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Multi-Label Zero-Shot Human Action Recognition via Joint Latent Ranking Embedding

Qian Wang, Ke Chen

The University of Manchester, UK.
qian.wang173@hotmail.com, ke.chen@manchester.ac.uk

Abstract

Human action recognition is one of the most challenging tasks in computer vision. Most of the existing works in human action
recognition are limited to single-label classification. A real-world video stream, however, often contains multiple human actions.
Such a video stream is usually annotated collectively with a set of relevant human action labels, which leads to a multi-label
learning problem. Furthermore, there are a great number of meaningful human actions in reality but it would be extremely difficult,
if not impossible, to collect/annotate sufficient video clips regarding all these human actions for training a supervised learning
model. In this paper, we formulate a real-world human action recognition task as a multi-label zero-shot learning problem. To
address this problem, a joint latent ranking embedding framework is proposed. Our framework holistically tackles the issue of
unknown temporal boundaries between different actions within a video clip for multi-label learning and exploits the side information
regarding the semantic relationship between different human actions for zero-shot learning. Specifically, our framework consists of
two component neural networks for visual and semantic embedding respectively. Thus, multi-label zero-shot recognition is done
by measuring relatedness scores of concerned action labels to a test video clip in the joint latent visual and semantic embedding
spaces. We evaluate our framework in different settings, including a novel data split scheme designed especially for evaluating
multi-label zero-shot learning. The experimental results on two weakly annotated multi-label human action datasets (i.e. Breakfast
and Charades) demonstrate the effectiveness of our framework.

Keywords: Human action recognition, Multi-label learning, Zero-shot learning, Joint latent ranking embedding, Weakly
supervised learning

1. Introduction

As one of the most challenging tasks in computer vision, hu-
man action recognition refers to automatic recognizing human
actions conveyed in a video clip. In last two decades, human
action recognition has been extensively studied. As there are
many different human actions in reality, this task is generally
formulated as a multi-class classification problem. To train
a multi-class classifier for human action recognition, a great
number of examples for each single action are required in the
current setting. To collect such training examples, one needs
to manually trim a video stream to ensure that there is only
one human action appearing in a trimmed video episode. This
annotation process is laborious and time-consuming and there
is hence no large-scale dataset with “fine-grained” annotation
for human action recognition. In contrast to ImageNet (Deng,
Dong, Socher, Li, Li & Fei-Fei, 2009) for object recognition,
where it consists of a total of 3.2 million cleanly labelled im-
ages spreading over 5,247 categories, there are much fewer an-
notated video clips involving only a small number of human ac-
tions. For instance, HMDB51 and UCF101 are among the most
commonly used benchmark datasets in human action recogni-
tion, where there are 6,676 and 13,320 instances of only 51 and
101 different human actions, respectively. The limitation of hu-
man action datasets in such a scale has become an obstacle in
developing a large-scale human action recognition system.

In a real scenario, a video clip often conveys multiple hu-
man actions corresponding to different concepts. Hence, a set
of multiple action labels have to be used to characterize its
complete semantics underlying human actions conveyed in this
video clip. For example, video clips on YouTube are usually up-
loaded by users along with some descriptive terms that can be
used to infer the human actions conveyed in those video clips.
In this circumstance, descriptive terms may be viewed as a set
of coherent labels that collectively characterize the semantics at
a global level. Recently, a very large multi-label video dataset
YouTube-8M (Abu-El-Haija, Kothari, Lee, Natsev, Toderici,
Varadarajan & Vijayanarasimhan, 2016) has been collected by
Google Research. Although the dataset is not restricted to hu-
man action video clips, it paves a new way for various video
analyses including human action recognition. One of essential
video analysis problems on such a data set may be formulated
as multi-label learning that predicts a set of labels associated
to a given instance or a set of relatedness scores corresponding
to the candidate labels that could characterize this instance. In
multi-label learning, a training example often consists of an in-
put instance and a set of labels associated with this instance at
a global level (no need of explicitly associating each of those
labels to a relevant object within this instance). While multi-
label data are common in many domains and multi-label classi-
fication has been studied under different applications (Zhang &
Zhou, 2014), e.g., semantic image tagging, text categorization
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and gene functionality prediction, only few works are pertinent
to multi-label human action recognition in literature due to a
lack of human action datasets annotated with multiple class la-
bels. To fill in this gap, a dataset dubbed Charades (Sigurdsson,
Varol, Wang, Farhadi, Laptev & Gupta, 2016) was collected
especially for multi-label human action recognition and made
publicly available very recently. In addition, other datasets col-
lected for different tasks were also considered to be used in
multi-label human action recognition. Thus, such data sets pro-
vide a proper test bed for multi-label human action recognition
studies.

Multi-label human action recognition often has to work on
weakly labelled video data, i.e., the training data are annotated
at the video level without exhaustively trimming and annotating
multiple action episodes. While it is easier to collect such video
clips associated with a set of labels at a global level than those
with “fine-grained” annotation, it would be still very challeng-
ing to collect all the training examples due to the existence of
many different human actions. Zero-shot learning (ZSL) pro-
vides an alternative solution to alleviate this problem. ZSL aims
to recognize the instances belonging to novel classes which are
not seen during training. It has been formally shown that under
certain conditions, a ZSL system trained on a dataset of finite
classes could be used to predict infinite number of classes un-
seen during the learning (Zhang, Acharyya, Liu & Gong, 2016).
Under the ZSL framework, we merely need to collect and anno-
tate training examples for a moderate set of training classes and
expect that a large number of novel classes can be recognized
via exploiting the semantic relationship between different hu-
man actions. To this end, a ZSL algorithm needs to transfer the
knowledge regarding the relations between visual features and
class label semantics learned from known or training classes
to unseen or test classes. The knowledge transfer is enabled
by modelling the semantic representations of different classes,
which can be easily obtained from side information, e.g., de-
scriptive texts, with a much less effort than collecting and an-
notating visual data. Nevertheless, most of the existing ZSL
methods were proposed to tackle single-label ZSL problems but
multi-label ZSL problems are much more complicated, leading
to additional challenge that do not exist in single-label ZSL.
Although some of single-label ZSL methods might be extensi-
ble to multi-label scenarios, their effectiveness of different ZSL
algorithms have not been extensively investigated in the multi-
label learning scenarios. To the best of our knowledge, there
exists no work in multi-label zero-shot human action recogni-
tion.

In this paper, we address the multi-label ZSL issues in the
context of human action recognition. In our problem, the train-
ing video data are weakly labelled so that the exact temporal-
spatial locations of multiple human actions in a video clip re-
main unknown. In addition, training examples consisting of vi-
sual instances and their corresponding label sets of multiple la-
bels are only available for those associated with training/known
labels, a subset of the action label collection considered in the
recognition stage. Thus, the nature of multi-label zero-shot hu-
man action recognition poses several challenges that do not ex-
ist in static data and single-label ZSL. To tackle all the chal-

lenges in a holistic way, we propose a novel joint latent ranking
embedding framework. The framework aims to learn a joint
latent ranking embedding from visual and semantic domains.
By using the learned joint latent ranking embedding, any vi-
sual instances and any action labels can be mapped into the
joint latent visual and semantic embedding spaces where posi-
tive connections between visual instances and action labels rank
ahead of negative ones. Thus, any human actions can be recog-
nized regardless of known or unseen actions during learning.
Our framework consists of two component models: visual and
semantic models. The visual model learns mapping a visual in-
stance into the latent visual embedding space, while the seman-
tic model learns mapping action labels into the latent seman-
tic embedding space. The visual and the semantic models are
tightly coupled to learn a proper ranking that works in the joint
latent visual and semantic embedding spaces with an alternate
learning algorithm on training examples annotated with only
known action labels. In the test, multi-label zero-shot recogni-
tion is done by measuring relatedness scores of action labels to
a test visual clip in the joint latent visual and semantic embed-
ding spaces.

