARQL queries), they
will need to generate a base URL for the root of the archive.

It should be clear that using local file URIs [10] for extracted
archives like <file:///tmp/tmp.cUK6ERfdBe/> do
not serve well for this purpose, as they are not universally
unique, are difficult to create consistently, and may introduce
security risks of attacks like <../../etc/passwd>. Sim-
ilarly it may be inappropriate to mint new web based URIs
like <http://repo.example.com/cUK6ERfdBe/> as
web presence should not be a requirement to process a linked
data archive, in particular as processing may occur on a laptop
or a cloud node with no public IP address.

A. Identifier structure

By definition an arcp identifier is an URI [12] with three
parts, as shown in figure 1.

<arcp://prefix,namespace/path>

Fig. 1. Structure of arcp identifier

The arcp Internet-Draft specifies three initial prefix val-
ues: uuid, ni and name, each which defines how to identify
a particular archive by a corresponding namespace. These
namespaces are not intended to be directly resolvable without
prior knowledge of the corresponding archive.

The path is the folder and file path within the archive,
represented as an URI path [12] e.g. /file.txt or

https://orcid.org/0000-0001-9842-9718
https://marcosc.com/
http://s11.no/2018/arcp.html#ro
https://tools.ietf.org/html/draft-kunze-bagit-16
http://co.mbine.org/documents/archive
https://cdf.gsfc.nasa.gov/
https://support.hdfgroup.org/HDF5/doc/H5.format.html
https://www.w3.org/standards/semanticweb/data
https://www.w3.org/TR/turtle/
https://w3id.org/bundle/2014-11-05/
http://www.w3.org/TR/2015/NOTE-app-uri-20150723/
https://www.bioexcel.eu/
https://cordis.europa.eu/projects/675728
https://doi.org/10.1109/eScience.2018.00018
https://www.w3.org/TR/appmanifest/
https://www.w3.org/TR/appmanifest/
https://www.w3.org/TR/service-workers-1/
https://tools.ietf.org/id/draft-soilandreyes-arcp-03.html
https://tools.ietf.org/id/draft-soilandreyes-arcp-03.html
https://zenodo.org/
https://figshare.com/
https://www.w3.org/TR/sparql11-overview/
https://tools.ietf.org/id/draft-soilandreyes-arcp-03.html#rfc.section.3
https://tools.ietf.org/id/draft-soilandreyes-arcp-03.html#rfc.section.3
https://tools.ietf.org/html/rfc3986#section-3.3


/my%20project/about/intro.doc — using percent-
escaping if needed. The root folder / represent the archive
itself.

B. UUID-based identifiers

The simplest case for temporary sandbox processing of an
archive with arcp is to generate a new random UUIDv4 [13],
e.g.:

c6179148-3cde-4435-8e66-304453f89d59

From this the corresponding arcp URI is:

<arcp://uuid,c6179148-3cde-4435-8e66-304453f89d59/>

This base URI can be used when resolving relative URI
references, e.g. if <metadata/description.ttl> ref-
erences <../data/survey.csv> we find the absolute
URIs:

<arcp://uuid,c6179148-3cde-4435-8e66-304453f89d59
/metadata/description.ttl>

<arcp://uuid,c6179148-3cde-4435-8e66-304453f89d59
/data/survey.csv>

The application is then able to do translation from arcp
to local paths using URI parsing libraries to select the URI
path, and augment that to the locally extracted path. Such
arcp identifiers are temporary in nature, but the application
can maintain a mapping from the UUID to the archive and
perform extraction on demand, or the archive can self-declare
its UUID, such as the External-Identifier header in
BagIt [1].

arcp also suggests how a UUID can be reliably created from
the URL location of an archive. For instance, an application
may be processing a file from:

http://example.com/download/archive13.zip>

The application can calculate the name-based UUIDv5 [13]
by SHA1 hashing the URL string and mint:

<arcp://d9f0b57d-0504-5e9a-abae-f5f2b8c49b94/>

With this method anyone processing that archive URL will
always get the same arcp base URI, however the application
will still need to maintain a mapping to find the original
archive URL. Location-based arcp identifiers may also not be
ideal for preservation purposes, as the archive might change
upstream or move to a different location.

