42,220 research outputs found

    The MOLDY short-range molecular dynamics package

    Full text link
    We describe a parallelised version of the MOLDY molecular dynamics program. This Fortran code is aimed at systems which may be described by short-range potentials and specifically those which may be addressed with the embedded atom method. This includes a wide range of transition metals and alloys. MOLDY provides a range of options in terms of the molecular dynamics ensemble used and the boundary conditions which may be applied. A number of standard potentials are provided, and the modular structure of the code allows new potentials to be added easily. The code is parallelised using OpenMP and can therefore be run on shared memory systems, including modern multicore processors. Particular attention is paid to the updates required in the main force loop, where synchronisation is often required in OpenMP implementations of molecular dynamics. We examine the performance of the parallel code in detail and give some examples of applications to realistic problems, including the dynamic compression of copper and carbon migration in an iron-carbon alloy

    Rare Complications of Cervical Spine Surgery: Pseudomeningocoele.

    Get PDF
    STUDY DESIGN: This study was a retrospective, multicenter cohort study. OBJECTIVES: Rare complications of cervical spine surgery are inherently difficult to investigate. Pseudomeningocoele (PMC), an abnormal collection of cerebrospinal fluid that communicates with the subarachnoid space, is one such complication. In order to evaluate and better understand the incidence, presentation, treatment, and outcome of PMC following cervical spine surgery, we conducted a multicenter study to pool our collective experience. METHODS: This study was a retrospective, multicenter cohort study of patients who underwent cervical spine surgery at any level(s) from C2 to C7, inclusive; were over 18 years of age; and experienced a postoperative PMC. RESULTS: Thirteen patients (0.08%) developed a postoperative PMC, 6 (46.2%) of whom were female. They had an average age of 48.2 years and stayed in hospital a mean of 11.2 days. Three patients were current smokers, 3 previous smokers, 5 had never smoked, and 2 had unknown smoking status. The majority, 10 (76.9%), were associated with posterior surgery, whereas 3 (23.1%) occurred after an anterior procedure. Myelopathy was the most common indication for operations that were complicated by PMC (46%). Seven patients (53%) required a surgical procedure to address the PMC, whereas the remaining 6 were treated conservatively. All PMCs ultimately resolved or were successfully treated with no residual effects. CONCLUSIONS: PMC is a rare complication of cervical surgery with an incidence of less than 0.1%. They prolong hospital stay. PMCs occurred more frequently in association with posterior approaches. Approximately half of PMCs required surgery and all ultimately resolved without residual neurologic or other long-term effects

    Frozen Soil Lateral Resistance for the Seismic Design of Highway Bridge Foundations

    Get PDF
    INE/AUTC 12.3

    Early detection of capping risk in pharmaceutical compacts

    Get PDF
    Capping is a common mechanical defect in tablet manufacturing, exhibited during or after the compression process. Predicting tablet capping in terms of process variables (e.g. compaction pressure and speed) and formulation properties is essential in pharmaceutical industry. In current work, a non-destructive contact ultrasonic approach for detecting capping risk in the pharmaceutical compacts prepared under various compression forces and speeds is presented. It is shown that the extracted mechanical properties can be used as early indicators for invisible capping (prior to visible damage). Based on the analysis of X-ray cross-section images and a large set of waveform data, it is demonstrated that the mechanical properties and acoustic wave propagation characteristics is significantly modulated by the tablet’s internal cracks and capping at higher compaction speeds and pressures. In addition, the experimentally extracted properties were correlated to the directly-measured porosity and tensile strength of compacts of Pearlitol®, Anhydrous Mannitol and LubriTose® Mannitol, produced at two compaction speeds and at three pressure levels. The effect compaction speed and pressure on the porosity and tensile strength of the resulting compacts is quantified, and related to the compact acoustic characteristics and mechanical properties. The detailed experimental approach and reported wave propagation data could find key applications in determining the bounds of manufacturing design spaces in the development phase, predicting capping during (continuous) tablet manufacturing, as well as online monitoring of tablet mechanical integrity and reducing batch-to-batch end-product quality variations

    Emerging technologies for the non-invasive characterization of physical-mechanical properties of tablets

    Get PDF
    The density, porosity, breaking force, viscoelastic properties, and the presence or absence of any structural defects or irregularities are important physical-mechanical quality attributes of popular solid dosage forms like tablets. The irregularities associated with these attributes may influence the drug product functionality. Thus, an accurate and efficient characterization of these properties is critical for successful development and manufacturing of a robust tablets. These properties are mainly analyzed and monitored with traditional pharmacopeial and non-pharmacopeial methods. Such methods are associated with several challenges such as lack of spatial resolution, efficiency, or sample-sparing attributes. Recent advances in technology, design, instrumentation, and software have led to the emergence of newer techniques for non-invasive characterization of physical-mechanical properties of tablets. These techniques include near infrared spectroscopy, Raman spectroscopy, X-ray microtomography, nuclear magnetic resonance (NMR) imaging, terahertz pulsed imaging, laser-induced breakdown spectroscopy, and various acoustic- and thermal-based techniques. Such state-of-the-art techniques are currently applied at various stages of development and manufacturing of tablets at industrial scale. Each technique has specific advantages or challenges with respect to operational efficiency and cost, compared to traditional analytical methods. Currently, most of these techniques are used as secondary analytical tools to support the traditional methods in characterizing or monitoring tablet quality attributes. Therefore, further development in the instrumentation and software, and studies on the applications are necessary for their adoption in routine analysis and monitoring of tablet physical-mechanical properties

    Micro computed tomography based finite element models of calcium phosphate scaffolds for bone tissue engineering

    Get PDF
    Bone is a living tissue that is able to regenerate by itself. However, when severe bone defects occur, the natural regeneration may be impaired. In these cases, bone graft substitutes can be used to induce the natural healing process. As a scaffold for tissue engineering, these bone graft substitutes have to meet specific requirements. Among others, the material must be biocompatible, biodegradable and have a porous structure to allow vascularization, cell migration and formation of new bone. Additionally, the mechanical properties of the scaffold have to resemble the ones of native tissue. The goal of this project is to create a computational model of the calcium phosphate scaffolds that are produced by rapid-prototyping by the Biomaterials, Biomechanics, and Tissue Engineering group at the Technical University of Catalonia. These models are based on finite element analysis and micro computed tomography images in order to consider the actual architecture of the scaffolds. The generated FE-models allow the computation of both local strains, which act as mechanical stimuli on attached cells, as well as the behaviour of the entire scaffold. When considering this information, the scaffold can be optimized for tissue differentiation by tuning both the scaffold architecture and the scaffold material bulk properties.Incomin
    corecore