Our main contributions in this paper are summarized as fol-
lows:

• By considering real scenarios, we formulate general hu-
man action recognition as a multi-label zero-shot learning
problem . To the best of our knowledge, our work pre-
sented in this paper is among the first attempts in study-
ing human action recognition from a multi-label zero-shot
learning perspective, which tackles several technical chal-
lenges pertaining to this problem in a holistic way.

• To address the multi-label zero-shot issues arising from
weakly annotated data for human action recognition, we
propose a novel joint latent ranking embedding framework
consisting of visual and semantic embedding models. To
train two embedding models effectively, we come up with
a learning algorithm that alternately optimizes the param-
eters in two embedding models via minimizing the proper
rank loss functions.

• To test the performance of our proposed framework, we
conduct a thorough evaluation via a comparative study on
two benchmark multi-label human action datasets, Break-
fast and Charades, with various evaluation metrics and
different settings including a novel data split protocol sim-
ulating a real scenario of multi-label zero-shot human ac-
tion recognition.

The rest of this paper is organized as follows. Section 2
reviews related works. Section 3 presents our framework for
multi-label zero-shot human action recognition. Section 4 de-
scribes our experimental settings, and Section 5 reports the ex-
perimental results. The last section draws conclusions.

2. Related Work

In this section, we review the existing works relating to multi-
label human action recognition, especially for those applicable
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to multi-label zero-shot learning scenarios, and point out the
limitations of the existing works. We first overview existing
multi-label classification methods and then focus on the exist-
ing works in multi-label ZSL learning despite the fact that none
of such multi-label ZSL methods has been applied to human ac-
tion recognition. Finally, semantic representations required by
any ZSL methods are briefly reviewed.

2.1. Multi-label Learning

In a real scenario, semantics underlying real-world data is
often complex and has to be characterized with multiple la-
bels, e.g., web videos. In a video clip pertaining to human
actions, multiple actions could happen simultaneously, e.g., sit-
ting, eating and listening. In this scenario, no episode in such
a video clip can be characterized by a single action label and a
set of labels hence have to be used collectively to describe this
video clip. Even though a video clip can be divided into several
episodes corresponding to different human actions, the segmen-
tation and annotation process could be difficult, tedious, labo-
rious and time-consuming. In particular, semantic image seg-
mentation and human action detection in video streams remain
unsolved in general. As a result, multi-label learning is often
formulated as a weakly supervised learning task that predicts a
set of labels associated with an instance but does not address the
issue in assigning each label in the set to a specific object within
this instance. To tackle a weakly supervised multi-label learn-
ing problem, two different representation methods are used to
characterize input data: instance-level and object-level repre-
sentations. An instance-level representation is a global repre-
sentation of an instance, e.g., a video clip or an image, without
considering objects appearing in this instance, while an object-
level representation is a local representation that describes in-
dividual objects extracted from an instance, e.g., semantically
meaningful episodes/patches in the video/image. Depending on
the representation of input data, multi-label learning methods
can be divided into two categories.

In multi-label learning, most of the existing methods (Guil-
laumin, Mensink, Verbeek & Schmid, 2009; Nam, Kim,
Mencı́a, Gurevych & Fürnkranz, 2014; Wang, Yang, Mao,
Huang, Huang & Xu, 2016; Wang, Jia & Breckon, 2019; Zhang,
Gong & Shah, 2016) work on an instance-based representa-
tion, a single feature vector of an instance. Recently, Fast0Tag
(Zhang et al., 2016) was proposed for multi-label image tag-
ging by learning a mapping from visual to label space. An
image containing multiple objects is represented by one aggre-
gated visual representation. Alternatively, TagProp (Guillau-
min et al., 2009) uses an adapted nearest neighbour model for
multi-label learning in visual space where each image of mul-
tiple objects is also represented by one feature vector at the
instance level. Wang et al. (2016) use a convolutional neu-
ral network (CNN) directly working on raw images of multi-
ple objects to learn image-level deep visual representations for
multi-label classification. Nam et al. (2014) use a deep neural
network with a rank loss in learning for large-scale multi-label
text classification where an input document is represented with
a single feature vector. Although representing one instance at

the global level is straightforward and convenient, it might ne-
glect the intrinsic relationship between multiple objects within
an instance. Thus, an instance-level representation might re-
sult in a catastrophic information loss, especially for long-term
dependent and complex video data.

To overcome the weakness in neglecting the information re-
garding the intrinsic relationship between objects within an in-
stance, efforts have been made to exploit such information in
previous works. Despite being difficult, the segmentation of
multiple objects within an instance turns out to be beneficial
to multi-label learning. One framework named multi-instance
multi-label learning (MIML) (Zhou & Zhang, 2007) demon-
strates that multi-label learning can be fulfilled effectively if
multiple objects within an instance have been explicitly sepa-
rated or segmented even if no label is explicitly assigned to each
of multiple objects within an instance during learning. In real
applications, however, automatic semantic segmentation of ob-
jects in an instance is also challenging, and a manual segmenta-
tion process is laborious and time-consuming. Moreover, some
recent works tend to explore object-based representations with-
out using any explicit semantic object segmentation techniques,
which seeks a synergy between the MIML and object-level rep-
resentations. Gu, Sridhar, Cohn, Hogg, Flórez-Revuelta, Mon-
ekosso & Remagnino (2016) address this weakly supervised is-
sue in multi-label human action detection with a two-stage so-
lution. First, a set of potential objects or spatial-temporal vol-
umes are generated and selected from a video instance with a
set of handcrafted rules. Then the problem is transformed into a
MIML problem which can be solved by those traditional multi-
label learning algorithms under the MIML framework. Similar
ideas were also explored by Wei, Xia, Lin, Huang, Ni, Dong,
Zhao & Yan (2016) and Tang, Wang, Huang, Bai & Liu (2017)
for multi-label image classification. However, the extraction of
true positive objects from the original visual instance is a very
challenging yet non-trivial task, which critically determines the
multi-label learning performance. To extract all the meaning-
ful objects within an instance, a lot of candidate proposals have
to be considered so that it might suffer from a high computa-
tional burden. Instead of using the MIML, Cabral, De la Torre,
Costeira & Bernardino (2015) attempt to explore the informa-
tion regarding multiple objects in instances via a matrix com-
pletion method. Their method works on the assumption that
an instance representation may be expressed by a linear com-
bination of hidden representations of objects appearing in this
instance. Experimental results reported by Cabral et al. (2015)
demonstrate the effectiveness of this method via an instance-
level bag-of-words image representation. However, this idea
does not seem applicable to other kinds of visual representa-
tions, such as those popular yet powerful deep representations.