C. Hash-based identifiers

For this arcp defines a hash-based method, where the bytes
of the archive file is used to find a checksum-based identifier
based on the Naming Things With Hashes (ni) URI scheme
[14]. For instance if the sha-256 checksum of a Zip file is in
hexadecimal:

7f83b1657ff1fc53b92dc18148a1d65d
fc2d4b1fa3d677284addd200126d9069

After base64 encoding the ni: uri would be:

<ni:///sha-256;
f4OxZX_x_FO5LcGBSKHWXfwtSx-j1ncoSt3SABJtkGk>

The corresponding arcp base URIs for resources within the
archive is thus:

<arcp://ni,sha-256;
f4OxZX_x_FO5LcGBSKHWXfwtSx-j1ncoSt3SABJtkGk/>

With this method, anyone processing the byte-wise equal
archive (using the same hash method) will get the same
identifier.

Another advantage is that hash-identified archives can be
retrieved from a NI resolver [14] using well known paths [15]:

<http://repo.example.com/.well-known/ni/sha-256
/f4OxZX_x_FO5LcGBSKHWXfwtSx-j1ncoSt3SABJtkGk>

Clients can verify the checksum of the downloaded archive,
so any accepting resolver endpoint can be used.

D. Name-based identifiers

Finally, paying homage to its origin in app URLs, arcp can
use a system-based app name. This is a suggested mechanism
for resolving resources of an application package installed in
a runtime system like Android applicationId or Java package
name, where an application identifier can be directly reused
in arcp for URIs within that runtime system, e.g. to reference
the resource styles/resource1.css within the installed
package com.example.myapp one can use the URI:

<arcp://name,com.example.myapp/styles/resource1.css>

As application package content do not necessarily corre-
spond to archive file listings, it is open-ended how name-based
arcp identifiers can be resolved, and indeed package content
may vary per operating system, device type or application
version, and so name-based arcp identifiers should be treated
as system-local identifiers similar to file:/// URIs [11],
but within a particular programming framework.

III. RELATED WORK

A. Archive fragments

Without using arcp one could in theory still reference files
within archives at an URL with # fragments:

<http://example.com/download
/archive13.zip#data/survey.csv>

Unlike formats like text/html or application/pdf , most
archive media formats like application/zip unfortunately do not
define a fragment syntax, and some major types like tar.gz are
not even listed in the IANA media types registry. Therefore
this would be an ad-hoc approach which still needs to clarify
details in order to be interoperable, for instance character
escaping, if the root is # or #/, and how to reference nested
fragment identifiers in hypermedia within archived resources.

B. File URIs

As argued above, file URLs [11] that represent local direc-
tories are fragile and not globally unique. It is perhaps less
known that file URLs can specify a host name:

<file://host.example.com
/home/alice/extracted/archive13/>

https://tools.ietf.org/id/draft-soilandreyes-arcp-03.html#rfc.appendix.A.1
https://tools.ietf.org/html/rfc4122#section-4.4
https://tools.ietf.org/id/draft-soilandreyes-arcp-03.html#rfc.appendix.A.4
https://tools.ietf.org/id/draft-soilandreyes-arcp-03.html#rfc.appendix.A.2
https://tools.ietf.org/html/rfc4122#section-4.3
https://tools.ietf.org/id/draft-soilandreyes-arcp-03.html#rfc.appendix.A.3
https://tools.ietf.org/html/rfc6920
https://tools.ietf.org/html/rfc6920#section-4
https://developer.android.com/studio/build/application-id
https://www.iana.org/assignments/media-types/text/html
https://www.iana.org/assignments/media-types/application/pdf
https://www.iana.org/assignments/media-types/application/zip
https://www.iana.org/assignments/media-types/
https://tools.ietf.org/html/rfc8089#section-2


The above references a file path on the machine with the
fully qualified domain name (FQDN) host.example.com.
The usually empty hostname is equivalent to localhost.

