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Abstract: This study proposes an automated technique for segmenting satellite imagery using unsupervised learning. 
Autoencoders, a type of neural network, are employed for dimensionality reduction and feature extraction. The study 
evaluates different segmentation architectures and encoders and identifies the best performing combination as the 
DeepLabv3+ architecture with a ResNet-152 encoder. This approach achieves high performance scores across multiple 
metrics and can be beneficial in various fields, including agriculture, land use monitoring, and disaster response. 

Keywords: Convolutional neural networks (CNN); Data clustering; Land cover; Semantic segmentation; Satellite 
Imagery. 

 
1 Introduction 

Accurate land cover data is vital for various applications, including natural resource management, urban planning, and 
natural hazard assessment and mitigation [1-3]. In remote sensing, land cover classification and change detection are 
crucial tasks that have gained significant attention in recent decades. This focus is due to the increasing availability of 
remote sensing data and advancements in computer power and machine learning approaches [4,5], enabling large-scale 
autonomous land cover identification. Furthermore, remote sensing data can be integrated with other geospatial data, 
such as topographic maps, weather models, and demographic information, to generate hazard models and risk 
assessments. These models and assessments provide decision-makers with valuable information to develop mitigation 
and preparedness plans and to make informed decisions during and after a natural disaster. 

Image segmentation is a fundamental vision problem with a long research history. Traditionally, this problem has been 
investigated in the unsupervised learning, which involves producing a pixelwise prediction to segment an image into 
coherent clusters that correspond to objects in the image. Classical computer vision has several well-known techniques 
for this problem, including normalized cuts [6, 7], methods based on Markov random fields [8], mean shift [9], 
hierarchical methods [10], and many more. 

With the recent progress of deep learning in computer vision, there has been renewed interest in the image segmentation 
problems. Most recent research in this field has concentrated on semantic segmentation [11-16], an image segmentation 
task with supervision. Usually, these techniques use a fully convolutional networks are one example to produce pixel-
level predictions, and then supervised training methods are utilized to determine filters that can segment new images.  

One popular recent method is the U-Net architecture [14], which is a fully convolutional network that has produced 
remarkable results in the biomedical image domain. However, existing semantic segmentation methods demand a large 
amount of pixel-level labeled data, which can be challenging to acquire for new domains. In light of the segmentation 
problem's significance in various fields and the shortage of labeled training data, we revisit the unsupervised image 
segmentation problem and incorporate recent semantic segmentation concepts. To this end, we use introduce a hyper 
approach, which connects two fully convolutional network (FCN), similar to the U-Net, to create an autoencoder. The 
initial FCN encodes the input image into a k-way soft segmentation, while the second FCN does the opposite operation, 
transforming the segmentation layer into a restored image.   

2 Related Work  

Currently, most research on classifying land cover based on multispectral remote sensing data relies on supervised 
machine learning (ML) methods. When remote sensing images are classified pixel-by-pixel, this process is called image 
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segmentation. ML approaches can be classified according to their input data, namely pixel-based, spatial, and sequence-
based approaches. Pixel-based methods, which classify individual pixels based on their corresponding spectral data, are 
commonly used for land cover classification from multispectral data. Examples of pixel-based ML models include 
Random Forest [17,18], support vector machines [19], and self-organizing maps [20,21]. However, pix-el-based 
approaches have a significant disadvantage in that they overlook spatial patterns, including important information about 
the classification task. This limitation is particularly relevant in land cover classification, where land cover classes, such 
as farmland or water bodies, often encompass coherent areas that are larger than one pixel. Consequently, pixel-based 
ML methods cannot leverage correlations between neighboring pixels to improve classification performance. 

Many unsupervised image segmentation methods rely on extracting features such as color, brightness, and texture from 
local patches, followed by clustering at the pixel level based on these features. Among these methods, the most 
commonly used ones are Felzenszwalb and Huttenlocher’s graph-based approach [22], Shi and Malik’s Normalized 
Cuts [6, 7], and Comaniciu and Meer’s Mean Shift [9]. Edge detection-based approaches, such as the one proposed by 
Arbelaez et al. [10,23] have also been shown to outperform classical methods. Additionally, a recent unified method for 
hierarchical im-age segmentation was proposed in [24]. 

One of the most used techniques in unsupervised feature learning is the encoder-decoder method, which has been 
widely studied and applied [25, 26]. The encoder function maps the input (such as an image patch) to a compressed 
feature representation, while the decoder function reconstructs the input from this lower-dimensional representation.  

In this article, we have developed a hyper approach for Land cover classification. We used the encoder to maps the 
input to a dense pixelwise segmentation layer with the same spatial size instead of a low-dimensional space. The 
decoder then generates a reconstruction from this dense prediction layer. 

3 Methodologies  

3.1. Methodology 
Our proposed approach is using the autoencoders for satellite imagery segmentation technique for land cover 
classification. 

We developed a new deep learning model by adopting segmentation mothed using the DeepLabv3+ [27] architecture as 
decoder and a ResNet-152 [28] encoder as in Figure 1. 