2.2. Multi-label Zero-shot Learning
Zero-shot learning (ZSL) has attracted much attention in re-

cent years and provides a promising technique for recognizing
a large number of classes without the need of the training data
concerning all the classes. Very recently, Zhang et al. (2016)
have formally shown that it is feasible to predict a collection
of infinite unseen labels with a classifier learned on training
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data concerning only a number of labels in this collection or
a subset of this collection, where multi-label ZSL is a special
case in this so-called “infinite-label learning” paradigm. Ac-
cording to a ZSL taxonomy (Wang & Chen, 2017b), existing
ZSL approaches are divided into three categories, namely, di-
rect mapping (Akata, Reed, Walter, Lee & Schiele, 2015; Fu
& Huang, 2010; Lampert, Nickisch & Harmeling, 2014; Xian,
Akata, Sharma, Nguyen, Hein & Schiele, 2016; Yu, Ji, Guo
& Pang, 2018), model parameter transfer (Changpinyo, Chao,
Gong & Sha, 2016; Mensink, Gavves & Snoek, 2014) and
joint latent space learning (Changpinyo, Chao & Sha, 2017;
Frome, Corrado, Shlens, Bengio, Dean, Mikolov & others,
2013; Lei Ba, Swersky, Fidler & others, 2015; Wang & Chen,
2017b; Yu, Ji, Guo & Zhang, 2018; Zhang, Xiang & Gong,
2017; Zhang & Saligrama, 2015, 2016). More recently, syn-
thetic feature generation methods based on general adversar-
ial networks (GANs) (Goodfellow, Pouget-Abadie, Mirza, Xu,
Warde-Farley, Ozair, Courville & Bengio, 2014) have become
prevalent and achieved state-of-the-art performance in zero-
shot learning (Huang, Wang, Yu & Wang, 2019; Xian, Lorenz,
Schiele & Akata, 2018). Although most existing works focus
on single-label ZSL, efforts have been made to address more
complex multi-label ZSL issues (Fu, Yang, Hospedales, Xiang
& Gong, 2014; Lee, Fang, Yeh & Frank Wang, 2018; Mensink
et al., 2014; Nam, Mencı́a, Kim & Fürnkranz, 2015; Ren, Jin,
Lin, Fang & Yuille, 2017; Zhang et al., 2016).

For direct mapping, it needs to learn a mapping directly from
visual to semantic space for zero-shot recognition on the se-
mantic space, which poses a challenge to multi-label ZSL. In
single-label ZSL, a training example provides a visual-semantic
representation pair used to learn a one-to-one direct mapping.
In multi-label ZSL, however, one instance has to be associated
with a set of multiple labels and the number of labels associated
with different instances are various. As a label is represented
with a semantic feature vector, e.g., a vector of attributes or a
word vector, in a semantic space, it is no longer straightforward
to learn a direct mapping from visual to semantic space in the
context of multi-label ZSL. How to model complex semantics
underlying a set of labels associated with an instance becomes
a central issue in multi-label ZSL. To tackle this issue, most
of existing works (Fu et al., 2014; Sandouk & Chen, 2016b)
make use of the composition properties of semantic represen-
tations such as word vectors by using the average of semantic
representations of multiple labels to a collective semantic repre-
sentation for a set of labels associated with the instance. Thus,
a training example is formed with a pair of an instance-level
visual representation and its corresponding collective semantic
representation, which enables one to learning a direct mapping
for multi-label ZSL. Apparently, such a collective representa-
tion cannot avoid information loss even though a contextual-
ized semantic representation (Sandouk & Chen, 2016b) was
used. In particular, the multi-label ZSL method proposed by
Fu et al. (2014) is subject to a fundamental limitation; their
method has to take into account all the possible combinations
of different unseen labels in a pre-fixed unseen label collection.
Thus, the computational complexity of their algorithm grows
exponentially with respect to the number of unseen labels and

hence can cope with only a very small number of pre-fixed un-
seen labels (e.g., up to eight in their experiments). To alleviate
the information loss problem in generating a collective seman-
tic representation, Fast0Tag (Zhang et al., 2016) introduces an
alternative solution to collective semantic representations. In
their method, each visual instance is mapped into a “principal
direction” in the semantic space based on an assumption that
there is always such a direction for any multi-labelled instances
in a semantic space, e.g., word vector space, and all the labels
associated with this instance always rank ahead of irrelevant
labels. In other words, a hyperplane perpendicular to this di-
rection can always be found to separate the relevant labels from
the irrelevant ones for any multi-labelled instance. While this
assumption holds for those datasets used in their zero-shot im-
age tagging experiments (Zhang et al., 2016), it remains unclear
for other image datasets and different domains, e.g., human ac-
tion recognition. From an alternative perspective, Ren et al.
(2017) suggest using an object-level visual presentation under
the direct mapping framework for multi-label zero-shot object
recognition. Before multi-label learning takes place, an image
thus has to be semantically segmented into meaningful subre-
gions and each subregion can be characterized by one label. As
a result, their solution is actually a special case of the MIML
(Zhou & Zhang, 2007) but heavily relies on sophisticated se-
mantic segmentation techniques that remain unavailable up to
date. Furthermore, this method is not extensible to sequential
data such as video clips.

Like the works in extending direct mapping to multi-label
ZSL, the model parameter transfer idea is also adapted for
multi-label ZSL, leading to COSTA (Mensink et al., 2014).
COSTA aims to establish a model for each unseen label via
a linear weighted combination of known-label models. The
known-label models are trained independently by means of
a one-vs-rest binary classifier, e.g., support vector machines
(SVMs). The combination coefficients are determined by the
co-occurrence of multiple labels derived from either annotation
of datasets in hand or external web sources. In COSTA, how-
ever, the known-label models are trained independently without
considering the relationship and coherence among those labels
that together describe an instance. Then, COSTA only uses la-
bel co-occurrences to model the relatedness between a pair of
labels but neglects the semantics of an individual label itself. So
far, this idea has been tested only on static images in the context
of multi-label zero-shot object recognition.

The joint latent space learning methodology was proposed
for multimedia information retrieval and multi-label related
learning and led to favorable results in real-world applications
(Gong, Ke, Isard & Lazebnik, 2014; Karpathy & Fei-Fei, 2015;
Weston, Bengio & Usunier, 2010). The core idea underly-
ing this methodology is learning a joint latent embedding from
both visual and semantic domains to narrow the semantic gap
so that a task can be done effectively in the latent embedding
space(s). More recently, this general idea has also been ex-
plored in single-label ZSL (Changpinyo et al., 2017; Frome
et al., 2013; Lei Ba et al., 2015; Wang & Chen, 2017b; Yu
et al., 2018; Zhang et al., 2017; Zhang & Saligrama, 2015,
2016). Empirical studies suggest that those joint latent space
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learning methods often outperform most of existing direct map-
ping and model parameter transfer methods on several bench-
mark datasets designed for single-label ZSL (Changpinyo et al.,
2017; Frome et al., 2013; Lei Ba et al., 2015; Wang & Chen,
2017b; Xian, Schiele & Akata, 2017; Zhang et al., 2017; Zhang
& Saligrama, 2015, 2016). In this paper, we propose a novel ap-
proach to multi-label zero-shot human action recognition by ex-
ploring the joint latent space learning idea to holistically tackle
those challenges described in Section 1.

2.3. Semantic Representation

Regardless of different ZSL scenarios, modelling semantics
underlying a collection of labels and their relatedness plays a
critical role in knowledge transfer required by ZSL. Miscella-
neous methods in semantics modelling and representations have
been developed from different perspectives including attributes
of labels, label embedding, co-occurrence of labels and concept
embedding.

