We compare the expressiveness of two extensions of monadic second-order logic
(MSO) over the class of finite structures. The first, counting monadic
second-order logic (CMSO), extends MSO with first-order modulo-counting
quantifiers, allowing the expression of queries like ``the number of elements
in the structure is even''. The second extension allows the use of an
additional binary predicate, not contained in the signature of the queried
structure, that must be interpreted as an arbitrary linear order on its
universe, obtaining order-invariant MSO.
While it is straightforward that every CMSO formula can be translated into an
equivalent order-invariant MSO formula, the converse had not yet been settled.
Courcelle showed that for restricted classes of structures both order-invariant
MSO and CMSO are equally expressive, but conjectured that, in general,
order-invariant MSO is stronger than CMSO.
We affirm this conjecture by presenting a class of structures that is
order-invariantly definable in MSO but not definable in CMSO.Comment: Revised version contributed to STACS 200