The FCN architecture serves as the foundation for the DNN models employed in this study, which is made up of an 
encoder followed by a decoder [29]. While the decoder up samples the feature maps in the latent space to the original 
input size, the encoder collects features from the input image. 

 
Fig. 1: Flowchart of the proposed model used deep neural network architecture which follows an encoder decoder 
structure. 

3.2. Images dataset [30] 
In this study, three datasets were utilized, named “Aksu”, “Kestel”, and “Aksu + Kestel”. The “Aksu + Kestel” dataset 
is a mix of the two datasets, and the tiling approach used has a size of 512x512 pixels with 128-pixel overlaps. The 
overlap in the images is included not just to increase the number of patches, but also to boost the classifier's capacity to 
recognize the spatial continuity of the image. (i.e., contextual information) [29,31]. Each dataset's patches were split 
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into training, validation, and test sets using a 70% ,20% and 10 %, respectively.  

Figure 2 shows the sample of the images and their corresponding ground truth maps from the datasets. The optical 
images are presented in the first column, while the ground truth masks are presented in the second column. The image 
with different classes is shown. 

3.3. Data Augmentation 
Basic image processing techniques such as flip, rotation, shift, and scale are used to augment the dataset and increase its 
volume. Additionally, we used a sampling technique to address the issue of under-represented classes, by over-sampling 
these samples to help the model focus more on them. Specifically, we used the “compute_sample_weight” method from 
the sklearn library to calculate weights, which were then fed into the PyTorch DataLoader as input [32]. 

3.4. Encoding for Feature Extraction  
The feature extraction process from the input images is handled by the encoder component, it is an important stage in 
data classification. For this purpose, ResNet-152[28], a Deep Residual Learning for Image Recognition architecture, is 
utilized due to its superior accuracy compared to other ResNet models [28]. Down sampling is conducted in the encoder 
component, while Atrous convolutions are used to convey the low-level information recovered from the image in the 
embedded space to the decoder component. 

3.5 Decoding for Feature Map 
The decoder component of the deep neural network (DNN) upscales the feature maps in the latent space to their original 
image size. Through a benchmarking process, we identified the DeepLab v3+ [27] architecture as the most effective in 
generating densely predicted segmentation maps. 

 
Fig. 2: Example of images and their corresponding ground truth masks. Specifically, (a) displays sample patches 
extracted from the Aksu region, while (b) shows sample patches taken from the “Kestel “region [30] 
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3.6. Performance Evaluation Metrics 
The joint loss function used in this study combines the Dice loss and Focal loss to address the issue of disparity between 
classes [33, 34]. Equation (1) shows the constructed loss function, where the Dice loss is represented by the first term, 
and the Focal loss, which is weighted by a coefficient of 0.5, is represented by the second term. Both loss functions are 
effective in dealing with class imbalance. In the Dice loss function, pi and 𝑔𝑖 denote the prediction equivalent pixel 
values and ground truth, respectively. The Focal loss function term at is a weighted hyperparameter offset that scales the 
main term to address class disparity. The operator γ acts as a relaxation parameter that adjusts the priority assigned to 
correctly or incorrectly categorized samples. 

𝐿 =
2∑ 𝑝𝑖𝑔𝑖(

)

∑ 𝑝)*(
) + ∑ 𝑔)*(

)
+ (−𝑎/(1 − 𝑝/)03 log log 𝑝/) ∗ 0.5                                          (1) 

In addition to qualitative analysis, standard evaluation metrics have been utilized to evaluate the effectiveness of the 
created classifiers. The quantitative metrics employed in this paper include Intersection over Union (IoU), Precision, 
Recall, F1 score, and Accuracy values, which are computed from the confusion matrix according to False Negative 
(FN), True Negative (TN), False Positive (FP), and True Positive (TP). These metrics are represented in Equations (2)–
(6): 

𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑃 + 𝑇𝐹 + 𝑇𝑁 (2) 

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁	
(3) 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃	
(4) 

F1 − score =
2 ∗ precision ∗ recall
precision + recall 	

(5) 

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃	
(6) 

4 Implementation and Discussion of Results 

4.1. Experimental Setup 
The machine used for the experiments was an Intel Core i7 CPU, 32 GB RAM with an onboard NVIDIA GeForce 
GTX1070. The training processes had a time constraint of 100 epochs with early stop technique. With a value of 0.9, 
the Adam optimization algorithm used. The Python programming language is used to implement all the routines in the 
Pytorch library. 

4.2. Evaluation 
We used the primary challenge metric to evaluate the suggested model like IoU, F-1 Score, Precision and Recall for 
comparing six well-known deep neural network architectures to get the best segmentation model, which are: 

• DeepLab v3+ [35], 

• (PAN) Pyramid Attention Network [36,37], 

• U-Net ++ [38], 

•  (FPNs) Feature Pyramid Networks [39], 

• Linknet [40], and 

• (PSP-Net) Pyramid Scene Parsing Network [36]. 

Table 1: Comparison of different architectures' segmentation outcomes (bold text denotes the best-performing 
configuration). 