Attributes of labels are a generic semantic representation
where a label is characterized by a list of attributes common
to all the labels (Lampert et al., 2014). Label embedding refers
to embedding labels onto a semantic space where the semantic
relatedness of labels are modeled (Mikolov, Sutskever, Chen,
Corrado & Dean, 2013). Label embedding is often carried out
via learning on external textural resources. For example, the
famous Word2Vec semantic embedding is obtained by training
a skip-gram neural network on the large-scale corpora, e.g.,
Google News dataset (Mikolov et al., 2013). Such semantic
representations are widely used in ZSL (Fu et al., 2014; Ren
et al., 2017; Wang & Chen, 2017b; Zhang et al., 2016). Un-
like label embedding obtained with external resources , co-
occurrence of labels is yet another way to capture the related-
ness between different labels (e.g., Nam et al., 2015). Alter-
natively, the co-occurrence information on different class labels
can also be extracted from external resources for ZSL (Mensink
et al., 2014). In particular, co-occurrence of labels allows for
capturing the relatedness between labels jointly used to describe
an instance. The label co-occurrence information may be incor-
porated into learning semantic embedding for a given dataset
(e.g., Nam et al., 2015). In concept embedding, the semantic
meaning of a label is assumed to be polysemous depending on
different labels (together treated its context of this target label)
jointly used to describe an instance. Hence, the semantic mean-
ing of a label under a specific context frames a concept. As
a result, concept embedding (Sandouk & Chen, 2016a) can be
viewed as contextualized label embedding where a label may
have multiple semantic representations in different contexts.
The concept embedding seems specific and is only applicable to
direct mapping for multi-label ZSL (Sandouk & Chen, 2016b).
Our proposed framework for multi-label zero-shot human ac-
tion action is generic so that all the semantic representations
apart from the concept embedding may be used directly in our
framework.

3. Model Description

In this section, we present a novel framework for multi-
label zero-shot human action recognition. First, we present an
overview of the proposed framework along with our motiva-
tion and justification. Next, we present the joint latent rank-
ing embedding learning method including the rank loss func-
tions and an alternate learning algorithm especially developed
for our proposed architecture. Finally, we specify a procedure
on how to apply a trained joint latent ranking embedding model
to multi-label zero-shot human action recognition in test.

3.1. Overview

Our proposed framework aims at multi-label zero-shot hu-
man action recognition. We formulate this problem as learn-
ing a mapping φφφ : xxx→ yyy, where xxx is a visual input, e.g., a set
of segment-level visual feature vectors extracted from a video
clip, and yyy ∈ R|C| is a list of label-relatedness scores for xxx with
respect to a action label collection, C = {1, · · · , |C|}, where C
is further divided into two mutually exclusive label subsets, CTr

and CU , corresponding to known (training) and unseen actions;
i.e., CTr ∪CU =C and CTr ∩CU = /0. During learning the map-
ping φφφ , only training examples of labels in CTr are available.
However, the learned mapping φφφ is used to predict any actions
appearing in a video clip no matter whether they are known ac-
tions in CTr or unseen actions in CU .

To tackle the problem formulated above, we propose a joint
latent ranking embedding framework. Motivated by the joint la-
tent space learning idea used in ZSL (Frome et al., 2013; Lei Ba
et al., 2015; Wang & Chen, 2017b; Zhang et al., 2017; Zhang &
Saligrama, 2015, 2016), we would tackle the knowledge trans-
fer issue in the joint latent embedding spaces where the orig-
inal visual and semantic representations are mapped into. By
embedding visual and semantic representations into the joint
latent embedding spaces, we expect that semantic gap can be
narrowed considerably and the semantic relatedness of known
and unseen labels may be effectively explored and exploited
in zero-shot recognition. Thus, our framework consists of two
component models: visual and semantic models used to learn
latent visual and semantic embedding, respectively. Two com-
ponent models are tightly coupled to learn a joint latent ranking
embedding for knowledge transfer, as illustrated in the left box
of Figure 1.

For visual embedding, we encounter two major technical is-
sues due to the nature of weakly annotated data: a) for a visual
input, it remains unknown where an episode conveying an ac-
tion, and b) it remains unclear which of those action labels de-
scribing a video clip is associated with a specific video episode.
Nevertheless, a video clip is an ordered sequence of frames and
we could explore the temporal coherence underlying a video
clip to tackle two aforementioned technical issues. Motivated
by recent works in video classification and activity recogni-
tion (Donahue, Anne Hendricks, Guadarrama, Rohrbach, Venu-
gopalan, Saenko & Darrell, 2015; Ma, Chen, Kira & AlRegib,
2019; Yue-Hei Ng, Hausknecht, Vijayanarasimhan, Vinyals,
Monga & Toderici, 2015), we employ a long short-term mem-
ory (LSTM) (Hochreiter & Schmidhuber, 1997) recurrent neu-
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Figure 1: Our multi-label zero-shot human action recognition framework. This framework shown in the left box is composed of two component models: visual
and semantic model highlighted with grey and red colors, and both models are trained jointly with an alternative learning algorithm for the joint latent ranking
embedding learning (c.f. Section 3.2). After the learning is completed, the trained visual and semantic models work together for multi-label zero-shot recognition
via ranking the relatedness of known and unseen action labels to a test video clip (c.f. Section 3.3), as shown in the right box. Action labels marked with brown
color are training classes or known labels during learning, while action labels marked with blue colour are test classes or unseen labels during learning.

ral network layer to capture temporal coherence underlying an
action episode. Thus, the LSTM layer is first used to pro-
cess a sequence of visual representations extracted from video
segments. With the memorizing and forgetting mechanism of
LSTM units, we expect that the LSTM layer explores the tem-
poral structure of human actions conveyed in a video sequence
(Wang, Yuan & Wang, 2019); the LSTM units would mem-
orize the input segments until parsing an episode regarding a
human action is completed and then forget all the previous in-
put segments when an episode conveying another action starts.
Thus, an implicit saliency detection is carried out where no ac-
tion episode boundaries are explicitly specified. For visual em-
bedding, we further employ two fully-connected layers, dense
layer of rectified linear (ReLu) units (Nair & Hinton, 2010) and
visual embedding layer of linear units, to capture salient fea-
tures on the temporal coherence representations yielded by the
LSTM layer. While this specific visual model shown in the left
box of Figure 1 is used in our experiments, its capacity can be
increased by adding more hidden units and/or layers if neces-
sary. The score and average pooling layers above the visual
embedding layer are used for joint latent ranking embedding
learning as presented in Section 3.2. Thus, the visual model is
carried out by a deep network of heterogeneous layers.

For semantic embedding, we employ a three-layer fully-

connected neural network, the input layer, the hidden layer of
ReLu units and the semantic embedding layer of linear units,
to carry out the semantic model, as shown in the left box of
Figure 1. This learning model is capable of capturing the in-
tricate semantic relatedness between different actions in a label
collection of a moderate size, e.g. those datasets used in our ex-
periments. If necessary, its capacity can be increased by adding
more hidden units and/or layers. As a result, the neural network
is fed with a specific semantic representation of action labels,
e.g., word vectors and subsequently map them into the seman-
tic embedding layer via a hidden layer. Likewise, the score and
average pooling layers above the semantic embedding layer are
used for joint latent ranking embedding learning. To explore the
semantic relatedness between different labels in bridging the
semantic gap between visual and semantic space, semantic em-
bedding learning needs to automatically exploit the information
carried in training data, e.g., frequency of label co-occurrence
in a training dataset.

During the joint latent ranking embedding learning, the vi-
sual and semantic models are tightly coupled to learn a rank-
ing criterion for the joint latent visual and semantic embed-
ding spaces. This ranking criterion ensures that the related-
ness scores of those labels associated with a visual instance are
higher than those for other labels irrelevant to this instance, and
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the relatedness scores of those visual instances relevant to an
action label are higher than those of other visual instances ir-
relevant to this label. For learning, we propose an algorithm
working alternately on two models for parameter estimation by
promoting the correct ranking based on training examples in
known classes. During training, the visual model learns the
visual embedding of a video instance such that those labels rel-
evant to this instance rank ahead of other irrelevant ones in
terms of the relatedness scores estimated on the semantic la-
tent space, Es. Reciprocally, the semantic model learns the se-
mantic embedding of action labels such that the relevant visual
instances rank higher than the irrelevant ones in terms of relat-
edness scores calculated in the visual latent space, Ev. Once
the learning is completed, the trained joint latent ranking em-
bedding model can be applied to a test video clip for human
action recognition. As a result, the relatedness scores corre-
sponding to all the known and unseen action labels in a label
collection are achieved by using both visual and semantic mod-
els (c.f. Section 3.3), as illustrated in the right box of Figure
1.