This approach may be used if both the hostname and
extracted path are stable (e.g. a repository file server), but this
faces the same challenges as minting http/https URLs, which
in many cases would be preferable as they are also globally
resolvable.

An ad-hoc possibility here could be to use a UUID [13] as
”hostname” to represent an archive’s internal file system:

file://8f26cb8c-617e-46b4-bc48-e650bf70f33d
/data/survey.csv/>

This is technically permittable as the file: URL scheme
[11] do not define any particular connection protocols, and
an UUID is unlikely to be a valid hostname in DNS. Such
file: URIs could however cause confusion against file
paths on localhost, for instance Firefox 62.0 opens file:
//8cd4ce0d-4a41-4b4e-bfdd-1e2d0495f714/ to browse the local file
system.

C. JAR URLs

If we restrict usage to ZIP files at a known URL, then they
are in theory also valid JAR files, and we can address files
with the jar URL scheme:

<jar:http://example.com
/download/archive13.zip!/data/survey.csv>

Here relative URIs may not parse well, as it is easy to
accidentally climb out of !/, and technically the JAR URI
scheme is missing the familiar :// to indicate for URI parser
libraries that it is indeed an hierarchical URI scheme [12].

D. Object Reuse and Exchange proxies

OAI-ORE [16] defines proxies to represent a resource as
aggregated in a collection; these can be used to model archives
[17], but ORE proxies face two problems: How to represent
the file path, and how to identify the proxy so it can be used
as a reference in Linked Data. The resource must be identified
using two triples of ore:proxyFor (the archived file) and
ore:proxyIn (the archive); but this reduces to the same
problem of identifying the file. The ni URI [14] for the file
bytes can in theory be used to identify the file, but the other
missing information is the file path and name, which usually
convey meaning for users.

The Research Object ontology’s FolderEntry specializes
the ore:Proxy to add a property ro:entryName to indi-
cate the filename, as exemplified in figure 2, but to find the full
archive file path one would have to traverse the parent folder’s
ro:entryName. In either case there is no defined method
to predictably generate unique identifiers for the ORE proxies
themselves, although the RO Bundle specification recommend
they should be randomly generated urn:uuid URIs, which
would not be compatible with relative URIs within an archive.

E. Publishing file systems as Linked Data

F2R [18], using the Nepomuk File Ontology [19], defines
a way to publish file systems as Linked Data, where a server
endpoint exposes the files and their file system metadata.

F2R URIs are localized to an endpoint and an free-text
named file system, e.g. mysource, and files are identified
with UUIDs:
<http://f2r.example.com
/mysource/09b205be-bj80{4ab9{8ddc-802be95220bb>

Using the same example as for OAI-ORE we can combine
F2R with PAV [20], as shown in figure 3.

The F2R approach have similar disadvantages as JAR and
OAI-ORE; in that the URIs do not support relative path
resolution, that a web endpoint must be set up, and that the
file paths are hidden through multiple steps. In addition one
would need to assigned a corresponding file system name like
mysource, although one may use a single file system as
exemplified above and use belongsToContainer to treat
archive files as if they are folders.

F. EPUB canonical fragment identifiers

EPUB is a standard for hypermedia eBooks. RO Bundle [6]
is based on the EPUB Open Container Format [21]. EPUB
Canonical Fragment Identifiers [22] can link to nested XML
elements of an publication using a variation of XPath with
doubled indexes:
<http://example.com/book.epub
#epubcfi(/6/4[chap01ref]!/4[body01]/10[para05])>

The above example show an example to a paragraph with
an ePub book. Here /6 refer to the 3rd element of the root
manifest’s <package> element (which in ePub is always
<spine>), then /4[chap01ref] is the second element
<itemref> with xml:id="chap01ref".

The ! character means the element’s reference is followed
to open the corresponding XML file, where /4[body01] is
the 2nd element with id body01, traversed to find the 5th
element with id para05.

While this is quite a powerful construct that can refer to
any XML element of nested documents, even sentences or
words, it seems rather contrived and inflexible. The major
limitation is that ePub archive resources are not identified
by file paths, but must be addressable through rather rigid
XML structures (order can’t change), thus this approach is
not appropriate for archives without an XML manifest. Even
if using a RDF/XML manifest it would be inadvisable to
assume a fixed order of it’s XML elements. It seems however
an appropriate reference scheme for ePub documents, which
generallyhave a fixed reading order.

