244 research outputs found

    Fair comparison of skin detection approaches on publicly available datasets

    Full text link
    Skin detection is the process of discriminating skin and non-skin regions in a digital image and it is widely used in several applications ranging from hand gesture analysis to track body parts and face detection. Skin detection is a challenging problem which has drawn extensive attention from the research community, nevertheless a fair comparison among approaches is very difficult due to the lack of a common benchmark and a unified testing protocol. In this work, we investigate the most recent researches in this field and we propose a fair comparison among approaches using several different datasets. The major contributions of this work are an exhaustive literature review of skin color detection approaches, a framework to evaluate and combine different skin detector approaches, whose source code is made freely available for future research, and an extensive experimental comparison among several recent methods which have also been used to define an ensemble that works well in many different problems. Experiments are carried out in 10 different datasets including more than 10000 labelled images: experimental results confirm that the best method here proposed obtains a very good performance with respect to other stand-alone approaches, without requiring ad hoc parameter tuning. A MATLAB version of the framework for testing and of the methods proposed in this paper will be freely available from https://github.com/LorisNann

    On the Application of Data Clustering Algorithm used in Information Retrieval for Satellite Imagery Segmentation

    Get PDF
    This study proposes an automated technique for segmenting satellite imagery using unsupervised learning. Autoencoders, a type of neural network, are employed for dimensionality reduction and feature extraction. The study evaluates different segmentation architectures and encoders and identifies the best performing combination as the DeepLabv3+ architecture with a ResNet-152 encoder. This approach achieves high performance scores across multiple metrics and can be beneficial in various fields, including agriculture, land use monitoring, and disaster response

    Learning and Adapting Robust Features for Satellite Image Segmentation on Heterogeneous Datasets

    Get PDF
    This work addresses the problem of training a deep neural network for satellite image segmentation so that it can be deployed over images whose statistics differ from those used for training. For example, in post-disaster damage assessment, the tight time constraints make it impractical to train a network from scratch for each image to be segmented. We propose a convolutional encoder-decoder network able to learn visual representations of increasing semantic level as its depth increases, allowing it to generalize over a wider range of satellite images. Then, we propose two additional methods to improve the network performance over each specific image to be segmented. First, we observe that updating the batch normalization layers statistics over the target image improves the network performance without human intervention. Second, we show that refining a trained network over a few samples of the image boosts the network performance with minimal human intervention. We evaluate our architecture over three datasets of satellite images, showing state-of-the-art performance in binary segmentation of previously unseen images and competitive performance with respect to more complex techniques in a multiclass segmentation task

    Dynamic Convolution Self-Attention Network for Land-Cover Classification in VHR Remote-Sensing Images

    Get PDF
    The current deep convolutional neural networks for very-high-resolution (VHR) remote-sensing image land-cover classification often suffer from two challenges. First, the feature maps extracted by network encoders based on vanilla convolution usually contain a lot of redundant information, which easily causes misclassification of land cover. Moreover, these encoders usually require a large number of parameters and high computational costs. Second, as remote-sensing images are complex and contain many objects with large-scale variances, it is difficult to use the popular feature fusion modules to improve the representation ability of networks. To address the above issues, we propose a dynamic convolution self-attention network (DCSA-Net) for VHR remote-sensing image land-cover classification. The proposed network has two advantages. On one hand, we designed a lightweight dynamic convolution module (LDCM) by using dynamic convolution and a self-attention mechanism. This module can extract more useful image features than vanilla convolution, avoiding the negative effect of useless feature maps on land-cover classification. On the other hand, we designed a context information aggregation module (CIAM) with a ladder structure to enlarge the receptive field. This module can aggregate multi-scale contexture information from feature maps with different resolutions using a dense connection. Experiment results show that the proposed DCSA-Net is superior to state-of-the-art networks due to higher accuracy of land-cover classification, fewer parameters, and lower computational cost. The source code is made public available.National Natural Science Foundation of China (Program No. 61871259, 62271296, 61861024), in part by Natural Science Basic Research Program of Shaanxi (Program No. 2021JC-47), in part by Key Research and Development Program of Shaanxi (Program No. 2022GY-436, 2021ZDLGY08-07), in part by Natural Science Basic Research Program of Shaanxi (Program No. 2022JQ-634, 2022JQ-018), and in part by Shaanxi Joint Laboratory of Artificial Intelligence (No. 2020SS-03)

    Hatching Egg Image Segmentation Based on Dense Blocks and the Hierarchical Sampling of Pixels

    Get PDF
    Fertility detection of hatching eggs is crucial in the manufacturing of vaccines. For hatching egg images, the segmentation results of blood vessels, cracks and air chambers are important for detecting the fertility of hatching eggs. In this paper, we propose an image segmentation method based on dense blocks and the hierarchical sampling of pixels. Dense blocks are used instead of the traditional layer-by-layer structure to improve efficiency and model robustness. The hierarchical sampling of pixels uses small batch sampling to add diversity during batch updates, which can accelerate learning. The sampled features are sparsely arranged and classified using an Multi-layer Perceptron(MLP), which can introduce complex nonlinear predictors and improve accuracy. The experimental results show that the MIoU reaches 90.5%. The proposed method can significantly improve the segmentation performance
    • …
    corecore