3.2. Joint Latent Ranking Embedding Learning
Now we present the joint latent ranking embedding learning

in our proposed framework. To facilitate our presentation, we
summarize the notations used in this paper in Table 1.

3.2.1. General Description
Given a training set of weakly annotated video clips, D =

{xxxi,yyyi}|D|i=1, where xxxi is the visual input and yyyi ∈ {+1,−1}|CTr |

is its binary target label vector in the i-th example: +1/− 1
element indicates the presence/absence of a specific action be-
longing to CTr in xxxi.

For a video instance xxxi in D, we divide it evenly into T
segments1, segment-level visual representations are extracted,
which are collectively denoted by {xxxi1,xxxi2, · · · ,xxxiT}. At the t-
th time step, the segment representation xxxit is fed into a hidden
LSTM layer and processed by this LSTM layer and two subse-
quent fully-connected layers of linear activation functions (c.f.
Figure 1). The latent visual embedding of the t-th segment, eeev

it ,
is obtained as follows:

eeev
it = φφφ v(xxxit ;Θv). (1)

Here, φφφ v is the visual embedding function implemented by the
parametric visual model and Θv is a collective notation of all the
parameters in this model, including weights and biases involved
in this deep network.

Likewise, as depicted in Figure 1, the c-th label in a label
collection is first represented by a specific semantic represen-
tation, sssc, that is fed to the semantic embedding function, φφφ s,
implemented by the parametric semantic model of which all the
parameters are denoted by Θs collectively. Thus, the semantic
embedding, eees

c, of the c-th label is

eees
c = φφφ s(sssc;Θs). (2)

1A segment refers to a volume of multiple consecutive frames.

Table 1: Nomenclature.

Notation Description

D, DT training, test datasets
| · |, || · ||1 cardinality of a set, L1 norm of a vector
C, CTr, CU label collection, training and unseen class label

subsets
Ev, Es visual and semantic embedding space
xxxit visual representation for the t-th segment of the

i-th example
xxxi collection of all the segment-level visual repre-

sentations of the i-th example
sssc semantic representation for the c-th label
YYY binary target label matrix of training dataset
yyyi binary target label set of the i-th example, i.e.,

the i-th column of matrix YYY
yyyc binary indicator vector of the c-th label appear-

ing examples, i.e., the c-th row of matrix YYY
EEEv, eeev

i visual embedding matrix and the column vector
for i-th video clip

EEEs, eees
c semantic embedding matrix and the column

vector for the c-th label
dx,ds,de dimensions of visual, semantic, latent embed-

ding space
oooi relatedness scores between the i-th example and

all the candidate labels in visual model
oooc relatedness scores between the c-th label and all

the training examples in semantic model
φφφ v, Θv visual embedding function and parameters
φφφ s, Θs semantic embedding function and parameters
φφφ φφφ =

{
φφφ v,φφφ s

}
, mapping function for multi-label

zero-shot recognition
C(x̂xx), L(x̂xx) the ground-truth label set of test instance x̂xx, the

ranking list of all the labels predicted for x̂xx in
terms of the relatedness scores

Dc, Lc Set of test instances of which ground-truth la-
bel sets include the c-th label, the ranking list of
all the test instances in terms of the relatedness
scores for the c-th label

A score layer is employed in each of the visual and the se-
mantic models. In the visual model, the score layer takes the
outputs of the visual embedding layer at all the time steps to
yield the relatedness scores regarding all the labels for xxxi with
a dot product between the visual embedding of each segment
in xxxi and the semantic embedding of all the labels in a label
collection:

oooit =< eeev
it ,EEE

s >, (3)

where EEEs ∈ Rde×|CTr | is a collective notation of the semantic
embedding of all the labels. Here, <aaa,BBB>= aaaTBBB is a vectorial
notation of the dot product between a vector, aaa, and each col-
umn of a matrix, BBB. Then the relatedness scores between this
video instance and different labels are achieved by averaging
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over the scores on all the segments of this video instance:

oooi =
1
T

T

∑
t=1

oooit . (4)

Likewise, the relatedness scores between different video in-
stances and the c-th label in the label collection, oooc ∈ R|D|×1,
is estimated in the same manner as done in the visual model
based on the visual embedding of those video instances and the
semantic embedding of the c-th label. Thus, the i-th element of
oooc, the relatedness score regarding the i-th visual instance is

oc
i =

1
T

T

∑
t=1

< eeev
it ,eee

s
c > . (5)

For the joint latent ranking embedding learning, we need to
optimize the parameters in the visual and the semantic models
with training data and proper rank loss functions (the technical
details are presented in Section 3.2.2). Assume that lv(·, ·) and
ls(·, ·) are two loss functions with respect to the visual and the
semantic model, the joint latent ranking embedding learning is
boiled down to simultaneously solving the following optimiza-
tion problems:

Θ
∗
v = argminΘv

|D|

∑
i=1

lv(oooi,yyyi), (6)

Θ
∗
s = argminΘs ∑

c∈CTr

ls(oooc,yyyc). (7)

Here, the binary indicator vector yyyc ∈ I1×|D| is a row vector in
the target label matrix YYY ∈ I|CTr |×|D| of a training dataset, D,
and elements of +1 in yyyc indicate that the c-th label appears in
the target label sets of the corresponding training examples in
D. The binary indicator vector yyyi ∈ I|CTr |×1 is a column vector
in YYY , and elements of +1 in yyyi refers to those labels in the target
label set associated with the i-th training example in D. The
value of elements corresponding to irrelevant visual input in yyyc

or labels in yyyi is always set to -1.

3.2.2. Rank Loss Function
As described in Section 3.1, multi-label zero-shot learning

needs to establish a mapping that outputs a label-relatedness
score list for a video input where the scores of the relevant
labels should be ranked higher than those of irrelevant ones.
In previous studies, various rank loss functions have been de-
veloped for ranking-based learning (Lapin, Hein & Schiele,
2017). To demonstrate the effectiveness of our joint latent rank-
ing embedding framework, we adopt two simple yet typical
rank loss functions, RankNet loss (Burges, Shaked, Renshaw,
Lazier, Deeds, Hamilton & Hullender, 2005) and the margin-
based hinge rank loss (Herbrich, Obermayer & Graepel, 1999),
in our work although other rank loss functions (Lapin et al.,
2017) may be employed in our framework as well. RankNet
loss (Burges et al., 2005) provides a generic loss function for
ranking-based learning from a probabilistic perspective, while
hinge rank loss (Herbrich et al., 1999) was originally proposed

for structural SVMs and has been widely used in different tasks
including single-label zero-shot learning (e.g., Akata et al.,
2015; Frome et al., 2013).

Nevertheless, we observe the following phenomenon in our
experiments when using the original RankNet and hinge rank
losses. By using only a ranking constraint in either of two rank
losses, all the labels are considered independently and treated
equally so that the less frequently used relevant labels might be
overlooked during learning. Moreover, two rank losses gener-
ally make use of pairwise constraints to explore a relationship
between labels associated with an instance explicitly. How-
ever, the relatedness scores in such rank losses are not bounded
and could hence vary across different examples. Thus, some
“difficult” pairs of labels are likely to incur a larger cost that
predominates the overall loss, which could make the learning
biased to those pairs of labels only. Furthermore, relatedness
scores may vary in a large range for different training exam-
ples even though proper ranking relationships among them are
established, which results in the poor performance. Motivated
by the above observation, we introduce a regularization term to
RankNet and hinge rank losses to overcome those problems.