IV. ARCP IMPLEMENTATIONS

The arcp Python library [23] was developed to help
creating, parsing and validating arcp URIs. In particular it can
generate arcp based on random UUIDs, URL locations, names
and hashing archive bytes. The arcp parser recognize the arcp
prefix and can extract UUIDs or hashes, and can generate

file://8cd4ce0d-4a41-4b4e-bfdd-1e2d0495f714/
file://8cd4ce0d-4a41-4b4e-bfdd-1e2d0495f714/
https://docs.oracle.com/javase/9/docs/api/java/net/JarURLConnection.html
https://tools.ietf.org/html/rfc3986#section-1.2.3
http://www.openarchives.org/ore/
http://www.openarchives.org/ore/1.0/datamodel#Proxy
https://w3id.org/ro/2016-01-28/ro#FolderEntry
https://w3id.org/bundle/2014-11-05/
http://oscaf.sourceforge.net/nfo.html
https://www.w3.org/Submission/epub31/
https://w3id.org/bundle/2014-11-05/#ucf
https://www.w3.org/Submission/2017/SUBM-epub-ocf-20170125/
http://www.idpf.org/epub/linking/cfi/
http://www.idpf.org/epub/linking/cfi/
https://www.w3.org/TR/xpath20/
https://www.idpf.org/epub/linking/cfi/epub-cfi.html#sec-path-child-ref
http://www.idpf.org/epub/31/spec/epub-packages.html#sec-package-elem
http://www.idpf.org/epub/31/spec/epub-packages.html#elemdef-opf-spine
http://www.idpf.org/epub/31/spec/epub-packages.html#elemdef-spine-itemref
http://arcp.readthedocs.io/
http://arcp.readthedocs.io/en/0.2.0/generate.html
http://arcp.readthedocs.io/en/0.2.0/parse.html


@prefix ore: <http://www.openarchives.org/ore/terms/> .
@prefix ro: <http://purl.org/wf4ever/ro#> .
<urn:uuid:c5971b62-72e6-4a8f-8b0b-944065e0d5c8> a ore:Proxy, ro:FolderEntry ;

ore:proxyFor <ni:///sha-256;f4OxZX_x_FO5LcGBSKHWXfwtSx-j1ncoSt3SABJtkGk> ;
ore:proxyIn <urn:uuid:efb14c0a-3cd5-4d78-a168-f246d18bde39> ;
ro:entryName "survey.csv" .

<urn:uuid:efb14c0a-3cd5-4d78-a168-f246d18bde39> a ore:Aggregation, ro:Folder .
<urn:uuid:24b34ecb-e46b-46ec-be36-a18dbba90247> a ore:Proxy, ro:FolderEntry ;

ore:proxyFor <urn:uuid:efb14c0a-3cd5-4d78-a168-f246d18bde39> ;
ore:proxyIn <http://example.com/download/archive13.zip> ;
ro:entryName "data/" .

Fig. 2. RDF Turtle example of how a file with the sha256 checksum 7f83b1...6d9069 could be described using RO folders and ORE proxies to belong
to <data/survey.csv> within the archive downloaded from <http://example.com/download/archive13.zip>

@base <http://f2r.example.com/mysource/> .
@prefix nfo: <http://www.semanticdesktop.org/ontologies/2007/03/22/nfo#> .
<c5971b62-72e6-4a8f-8b0b-944065e0d5c8> a nfo:ArchiveItem;

nfo:fileName "survey.csv" ;
nfo:belongsToContainer <24b34ecb-e46b-46ec-be36-a18dbba90247> .

<24b34ecb-e46b-46ec-be36-a18dbba90247> a nfo:ArchiveItem;
nfo:fileName "data" ;
nfo:belongsToContainer <5d0a538a-ef00-48b6-bcb2-f561effe9fe5> .

