1,513 research outputs found

    Generalized Satisfiability Problems via Operator Assignments

    Full text link
    Schaefer introduced a framework for generalized satisfiability problems on the Boolean domain and characterized the computational complexity of such problems. We investigate an algebraization of Schaefer's framework in which the Fourier transform is used to represent constraints by multilinear polynomials in a unique way. The polynomial representation of constraints gives rise to a relaxation of the notion of satisfiability in which the values to variables are linear operators on some Hilbert space. For the case of constraints given by a system of linear equations over the two-element field, this relaxation has received considerable attention in the foundations of quantum mechanics, where such constructions as the Mermin-Peres magic square show that there are systems that have no solutions in the Boolean domain, but have solutions via operator assignments on some finite-dimensional Hilbert space. We obtain a complete characterization of the classes of Boolean relations for which there is a gap between satisfiability in the Boolean domain and the relaxation of satisfiability via operator assignments. To establish our main result, we adapt the notion of primitive-positive definability (pp-definability) to our setting, a notion that has been used extensively in the study of constraint satisfaction problems. Here, we show that pp-definability gives rise to gadget reductions that preserve satisfiability gaps. We also present several additional applications of this method. In particular and perhaps surprisingly, we show that the relaxed notion of pp-definability in which the quantified variables are allowed to range over operator assignments gives no additional expressive power in defining Boolean relations

    The complexity of the list homomorphism problem for graphs

    Get PDF
    We completely classify the computational complexity of the list H-colouring problem for graphs (with possible loops) in combinatorial and algebraic terms: for every graph H the problem is either NP-complete, NL-complete, L-complete or is first-order definable; descriptive complexity equivalents are given as well via Datalog and its fragments. Our algebraic characterisations match important conjectures in the study of constraint satisfaction problems.Comment: 12 pages, STACS 201

    Order-Invariant MSO is Stronger than Counting MSO in the Finite

    Get PDF
    We compare the expressiveness of two extensions of monadic second-order logic (MSO) over the class of finite structures. The first, counting monadic second-order logic (CMSO), extends MSO with first-order modulo-counting quantifiers, allowing the expression of queries like ``the number of elements in the structure is even''. The second extension allows the use of an additional binary predicate, not contained in the signature of the queried structure, that must be interpreted as an arbitrary linear order on its universe, obtaining order-invariant MSO. While it is straightforward that every CMSO formula can be translated into an equivalent order-invariant MSO formula, the converse had not yet been settled. Courcelle showed that for restricted classes of structures both order-invariant MSO and CMSO are equally expressive, but conjectured that, in general, order-invariant MSO is stronger than CMSO. We affirm this conjecture by presenting a class of structures that is order-invariantly definable in MSO but not definable in CMSO.Comment: Revised version contributed to STACS 200

    Defining Recursive Predicates in Graph Orders

    Full text link
    We study the first order theory of structures over graphs i.e. structures of the form (G,τ\mathcal{G},\tau) where G\mathcal{G} is the set of all (isomorphism types of) finite undirected graphs and τ\tau some vocabulary. We define the notion of a recursive predicate over graphs using Turing Machine recognizable string encodings of graphs. We also define the notion of an arithmetical relation over graphs using a total order ≤t\leq_t on the set G\mathcal{G} such that (G,≤t\mathcal{G},\leq_t) is isomorphic to (N,≤\mathbb{N},\leq). We introduce the notion of a \textit{capable} structure over graphs, which is one satisfying the conditions : (1) definability of arithmetic, (2) definability of cardinality of a graph, and (3) definability of two particular graph predicates related to vertex labellings of graphs. We then show any capable structure can define every arithmetical predicate over graphs. As a corollary, any capable structure also defines every recursive graph relation. We identify capable structures which are expansions of graph orders, which are structures of the form (G,≤\mathcal{G},\leq) where ≤\leq is a partial order. We show that the subgraph order i.e. (G,≤s\mathcal{G},\leq_s), induced subgraph order with one constant P3P_3 i.e. (G,≤i,P3\mathcal{G},\leq_i,P_3) and an expansion of the minor order for counting edges i.e. (G,≤m,sameSize(x,y)\mathcal{G},\leq_m,sameSize(x,y)) are capable structures. In the course of the proof, we show the definability of several natural graph theoretic predicates in the subgraph order which may be of independent interest. We discuss the implications of our results and connections to Descriptive Complexity

    Logics for Unranked Trees: An Overview

    Get PDF
    Labeled unranked trees are used as a model of XML documents, and logical languages for them have been studied actively over the past several years. Such logics have different purposes: some are better suited for extracting data, some for expressing navigational properties, and some make it easy to relate complex properties of trees to the existence of tree automata for those properties. Furthermore, logics differ significantly in their model-checking properties, their automata models, and their behavior on ordered and unordered trees. In this paper we present a survey of logics for unranked trees

    On Descriptive Complexity, Language Complexity, and GB

    Get PDF
    We introduce LK,P2L^2_{K,P}, a monadic second-order language for reasoning about trees which characterizes the strongly Context-Free Languages in the sense that a set of finite trees is definable in LK,P2L^2_{K,P} iff it is (modulo a projection) a Local Set---the set of derivation trees generated by a CFG. This provides a flexible approach to establishing language-theoretic complexity results for formalisms that are based on systems of well-formedness constraints on trees. We demonstrate this technique by sketching two such results for Government and Binding Theory. First, we show that {\em free-indexation\/}, the mechanism assumed to mediate a variety of agreement and binding relationships in GB, is not definable in LK,P2L^2_{K,P} and therefore not enforcible by CFGs. Second, we show how, in spite of this limitation, a reasonably complete GB account of English can be defined in LK,P2L^2_{K,P}. Consequently, the language licensed by that account is strongly context-free. We illustrate some of the issues involved in establishing this result by looking at the definition, in LK,P2L^2_{K,P}, of chains. The limitations of this definition provide some insight into the types of natural linguistic principles that correspond to higher levels of language complexity. We close with some speculation on the possible significance of these results for generative linguistics.Comment: To appear in Specifying Syntactic Structures, papers from the Logic, Structures, and Syntax workshop, Amsterdam, Sept. 1994. LaTeX source with nine included postscript figure
    • …
    corecore