For the target label set expressed with binary indicators, yyyi, in
the i-th training example, (xxxi,yyyi), the elements of +1 indicate all
the labels relevant to xxxi while elements of -1 express all the re-
maining labels irrelevant to xxxi in terms of all the known actions
in CTr. Likewise, yyyc, a binary indicator in {+1,−1} regarding
whether the c-th action appears in training examples in D, can
be handled in the same manner. Thus, the relatedness scores of
xxxi to its positive and negative labels, oooi, are achieved with Eqs.
(2) and (3), and the relatedness scores of the c-th label to all
the training examples, oooc, are calculated with Eqs. (1) and (5).
Based on the above quantities, we can define our regularized
rank loss functions, lv(oooi,yyyi) and ls(oooc,yyyc).

Formally, we define the regularized RankNet loss function
for visual embedding of xxxi as follows:

lv(oooi,yyyi) = ωi

(
∑

p∈CTr+
i

∑
q∈CTr−

i

log
(
1+ exp(oiq−oip)

)
+

∑
j∈CTr

log
(
1+ exp(−yi joi j)

))
, (8)

where ωi = (|CTr+
i | · |CTr−

i | + |CTr|)−1 normalizes this per-
instance regularized rank loss. Corresponding to the elements
of +1 and -1 in yyyi, CTr+

i and CTr−
i denote two subsets of relevant

and irrelevant labels to xxxi, respectively. Intuitively, minimizing
the first term in Eq. (8) ensures that all the labels relevant to xxxi
are ranked ahead of those irrelevant to xxxi. The second term in
Eq. (8) plays a regularization role; minimizing this term dur-
ing learning promotes the relatedness scores by enlarging the
relatedness scores to the relevant labels as well as diminishing
those to the irrelevant ones simultaneously, which tackles the
problems observed in our experiments.

Likewise, we define the regularized RankNet loss function
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for semantic embedding of label c as follows:

ls(oooc,yyyc) = ωc

(
∑

p∈Dc+
∑

q∈Dc−
log

(
1+ exp(oc

q−oc
p)
)
+

∑
j∈D

(
1+ exp(−yc

jo
c
j)
))

, (9)

where ωc = (|Dc+| · |Dc−|+ |D|)−1 normalizes the per-class
regularized rank loss. Dc+ and Dc− are the positive and the
negative training example subsets, respectively, regarding the c-
th label. With the same treatment as used in Eq. (8), minimizing
Eq.(9) ensures that the video instances conveying the action of
the c-th label are ranked above all those without this action.
Moreover, those video instances conveying the action of the c-
th label, indicated by yc

j =+1, tend to have as high relatedness
scores as possible while all other video instances without this
action, indicated by yc

j = −1, tend to have as low relatedness
scores as possible.

Similarly, we define a regularized hinge rank loss function
for visual embedding of xxxi as follows:

lv(oooi,yyyi) = ωi

(
∑

p∈CTr+
i

∑
q∈CTr−

i

max
(
0,m−oip +oiq

)
+

∑
j∈CTr

max
(
0,m− yi joi j

))
, (10)

where ωi = (|CTr+
i | · |CTr−

i |+ |CTr|)−1 and m is a pre-specified
margin. Thus, minimizing the first term in Eq. (10) ensures
that all the labels relevant to xxxi are ranked ahead of those irrel-
evant to xxxi with a pre-specified margin, m. The second term in
Eq. (10) plays a regularization role; minimizing this term dur-
ing learning promotes the margin-based relatedness scores by
enlarging the relatedness scores to the relevant labels as well as
diminishing those to the irrelevant ones simultaneously.

Likewise, we define a regularized hinge rank loss function
for semantic embedding of label c as follows:

ls(oooc,yyyc) = ωc

(
∑

p∈Dc+
∑

q∈Dc−
max

(
0,m−oc

p +oc
q
)
+

∑
j∈D

max
(
0,m− yc

jo
c
j
))

, (11)

where ωc = (|Dc+| · |Dc−|+ |D|)−1 and m is a pre-specified
margin. With the same treatment as used in Eq. (10), mini-
mizing Eq.(11) ensures that the video instances conveying the
action of the c-th label are ranked above all those without this
action with a margin, m. Moreover, those video instances con-
veying the action of the c-th label, indicated by yc

j = +1, tend
to have as high relatedness scores as possible while all other
video instances without this action, indicated by yc

j =−1, tend
to have as low relatedness scores as possible.

As a result, we can employ either our regularized RankNet
loss functions in Eqs. (8) and (9) or the regularized hinge rank
loss functions in Eqs. (10) and (11) to train visual and semantic
embedding models in our framework.

Algorithm 1 Joint Latent Ranking Embedding Learning

Input: Randomly initialize parameters, Θ0
v and Θ0

s , in the vi-
sual and the semantic models, respectively; extract the vi-
sual representations of training example, xxxi, i = 1, · · · ,N,
and the semantic representations of all the training labels,
sssc, ∀c∈CTr; input the target label matrix of the training set,
Y ; pre-set the dimensionality of joint latent ranking embed-
ding space, de.

Output: Optimal model parameters: Θ∗v and Θ∗s .
1: Generate the initial semantic embedding φφφ s(sssc;Θ0

s ), ∀c ∈
CTr; t← 0.

2: repeat
3: t← t +1;
4: Θt

v = argminΘv ∑
N
i=1 lv(oooi,yyyi) with the current semantic

embedding for one epoch;
5: Generate the visual embedding with the current visual

model, φφφ v(xxxi;Θt
v), i = 1, · · · ,N;

6: Θt
s = argminΘs ∑c∈CTr ls(oooc,yyyc) with the current visual

embedding for one epoch;
7: Generate the semantic embedding with the current se-

mantic model φφφ s(sssc;Θt
s), ∀c ∈CTr;

8: until Stopping condition is met.
9: Θ∗v ←Θt

v and Θ∗s ←Θt
s.

3.2.3. Learning Algorithm
As formulated in Eqs. (6) and (7), learning is going to

find the optimal parameters, Θ∗v and Θ∗s , by minimizing two
loss functions, lv(oooi,yyyi) and ls(oooc,yyyc), defined in Section 3.2.2.
However, the relatedness scores required in lv(oooi,yyyi) regarding
the visual model involve the output of the semantic model, Es,
and vice versa (c.f. Figure 1). Moreover, lv(oooi,yyyi) requires the
relatedness scores between all the candidate labels and each of
training examples, while ls(oooc,yyyc) needs the relatedness scores
between all the training examples and each of all the action
labels in CTr. Thus, our optimization problems are very com-
plex and unsolvable simultaneously with commonly used local
search methods, e.g., gradient-descent based methods.

Motivated by the works dealing with similar optimization
problems (e.g., Jiang, Wu, Wang, Xue & Chang, 2017;
Kavukcuoglu, Ranzato & LeCun, 2010), we come up with a
learning algorithm to train the visual and the semantic models
alternately during learning. In our alternate learning strategy,
our learning algorithm begins with randomly initializing the
parameters in the semantic model and then use the initialized
parameter to generate the initial semantic embedding. By using
the initial semantic embedding in lv(oooi,yyyi), the visual model can
be trained with a local search method such as the mini-batch
stochastic gradient decent method. After one epoch, the current
parameters in the visual model are frozen and used to generate
the visual embedding for all the examples. By using the current
visual embedding in ls(oooc,yyyc), the semantic model is trained in
the same manner. This alternate learning process carries on un-
til a stopping condition is satisfied. The details of this alternate
learning algorithm is described in Algorithm 1.