<5d0a538a-ef00-48b6-bcb2-f561effe9fe5> a nfo:ArchiveItem:
nfo:fileName "archive13.zip" ;
nfo:belongsToContainer <http://f2r.example.com/mysource/> ;
pav:retrievedFrom <http://example.com/download/archive13.zip> .

<http://f2r.example.com/mysource/> a nfo:Filesystem .

Fig. 3. RDF Turtle description of a file <data/survey.csv> within an archive <http://example.com/download/archive13.zip>, using
Nepomuk File Ontology [19], PAV [20] and F2R [18] identifiers.

the corresponding .well_known/ni URI for retrieving the
archive. This library is meant to complement the Python 3
urlparse library, and so it is deemed out of scope for this
library to do resolution of arcp based on archive or network
access.

The Research Object Bundle library, part of Apache
Taverna (incubating), is adding support for arcp URIs in
its opening and creation of RO bundles, initially using the
arcp UUID format as a replacement for app URIs, with
planned support also for hash-based identifiers and opening
RO Bundles from a .well-known/ni endpoint.

The CWLProv [24] approach for capturing prove-
nance of executing Common Workflow Language is us-
ing arcp in its BagIt metadata bag-info.txt using
External-Identifier to identify its research object:

External-Identifier:
arcp://uuid,d47d3d43-4830-44f0-aa32-4cda74849c63/

For CWLProv the use of arcp is crucial, as it assigns global
identifiers for use across resources in the RO bag, including the
RO manifest itself and in W3C PROV file formats like PROV-
N and N-Triples, as neither format support relative URIs.

In this approach the UUID component of the RO arcp iden-
tifier d47d3d43-4830-44f0-aa32-4cda74849c63 also appears
in the workflow provenance as the identifier of the top-level
workflow run (a PROV Activity):

prefix id <urn:uuid:>
activity(id:d47d3d43-4830-44f0-aa32-4cda74849c63,
2018-08-21T17:26:24.467636, -,
[prov:type=’wfprov:WorkflowRun’,
prov:label="Run of workflow/packed.cwl#main"])

This is showcasing how an RO that is the primary represen-
tation of a non-information resource (e.g. a process) can be
identified using a directly derived arcp URI. While this could
in theory also been achieved with an arcp UUIDv5 derived
from hashing the URI “location” of the activity, that would be
a confusing hack, as urn:uuid: references by design are not
resolvable, and hence technically not URLs. UUIDv5 hashing
could however be appropriate for non-information resource if
they have a resolvable http/https permalink.

V. CONCLUSION

This article propose the arcp identifier scheme for resources
within archives using formats like ZIP, tar and BagIt, and
suggest arcp is useful for identifying standalone Research
Objects and for processing Linked Data embedded in archives.
The Internet-Draft draft-soilandreyes-arcp [10] is
under consideration by IETF’s Applications and Real-Time
Area to progress towards Informational RFC status.

REFERENCES

[1] J.A. Kunze, J. Littman, L. Madden, J. Scancella, C. Adams (2018): The
BagIt File Packaging Format (V1.0). Internet Engineering Task Force.
https://datatracker.ietf.org/doc/html/draft-kunze-bagit-16

[2] Research Data Repository Interoperability WG (2018): Research Data
Repository Interoperability WG Final Recommendations. Research
Data Alliance. https://doi.org/10.15497/RDA00025

[3] F.T. Bergmann, R. Adams, S. Moodie, J. Cooper, M. Glont, M.
Golebiewski, et al.,(2014): COMBINE archive and OMEX format:
one file to share all information to reproduce a modeling project.
BMC Bioinformatics. 15 369. https://doi.org/10.1186/s12859-014-0369-
z