Architecture IoU F-1 Score Precision Recall 
DeepLabv3+(ours) 90.34 95.07 95.02 95.15 
DeepLabv3+ [30] 89.46 94.35 94.25 94.49 
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PAN 82.78 90.37 90.34 90.47 
U-Net ++ 81.54 89.54 89.63 89.45 
FPN 76.45 86.39 86.39 86.38 
Linknet 74.75 84.99 84.95 85.04 
PSPNet 71.20 82.44 82.44 82.45 

Table 2: Encoder comparison utilizing the DeepLabv3+ segmentation architecture (bold text denotes the best-
performing configuration). 

Architecture Parameters IoU F-1 Score Precision Recall 
ResNet152 (ours) 58M 90.34 95.07 95.02 95.15 
ResNeXt50 22M 89.46 94.34 94.25 94.49 
ResNet50 23M 87.32 93.08 92.99 93.16 
DPN68 11M 80.83 88.61 88.61 88.61 
MobileNet 2M 79.07 88.09 88.15 88.02 
Efficientnet-b0 4M 79.94 88.48 88.42 88.55 
Efficientnet-b1 6M 82.64 90.24 90.16 90.32 
Efficientnet-b2 7M 83.36 90.58 90.52 90.64 

4.3. Comparison with Similar works 
Table 3 compares our model to the most recent approach in terms of F1-score, Precision, and Recall; our model 
exceeded the most recent approaches. As a result of the combination of DeepLab v3+ and ResNet-152, F1 Score of 
95.07 %. 

Table 3: Comparative F1 score, Precision, and Recall between our approach and the newest approach 
Model Encoder Decoder F-1 Score Precision Recall 
Ours ResNet152 DeepLabv3+ 95.07 95.02 95.15 
Sertel, etc. [30] ResNeXt50 DeepLabv3+ 94.35 94.25 94.49 

Our study explored the effectiveness of using DeepLab v3+ and ResNet-152 for land cover clustering. Our results 
demonstrate that this approach is more accurate than other clustering methods previously used in remote sensing. One 
possible reason for the high accuracy of our approach is the ability of DeepLab v3+ to capture fine-grained details in the 
imagery. This is due to its powerful encoder-decoder architecture that utilizes dilated convolutional layers and Atrous 
spatial pyramid pooling. This allows for the extraction of high-level features at different scales, improving the quality of 
segmentation results. 

Another factor contributing to the accuracy of our approach is the use of ResNet-152 as the backbone network. ResNet-
152 is a deep residual network architecture that is widely used for image classification tasks. Its use in our approach 
allows for the efficient ex-traction of high-level features, improving the performance of the clustering process. 

Our results demonstrate that our approach is not only accurate but also efficient. The use of DeepLab v3+ and ResNet-
152 allows for the processing of large-scale remote sensing data in a short amount of time. This is particularly important 
for apps like natural resource management and urban planning, where accurate and timely information is critical. 

5 Conclusions 

 In conclusion, our study provides strong evidence that the use of DeepLab v3+ and ResNet-152 is an effective 
approach for land cover clustering in remote sensing. The high accuracy and efficiency of this approach make it a 
promising tool for a wide range of applications, including natural hazard assessment and mitigation, urban planning, 
and natural resource management. 

Based on these findings, future research directions can be explored to further enhance and expand the application of this 
approach. Some potential avenues for future investigation include: 

• Improving the scalability: Investigate methods to optimize the DeepLab v3+ and ResNet-152 approach to handle 
large-scale satellite imagery datasets. This can involve exploring distributed computing techniques or parallel 
processing algorithms to enable efficient analysis of high-resolution imagery. 

• Incorporating multi-temporal analysis: Extend the approach to incorporate temporal information by integrating 
time-series satellite imagery. This would enable the detection and monitoring of dynamic changes in land cover 
patterns over time, providing valuable insights for long-term environmental monitoring and climate change studies. 

• Fusion with other data sources: Investigate the fusion of satellite imagery with other geospatial data sources, such 



2744                                                                                              A. NourEldeen et al.: On the Application of Data Clustering… 

 
© 2023 NSP 
Natural Sciences Publishing Cor. 
 

as aerial photography, LiDAR, or socioeconomic data. By combining multiple data modalities, it is possible to 
enhance the accuracy and richness of land cover clustering results and enable more comprehensive analysis. 

• Transfer learning and domain adaptation: Explore the transferability of the DeepLab v3+ and ResNet-152 model to 
different geographic regions or domains. Investigate techniques for domain adaptation to effectively utilize pre-
trained models in areas with limited labeled data, thereby improving the generalizability and applicability of the 
approach. 

• Incorporating uncertainty estimation: Develop methods to estimate and quantify the uncertainty associated with the 
land cover clustering results. This would provide decision-makers and stakeholders with a better understanding of 
the reliability and confidence levels of the obtained clusters, supporting informed decision-making in various 
applications. 

By addressing these research directions, we can further advance the capabilities of land cover classification in remote 
sensing, enabling its broader adoption and unlocking its potential in addressing critical environmental and societal 
challenges. 
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