13 research outputs found

    AMISEC: Leveraging Redundancy and Adaptability to Secure AmI Applications

    Get PDF
    Security in Ambient Intelligence (AmI) poses too many challenges due to the inherently insecure nature of wireless sensor nodes. However, there are two characteristics of these environments that can be used effectively to prevent, detect, and confine attacks: redundancy and continuous adaptation. In this article we propose a global strategy and a system architecture to cope with security issues in AmI applications at different levels. Unlike in previous approaches, we assume an individual wireless node is vulnerable. We present an agent-based architecture with supporting services that is proven to be adequate to detect and confine common attacks. Decisions at different levels are supported by a trust-based framework with good and bad reputation feedback while maintaining resistance to bad-mouthing attacks. We also propose a set of services that can be used to handle identification, authentication, and authorization in intelligent ambients. The resulting approach takes into account practical issues, such as resource limitation, bandwidth optimization, and scalability

    Using Reputation Systems and Non-Deterministic Routing to Secure Wireless Sensor Networks

    Get PDF
    Security in wireless sensor networks is difficult to achieve because of the resource limitations of the sensor nodes. We propose a trust-based decision framework for wireless sensor networks coupled with a non-deterministic routing protocol. Both provide a mechanism to effectively detect and confine common attacks, and, unlike previous approaches, allow bad reputation feedback to the network. This approach has been extensively simulated, obtaining good results, even for unrealistically complex attack scenarios

    Data analytics methods for attack detection and localization in wireless networks

    Get PDF
    Wireless ad hoc network operates without any fixed infrastructure and centralized administration. It is a group of wirelessly connected nodes having the capability to work as host and router. Due to its features of open communication medium, dynamic changing topology, and cooperative algorithm, security is the primary concern when designing wireless networks. Compared to the traditional wired network, a clean division of layers may be sacrificed for performance in wireless ad hoc networks. As a result, they are vulnerable to various types of attacks at different layers of the protocol stack. In this paper, I present real-time series data analysis solutions to detect various attacks including in- band wormholes attack in the network layer, various MAC layer misbehaviors, and jamming attack in the physical layer. And, I also investigate the problem of node localization in wireless and sensor networks, where a total of n anchor nodes are used to determine the locations of other nodes based on the received signal strengths. A range-based machine learning algorithm is developed to tackle the challenges --Abstract, page iii

    Defending against wormhole attacks in mobile ad hoc networks

    No full text
    In ad hoc networks, malicious nodes can carry wormhole attacks to fabricate a false scenario on neighbor relations among mobile nodes. The attacks threaten the safety of ad hoc routing protocols and some security enhancements. We propose a classification of the attacks according to the format of the wormholes. It establishes a basis on which the detection capability of the approaches can be identified. The analysis shows that previous approaches focus on the prevention of wormholes between neighbors that trust each other. As a more generic approach, we present an end-to-end mechanism that can detect wormholes on a multi-hop route. Only trust between the source and the destination is assumed. The mechanism uses geographic information to detect anomalies in neighbor relations and node movements. To reduce the computation and storage overhead, we present a scheme, Cell-based Open Tunnel Avoidance(COTA), to manage the information. COTA achieves a constant space for every node on the path and the computation overhead increases linearly to the number of detection packets. We prove that the savings do not deteriorate the detection capability. The schemes to control communication overhead are studied. We show by simulations and experiments on real devices that the proposed mechanism can be combined with existent routing protocols to defend against wormhole attacks

    Preventing Layer-3 wormhole attacks in ad-hoc networks with multipath DSR

    Full text link

    Formal modelling and analysis of denial of services attacks in wireless sensor networks

    Get PDF
    Wireless Sensor Networks (WSNs) have attracted considerable research attention in recent years because of the perceived potential benefits offered by self-organising, multi-hop networks consisting of low-cost and small wireless devices for monitoring or control applications in di±cult environments. WSN may be deployed in hostile or inaccessible environments and are often unattended. These conditions present many challenges in ensuring that WSNs work effectively and survive long enough to fulfil their functionalities. Securing a WSN against any malicious attack is a particular challenge. Due to the limited resources of nodes, traditional routing protocols are not appropriate in WSNs and innovative methods are used to route data from source nodes to sink nodes (base stations). To evaluate the routing protocols against DoS attacks, an innovative design method of combining formal modelling and computer simulations has been proposed. This research has shown that by using formal modelling hidden bugs (e.g. vulnerability to attacks) in routing protocols can be detected automatically. In addition, through a rigorous testing, a new routing protocol, RAEED (Robust formally Analysed protocol for wirEless sEnsor networks Deployment), was developed which is able to operate effectively in the presence of hello flood, rushing, wormhole, black hole, gray hole, sink hole, INA and jamming attacks. It has been proved formally and using computer simulation that the RAEED can pacify these DoS attacks. A second contribution of this thesis relates to the development of a framework to check the vulnerability of different routing protocols against Denial of Service(DoS) attacks. This has allowed us to evaluate formally some existing and known routing protocols against various DoS attacks iand these include TinyOS Beaconing, Authentic TinyOS using uTesla, Rumour Routing, LEACH, Direct Diffusion, INSENS, ARRIVE and ARAN protocols. This has resulted in the development of an innovative and simple defence technique with no additional hardware cost for deployment against wormhole and INA attacks. In the thesis, the detection of weaknesses in INSENS, Arrive and ARAN protocols was also addressed formally. Finally, an e±cient design methodology using a combination of formal modelling and simulation is propose to evaluate the performances of routing protocols against DoS attacks
    corecore