It is worth stating that two rank loss functions defined for vi-
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sual and semantic model are related and the optimisation of one
model would naturally promote the other towards its optimal
solution. Hence, our alternate learning algorithm may converge
after running finite epochs with the same properties held for
similar methods (Jiang et al., 2017; Kavukcuoglu et al., 2010).

3.3. Multi-Label Zero-Shot Recognition

Once the joint latent ranking embedding learning is
completed, we obtain a mapping function: φφφ(xxx,ccc) ={

φφφ v(xxx|Θ∗v),φφφ s(ccc|Θ∗s )
}

where φφφ v(xxx|Θ∗v) and φφφ s(ccc|Θ∗s ) are the vi-
sual and the semantic embedding functions implemented by the
trained visual and semantic models, respectively. Then, we can
use this mapping function for multi-label zero-shot human ac-
tion recognition.

For recognition, we first extract the semantic representa-
tions of all the labels, including both known and unseen labels,
in a considered label collection: sssc, ∀c ∈ C; C = CTr ∪CU

and CTr ∩CU = /0. By using the semantic embedding func-
tion, we achieve the sematic embedding of all the labels: êees

c =
φφφ s(sssc|Θ∗s ), ∀c∈C. For a test video clip, we divide it into T seg-
ments and extract its segment-level representations collectively
denoted by x̂xx = {x̂xx1,x̂xx2, ...,x̂xxT}. Technical details for extracting
semantic and visual representations can be found in Section 4.2.
By feeding x̂xx to the visual embedding function, we achieve its
visual embedding: êeev = φφφ v(x̂xx|Θ∗v). Thus, the relatedness scores
between this test video clip, x̂xx, and all the actions in the con-
sidered label collection C, including known and unseen labels
during learning, is achieved by

S(x̂xx,c) =< êeev,êees
c >, ∀c ∈C. (12)

Finally, we achieve a ranking action label list, L(x̂xx), for this test
video clip by sorting its relatedness scores measured against all
the labels in C with Eq. (12):

L(x̂xx) =
{

ci
}|C|

i=1, (13)

where ∀ci,c j ∈C, Score(x̂xx,ci)≥ Score(x̂xx,c j) if i < j.
In our experiments regarding the use of two different rank

losses in our framework, we observe that the regularized
RankNet and hinge rank losses often behave differently in sev-
eral evaluation scenarios (c.f. Section 4). Although two rank
losses generally yield the comparable performance overall, a
closer look suggests that those correctly recognized video in-
stances are quite different when two different rank losses are
used in our framework, respectively. Hence, we would employ
a simple fusion method to exploit the complementary aspect re-
sulted from the use of two different rank losses. In order to fuse
the results yielded by the models trained with two different rank
losses, we first normalize the relatedness scores of x̂xx to the con-
sidered label collection, C, generated by each of two models as
follows:

S̃(x̂xx,c) =
S(x̂xx,c)−Smin

Smax−Smin
, (14)

where Smax and Smin are the highest and lowest related scores
of video clips, respectively, measured on a test set. Let
S̃(Reg)(x̂xx,c) and S̃(Hinge)(x̂xx,c) denote the normalized relatedness

scores yielded by two models trained with our regularized rank
and the hinge rank losses, respectively. Then, the fused re-
latedness scores, S̃(Fusion)(x̂xx,c) is simply an average between
S̃(RankNet)(x̂xx,c) and S̃(Hinge)(x̂xx,c); i.e.,

S̃(Fusion)(x̂xx,c) =
S̃RankNet(x̂xx,c) + S̃Hinge(x̂xx,c)

2
. (15)

Based on the fused relatedness scores, a ranking action label
list, L(Fusion)(x̂xx), is achieved in the same manner as specified in
Eq.(13) for any test video clip, x̂xx.

4. Experimental Setting

In this section, we describe our experimental design and set-
tings, including datasets, visual and semantic representations,
model learning, evaluation scenarios and criteria used in our
experiments. Moreover, we design a number of comparative
experiments to exhibit the gain resulting from different com-
ponents in our framework and to demonstrate the effectiveness
of our framework by a comparison to several state-of-the-art
multi-label ZSL methods that could be applied to general hu-
man action recognition.

4.1. Datasets and Splits
We first describe datasets and their split settings used in our

experiments for simulation of multi-label ZSL scenarios.

4.1.1. Datasets
To evaluate our framework, we employ two publicly avail-

able video datasets: Breakfast (Kuehne, Arslan & Serre, 2014)
and Charades (Sigurdsson et al., 2016), in our experiments. In
both datasets, at least two actions are involved in each video clip
and the duration of each video clip is relatively long, which im-
plies the temporal coherence information may be explored and
exploited in human action recognition. Hence, both datasets
are suitable to evaluate weakly annotated multi-label human ac-
tion recognition. Below, we summarize the main aspects of two
video datasets.
Breakfast: In this dataset (Kuehne et al., 2014), there are 1,989
video clips totally, where a video clip conveys several cooking
actions. Totally, there are 49 cooking actions (excluding the
“silence” label), such as ‘stirring”, “pouring milk” and “open-
ing the fridge”. Those actions are performed by 52 people in
different kitchens. Although this dataset is not collected espe-
cially for multi-label human action recognition, we would use
it as a proof-of-concept test bed.
Charades: This dataset (Sigurdsson et al., 2016) is collected
from hundreds of people recording videos in their own home es-
pecially for video-based human activity analysis in daily lives.
Hence, it is very challenging for multi-label human action
recognition. In this dataset, there are 9,848 video clips involv-
ing 157 different human actions totally, acting out casual every-
day activities. An average duration of video clips is around 30
seconds and an average number of actions involved in a video
clip is 6.8. Those actions are performed by 267 people from
three continents, and more than one person appear in over 15%
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Figure 2: Two different data split settings used in our experiments. In the
instance-first split (left plot), a data set is simply split into three mutually ex-
clusive subsets: training, validation and test subsets. Any unseen labels associ-
ated with instances in training and validation subsets (shaded area) are removed
from their target label sets before being used in learning; i.e., only the subset
of known target labels in a training example are used in the learning. In the
label-first split (right plot), a number of labels are first specified as unseen la-
bels. Instances associated with any of unseen labels form a test subset. The
remaining data of known labels are further divided into training and validation
subsets to be used in learning.

of all the video clips. The raw video data (scaled to 480p) are
used in our experiments, which are available from the Charades
project page2.

4.1.2. Dataset Splits
To simulate a zero-shot scenario, we need to split a dataset

into training and test sets where a training set contains examples
associated with only known classes while a test set has test in-
stances involving at least one unseen class. Unlike single-label
ZSL where a dataset is automatically split into training and test
sets once unseen classes are specified, the dataset split issue in
multi-label ZSL becomes much more complicated. In our ex-
periments, we make two different split settings, instance-first
split (IFS) and label-first split (LFS), as illustrated in Figure 2.
Instance-First Split
This is a commonly used data split setting in all the existing
multi-label ZSL works (e.g., Mensink et al., 2014; Nam et al.,
2015; Zhang et al., 2016). In this setting, instances in a dataset
is first split into training, validation and test subsets. The train-
ing and the validation subsets are used for parameter estimation
and hyper-parameter tuning, the dimension of latent embedding
space de and the number of iterations of Algorithm 1 for our
model. The test set that may or may not involve unseen labels
is reserved for performance evaluation. Then, we divide the
action label collection into mutually exclusive known and un-
seen label sets. Before learning, any unseen labels in the target
label set of an instance in the training and the validation sub-
sets are removed as shown in the left plot of Figure 2. In other
words, only known labels in the target label sets of an instance
in those two datasets are used in learning. It is worth clarifying
that unlike single-label ZSL, it is often infeasible to simulate a

2http://allenai.org/plato/charades/

ZSL scenario by manipulating the validation set due to insuffi-
cient data in two datasets used in our experiments. Hence, the
validation for hyper-parameter tuning in our experiments has to
follow the typical protocol used in multi-label learning (Zhang
& Zhou, 2014).