https://github.com/apache/incubator-taverna-language/tree/master/taverna-robundle
https://taverna.incubator.apache.org/download/language/
https://taverna.incubator.apache.org/download/language/
https://issues.apache.org/jira/browse/TAVERNA-1037
https://w3id.org/cwl/prov
https://github.com/common-workflow-language/cwlprov/blob/0.4.0/examples/revsort-run-1/bag-info.txt#L5
https://github.com/common-workflow-language/cwlprov/blob/0.4.0/examples/revsort-run-1/metadata/manifest.json#L4
https://github.com/common-workflow-language/cwlprov/blob/0.4.0/examples/revsort-run-1/metadata/provenance/primary.cwlprov.provn
https://github.com/common-workflow-language/cwlprov/blob/0.4.0/examples/revsort-run-1/metadata/provenance/primary.cwlprov.provn
https://github.com/common-workflow-language/cwlprov/blob/0.4.0/examples/revsort-run-1/metadata/provenance/primary.cwlprov.nt
https://github.com/common-workflow-language/cwlprov/blob/0.4.0/examples/revsort-run-1/metadata/provenance/primary.cwlprov.provn#L23
https://datatracker.ietf.org/doc/html/draft-kunze-bagit-16
https://doi.org/10.15497/RDA00025
https://doi.org/10.1186/s12859-014-0369-z
https://doi.org/10.1186/s12859-014-0369-z


[4] Space Physics Data Facility (2016): CDF Internal Format
Description, 3.6. NASA / Goddard Space Flight Center.
https://spdf.gsfc.nasa.gov/pub/software/cdf/doc/cdf364/cdf36ifd.pdf

[5] The HDF Group (2016): HDF5 File Format
Specification Version 3.0. The HDF Group.
https://support.hdfgroup.org/HDF5/doc/H5.format.html

[6] S. Soiland-Reyes, M. Gamble, R. Haines (2014): Re-
search Object Bundle 1.0. researchobject.org Recom-
mendation, Zenodo. https://w3id.org/bundle/2014-11-05/
https://doi.org/10.5281/zenodo.12586

[7] System Applications Working Group (2015): The app: URL Scheme.
W3C Working Group Note 23 July 2015, World Wide Web Consortium.
https://www.w3.org/TR/2015/NOTE-app-uri-20150723/

[8] M. Cáceres, K.R. Christiansen, M. Lamouri, A. Kostiainen, R. Dolin, M.
Giuca (eds.) (2018): Web App Manifest. W3C Working Draft 04 July
2018, World Wide Web Consortium. https://www.w3.org/TR/2018/WD-
appmanifest-20180704/

[9] A. Russel, J. Song, J. Archibald, M. Kruisselbrink (2017): Service
Workers 1. W3C Working Draft 2 November 2017, World Wide
Web Consortium. https://www.w3.org/TR/2017/WD-service-workers-1-
20171102/

[10] S. Soiland-Reyes, M. Cáceres (2018): The Archive and Package (arcp)
URI scheme. Internet-Draft draft-soilandreyes-arcp, Internet Engineer-
ing Task Force. https://tools.ietf.org/html/draft-soilandreyes-arcp-03

[11] M. Kerwin (2017): The ”file” URI scheme. RFC Editor. RFC 8089
https://doi.org/10.17487/RFC8089

[12] T. Berners-Lee, R. Fielding, L. Masinter (2005): Uniform Re-
source Identifier (URI): Generic Syntax. RFC Editor. RFC 3986
https://doi.org/10.17487/rfc3986

[13] P. Leach, M. Mealling, R. Salz (2005): A universally unique
identifier (UUID) URN namespace. RFC Editor. RFC 4122
https://doi.org/10.17487/rfc4122

[14] S. Farrell, D. Kutscher, C. Dannewitz, B. Ohlman, A. Keranen, P.
[24] F.Z. Khan, S. Soiland-Reyes, M.R. Crusoe, A. Lonie, R. Sin-

nott (2018): CWLProv - Interoperable Retrospective Prove-
nance capture and its challenges. In preparation. Zenodo preprint:
https://doi.org/10.5281/zenodo.1215611

Hallam-Baker (2013): Naming Things with Hashes. RFC Editor. RFC
6920 https://doi.org/10.17487/rfc6920

[15] M. Nottingham, E. Hammer-Lahav (2010): Defining Well-Known
Uniform Resource Identifiers (URIs), RFC Editor. RFC 5785
https://doi.org/10.17487/rfc5785

