4,182 research outputs found

    Multi-Label Zero-Shot Human Action Recognition via Joint Latent Ranking Embedding

    Get PDF
    Human action recognition refers to automatic recognizing human actions from a video clip. In reality, there often exist multiple human actions in a video stream. Such a video stream is often weakly-annotated with a set of relevant human action labels at a global level rather than assigning each label to a specific video episode corresponding to a single action, which leads to a multi-label learning problem. Furthermore, there are many meaningful human actions in reality but it would be extremely difficult to collect/annotate video clips regarding all of various human actions, which leads to a zero-shot learning scenario. To the best of our knowledge, there is no work that has addressed all the above issues together in human action recognition. In this paper, we formulate a real-world human action recognition task as a multi-label zero-shot learning problem and propose a framework to tackle this problem in a holistic way. Our framework holistically tackles the issue of unknown temporal boundaries between different actions for multi-label learning and exploits the side information regarding the semantic relationship between different human actions for knowledge transfer. Consequently, our framework leads to a joint latent ranking embedding for multi-label zero-shot human action recognition. A novel neural architecture of two component models and an alternate learning algorithm are proposed to carry out the joint latent ranking embedding learning. Thus, multi-label zero-shot recognition is done by measuring relatedness scores of action labels to a test video clip in the joint latent visual and semantic embedding spaces. We evaluate our framework with different settings, including a novel data split scheme designed especially for evaluating multi-label zero-shot learning, on two datasets: Breakfast and Charades. The experimental results demonstrate the effectiveness of our framework.Comment: 27 pages, 10 figures and 7 tables. Technical report submitted to a journal. More experimental results/references were added and typos were correcte

    Contextualized Non-local Neural Networks for Sequence Learning

    Full text link
    Recently, a large number of neural mechanisms and models have been proposed for sequence learning, of which self-attention, as exemplified by the Transformer model, and graph neural networks (GNNs) have attracted much attention. In this paper, we propose an approach that combines and draws on the complementary strengths of these two methods. Specifically, we propose contextualized non-local neural networks (CN3^{\textbf{3}}), which can both dynamically construct a task-specific structure of a sentence and leverage rich local dependencies within a particular neighborhood. Experimental results on ten NLP tasks in text classification, semantic matching, and sequence labeling show that our proposed model outperforms competitive baselines and discovers task-specific dependency structures, thus providing better interpretability to users.Comment: Accepted by AAAI201

    Knowledge-rich Image Gist Understanding Beyond Literal Meaning

    Full text link
    We investigate the problem of understanding the message (gist) conveyed by images and their captions as found, for instance, on websites or news articles. To this end, we propose a methodology to capture the meaning of image-caption pairs on the basis of large amounts of machine-readable knowledge that has previously been shown to be highly effective for text understanding. Our method identifies the connotation of objects beyond their denotation: where most approaches to image understanding focus on the denotation of objects, i.e., their literal meaning, our work addresses the identification of connotations, i.e., iconic meanings of objects, to understand the message of images. We view image understanding as the task of representing an image-caption pair on the basis of a wide-coverage vocabulary of concepts such as the one provided by Wikipedia, and cast gist detection as a concept-ranking problem with image-caption pairs as queries. To enable a thorough investigation of the problem of gist understanding, we produce a gold standard of over 300 image-caption pairs and over 8,000 gist annotations covering a wide variety of topics at different levels of abstraction. We use this dataset to experimentally benchmark the contribution of signals from heterogeneous sources, namely image and text. The best result with a Mean Average Precision (MAP) of 0.69 indicate that by combining both dimensions we are able to better understand the meaning of our image-caption pairs than when using language or vision information alone. We test the robustness of our gist detection approach when receiving automatically generated input, i.e., using automatically generated image tags or generated captions, and prove the feasibility of an end-to-end automated process

    Learning Transferable Representations for Visual Recognition

    Get PDF
    In the last half-decade, a new renaissance of machine learning originates from the applications of convolutional neural networks to visual recognition tasks. It is believed that a combination of big curated data and novel deep learning techniques can lead to unprecedented results. However, the increasingly large training data is still a drop in the ocean compared with scenarios in the wild. In this literature, we focus on learning transferable representation in the neural networks to ensure the models stay robust, even given different data distributions. We present three exemplar topics in three chapters, respectively: zero-shot learning, domain adaptation, and generalizable adversarial attack. By zero-shot learning, we enable models to predict labels not seen in the training phase. By domain adaptation, we improve a model\u27s performance on the target domain by mitigating its discrepancy from a labeled source model, without any target annotation. Finally, the generalization adversarial attack focuses on learning an adversarial camouflage that ideally would work in every possible scenario. Despite sharing the same transfer learning philosophy, each of the proposed topics poses a unique challenge requiring a unique solution. In each chapter, we introduce the problem as well as present our solution to the problem. We also discuss some other researchers\u27 approaches and compare our solution to theirs in the experiments
    • …
    corecore