47,223 research outputs found
Tracking by Prediction: A Deep Generative Model for Mutli-Person localisation and Tracking
Current multi-person localisation and tracking systems have an over reliance
on the use of appearance models for target re-identification and almost no
approaches employ a complete deep learning solution for both objectives. We
present a novel, complete deep learning framework for multi-person localisation
and tracking. In this context we first introduce a light weight sequential
Generative Adversarial Network architecture for person localisation, which
overcomes issues related to occlusions and noisy detections, typically found in
a multi person environment. In the proposed tracking framework we build upon
recent advances in pedestrian trajectory prediction approaches and propose a
novel data association scheme based on predicted trajectories. This removes the
need for computationally expensive person re-identification systems based on
appearance features and generates human like trajectories with minimal
fragmentation. The proposed method is evaluated on multiple public benchmarks
including both static and dynamic cameras and is capable of generating
outstanding performance, especially among other recently proposed deep neural
network based approaches.Comment: To appear in IEEE Winter Conference on Applications of Computer
Vision (WACV), 201
Rab8a and Rab8b are essential for several apical transport pathways but insufficient for ciliogenesis
The small GTP-binding protein Rab8 is known to play an essential role in intracellular transport and cilia formation. We have previously demonstrated that Rab8a is required for localising apical markers in various organisms. Rab8a has a closely related isoform, Rab8b. To determine whether Rab8b can compensate for Rab8a, we generated Rab8b-knockout mice. Although the Rab8b-knockout mice did not display an overt phenotype, Rab8a and Rab8b double-knockout mice exhibited mislocalisation of apical markers and died earlier than Rab8a-knockout mice. The apical markers accumulated in three intracellular patterns in the double-knockout mice. However, the localisation of basolateral and/or dendritic markers of the double-knockout mice seemed normal. The morphology and the length of various primary and/or motile cilia, and the frequency of ciliated cells appeared to be identical in control and double-knockout mice. However, an additional knockdown of Rab10 in double-knockout cells greatly reduced the percentage of ciliated cells. Our results highlight the compensatory effect of Rab8a and Rab8b in apical transport, and the complexity of the apical transport process. In addition, neither Rab8a nor Rab8b are required for basolateral and/or dendritic transport. However, simultaneous loss of Rab8a and Rab8b has little effect on ciliogenesis, whereas additional loss of Rab10 greatly affects ciliogenesis
Dark solitons, modulation instability and breathers in a chain of weakly non-linear oscillators with cyclic symmetry
In the aerospace industry the trend for light-weight structures and the
resulting complex dynamic behaviours currently challenge vibration engineers.
In many cases, these light-weight structures deviate from linear behaviour, and
complex nonlinear phenomena can be expected. We consider a cyclically symmetric
system of coupled weakly nonlinear undamped oscillators that could be
considered a minimal model for different cyclic and symmetric aerospace
structures experiencing large deformations. The focus is on localised
vibrations that arise from wave envelope modulation of travelling waves. For
the defocussing parameter range of the approximative nonlinear evolution
equation, we show the possible existence of dark solitons and discuss their
characteristics. For the focussing parameter range, we characterise modulation
instability and illustrate corresponding nonlinear breather dynamics.
Furthermore, we show that for stronger nonlinearity or randomness in initial
conditions, transient breather-type dynamics and decay into bright solitons
appear. The findings suggest that significant vibration localisation may arise
due to mechanisms of nonlinear modulation dynamics
Gold nanodome-patterned microchips for intracellular surface-enhanced Raman spectroscopy
While top-down substrates for surface-enhanced Raman spectroscopy (SERS) offer outstanding control and reproducibility of the gold nanopatterns and their related localized surface plasmon resonance, intracellular SERS experiments heavily rely on gold nanoparticles. These nanoparticles often result in varying and uncontrollable enhancement factors. Here we demonstrate the use of top-down gold-nanostructured microchips for intracellular sensing. We develop a tunable and reproducible fabrication scheme for these microchips. Furthermore we observe the intracellular uptake of these structures, and find no immediate influence on cell viability. Finally, we perform a proof-of-concept intracellular SERS experiment by the label-free detection of extraneous molecules. By bringing top-down SERS substrates to the intracellular world, we set an important step towards time-dependent and quantitative intracellular SERS
Screening by coral green fluorescent protein (GFP)-like chromoproteins supports a role in photoprotection of zooxanthellae
Green fluorescent protein (GFP)-like pigments are responsible for the vivid colouration of many reef-building corals and have been proposed to act as photoprotectants. Their role remains controversial because the functional mechanism has not been elucidated. We provide direct evidence to support a photoprotective role of the non-fluorescent chromoproteins (CPs) that form a biochemically and photophysically distinct group of GFP-like proteins. Based on observations of Acropora nobilis from the Great Barrier Reef, we explored the photoprotective role of CPs by analysing five coral species under controlled conditions. In vitro and in hospite analyses of chlorophyll excitation demonstrate that screening by CPs leads to a reduction in chlorophyll excitation corresponding to the spectral properties of the specific CPs present in the coral tissues. Between 562 and 586 nm, the CPs maximal absorption range, there was an up to 50 % reduction of chlorophyll excitation. The screening was consistent for established and regenerating tissue and amongst symbiont clades A, C and D. Moreover, among two differently pigmented morphs of Acropora valida grown under identical light conditions and hosting subclade type C3 symbionts, high CP expression correlated with reduced photodamage under acute light stress
- …