[16] C. Lynch, S. Parastatidis, N. Jacobs, H. Van de Sompel, C. Lagoze
(2007): The OAI-ORE effort: Progress, challenges, synergies. Pro-
ceedings of the 2007 Conference on Digital Libraries - JCDL ’07.
https://doi.org/10.1145/1255175.1255190

[17] N. Ferro, G. Silvello (2013): Modeling Archives by Means of OAI-
ORE, IRCDL 2012: Digital Libraries and Archives, pp 216–227.
https://doi.org/10.1007/978-3-642-35834-0 22

[18] Shaopeng He, Jianhui Li, Zhihong Shen (2013): F2R: Publish-
ing file systems as Linked Data. 10th International Conference
on Fuzzy Systems and Knowledge Discovery (FSKD), pp. 767–772.
https:///doi.org/10.1109/FSKD.2013.6816297

[19] Ansgar Bernardi, Gunnar Aastrand Grimnes, Tudor Groza, Simon Scerri
(2011): The NEPOMUK Semantic Desktop. Context and Semantics
for Knowledge Management pp 255-273. https://doi.org/10.1007/978-3-
642-19510-5 13

[20] P. Ciccarese, S. Soiland-Reyes, K. Belhajjame, A.J. Gray, C. Goble, T.
Clark (2013): PAV ontology: provenance, authoring and versioning.
Journal of Biomedical Semantics 4:37. https://doi.org/10.1186/2041-
1480-4-37

[21] James Pritchett, Markus Gylling (eds) (2017): EPUB Open Container
Format (OCF) 3.1. W3C Member Submission 25 jan 2017. World
Wide Web Consortium. https://www.w3.org/Submission/2017/SUBM-
epub-ocf-20170125/

[22] Peter Sorotokin, Garth Conboy, Brady Duga, John Rivlin, Don
Beaver, Kevin Ballard, Alastair Fettes, Daniel Weck (eds) (2017):
EPUB Canonical Fragment Identifiers 1.1. Recommended Spec-
ification 5 January 2017. International Digital Publishing Forum.
http://www.idpf.org/epub/linking/cfi/epub-cfi-20170105.html

[23] S. Soiland-Reyes (2018): stain/arcp-py: arcp 0.2.0.
Zenodo software http://arcp.readthedocs.io/en/0.2.0/

https://doi.org/10.5281/zenodo.1165986

https://spdf.gsfc.nasa.gov/pub/software/cdf/doc/cdf364/cdf36ifd.pdf
https://support.hdfgroup.org/HDF5/doc/H5.format.html
https://w3id.org/bundle/2014-11-05/
https://doi.org/10.5281/zenodo.12586
https://www.w3.org/TR/2015/NOTE-app-uri-20150723/
https://www.w3.org/TR/2018/WD-appmanifest-20180704/
https://www.w3.org/TR/2018/WD-appmanifest-20180704/
https://www.w3.org/TR/2017/WD-service-workers-1-20171102/
https://www.w3.org/TR/2017/WD-service-workers-1-20171102/
https://tools.ietf.org/html/draft-soilandreyes-arcp-03
https://doi.org/10.17487/RFC8089
https://doi.org/10.17487/rfc3986
https://doi.org/10.17487/rfc4122
https://doi.org/10.5281/zenodo.1215611
https://doi.org/10.17487/rfc6920
https://doi.org/10.17487/rfc5785
https://doi.org/10.1145/1255175.1255190
https://doi.org/10.1007/978-3-642-35834-0_22
https://doi.org/10.1109/FSKD.2013.6816297
https://doi.org/10.1007/978-3-642-19510-5_13
https://doi.org/10.1007/978-3-642-19510-5_13
https://doi.org/10.1186/2041-1480-4-37
https://doi.org/10.1186/2041-1480-4-37
https://www.w3.org/Submission/2017/SUBM-epub-ocf-20170125/
https://www.w3.org/Submission/2017/SUBM-epub-ocf-20170125/
http://www.idpf.org/epub/linking/cfi/epub-cfi-20170105.html
http://arcp.readthedocs.io/en/0.2.0/
https://doi.org/10.5281/zenodo.1165986