To split the Breakfast dataset with this setting, we adopt the
pre-split by data collectors (Kuehne et al., 2014), where the
video clips of 13 people are reserved for test. We further di-
vide the rest video clips for training and validation: video clips
of 32 people for training and the remaining video clips of seven
people for validation. As a result, the numbers of video clips
for training, validation and test are 1,196, 126 and 667, respec-
tively. Then we randomly split the 49 labels into known and
unseen labels: 10 labels reserved as unseen labels and the rest
39 as known labels.

For the Charades dataset, we also adopt its pre-split provided
by data collectors (Sigurdsson et al., 2016), where 7,985 and
1,863 video clips are used for training and test, respectively.
We further divide training data into two subsets: 6,385 for
training and 1,600 for validation in our experiments. Then
we randomly choose 40 out of 157 human actions as unseen
classes and the rest 117 human actions are hence known actions.

Label-First Split
Although the instance-first data split setting is widely used in
multi-label ZSL, it suffers from a fundamental limitation. It
is well known that multiple labels together could frame a spe-
cific concept and removing any label from this label cohort may
lead to a less accurate semantic meaning and biases in learning.
Furthermore, the instance-first split allows for accessing to vi-
sual features of instances involved in unseen actions. To over-
come this limitation, we propose a novel data split setting for
multi-label ZSL named label-first split. In this new setting, all
the labels in a label collection used in a dataset is first divided
into two mutually exclusive subsets: known and unseen labels.
Then, all the instances having any unseen labels are reserved
for test and the rest instances of known labels only are further
divided into two subsets for training and validation, as shown
in the right plot of Figure 2. Due to sparsity of training data, the
validation in the label-first split also adopts the protocol used in
multi-label learning (Zhang & Zhou, 2014).

To split the Breakfast dataset with this setting, we randomly
choose 10 labels for unseen labels and the rest 39 labels are
designated as known labels accordingly. Hence, this dataset is
naturally split into two sets for training and test. The training
data are further divided for training and validation. For valida-
tion, we randomly choose 200 instances from the training data.
Likewise, the Charades dataset is split by using 20 randomly
chosen label for unseen labels. Thus, the remaining 137 labels
become known labels. From the instances of known labels, we
randomly choose 1,000 instance used for validation. It is worth
stating that the current datasets do not allows for reserving a
large number of classes as unseen classes in either the IFS or
the LFS setting. In the IFS, the more labels reserved as un-
seen labels, the less accurate mapping learned from visual to
semantic domains due to the existence of visual features of un-
seen actions and a lack of the corresponding action labels in
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Table 2: Information on two different data split settings.

Dataset Split Method # Training Inst. # Validation Inst. # Test Inst. # Known Labels # Unseen Labels

Breakfast Instance-first 1196 126 667 39 10
Label-first 1019/917/823 200 770/872/966 39 10

Charades Instance-first 6385 1600 1863 117 40
Label-first 4580/4176/3987 1000 4268/4672/4861 137 20

such training examples. In the LFS, the more labels reserved
as unseen labels, the fewer training examples available. Hence,
the training examples do not convey the essential information
required in learning.

For reliability, we repeat our experiments on each dataset un-
der each split setting for three trials. During a trial, training
data given in the pre-split of each dataset is randomly divided
into training and validation subsets with the instance-first split
setting, and a known/unseen label split on each dataset is cho-
sen randomly with the label-first split setting. For clarity, we
summarize the data split information3 on two datasets in Table
2.

4.2. Visual and Semantic Representations

In our experiments, we use visual representations extracted
with the existing C3D deep network (Tran, Bourdev, Fergus,
Torresani & Paluri, 2015) and word vectors as semantic repre-
sentations (Mikolov et al., 2013).

As suggested by Tran et al. (2015), the C3D features are
extracted for a segment of 16 frames with eight frames over-
lapping between two adjacent segments. Thus, a training/test
video clip is always divided into T segments with the treat-
ment as follows. To ensure that each video clip can be di-
vided into T segments, any video clip must have 8 ∗ (T + 1)
frames. To this end, we simply down-sample those video clips
of more frames with a proper sampling rate so that T C3D fea-
ture vectors can be extracted and collectively form a segment-
based visual representation for this video clip. When a video
clip has fewer frames, we first extract C3D feature vectors from
those frames in this video clip and then pad all-zero vectors
to the visual representation until there are T feature vectors.
Also, we can convert T feature vectors into a holistic instance-
level visual representation via averaging those T feature vec-
tors. By using such an instance-level visual representation in
our comparative study, we would demonstrate a performance
gain benefiting from exploring/exploiting temporal coherence
information underlying segments in a video clip. In our ex-
periments, the segment-based visual representation is always
used in our model while the instance-level visual representa-
tion is used in the baseline and the state-or-the-art models (c.f.
Section 4.6) unless a different setting is specified. Based on
a cross-validation experiment, we choose T = 300 for Break-
fast and T = 20 for Charades. Although only C3D features are
used in our experiments, it is worth mentioning that other kinds
of visual representations, e.g., IDT features (Wang & Schmid,

3All the data splits and source code used in our experiments are available on
our project website: http://staff.cs.manchester.ac.uk/∼kechen/MLZSHAR.

2013) and deep image features extracted on a frame basis, can
also be used straightforwardly in our framework.

In our experiments, we adopt Word2Vec as our semantic
representation. Word2Vec was trained with a skip-gram neu-
ral network on the Google News dataset of 100 billion words
(Mikolov et al., 2013). As a result, one action label is repre-
sented by a 300-dimensional word vector. Although only 300-
dimensional word vectors are used in our experiments, word
vectors of different dimensionality may be used, and moreover,
other semantic representations, e.g., attributes, can be used in
our framework without any difficulty if available.

It is worth emphasizing that the same treatment described
above is applied in both the learning and the recognition phases
to extract visual and semantic representations.

4.3. Model Learning

In our experiments, model learning is implemented on Keras
(Chollet, 2015), a high-level neural networks library, running
on top of either TensorFlow or Theano. As we use two neural
networks to carry out the visual and the semantic models (c.f.
the left box in Figure 1), we need to decide the specific network
architectures and relevant hyper-parameters on two datasets
during the model learning. The optimal hyper-parameters are
found by a grid-based search via a cross-validation procedure.
The Adam (Kingma & Ba, 2014), a stochastic optimisation
method, is used for training our model with its default configu-
ration.

The visual model takes a sequence of segment-level C3D
representations of dx = 4,096 features as input to the LSTM
layer where there are N1 LSTM units. To improve the gen-
eralization, we also apply the dropout procedure (Srivastava,
Hinton, Krizhevsky, Sutskever & Salakhutdinov, 2014) to the
LSTM layer where a dropout rate needs specifying. The output
of LSTM units are fed to a fully connected dense layer of N2
neurons, and the output of this dense layer are further fed to the
visual embedding layer of de neurons. During learning, there
are no hyper-parameters involved in the score and the average
pooling layer in the visual model.

As described in Section 3.1, the semantic model is carried
out by a fully-connected three-layer feed-forward neural net-
work. The word vectors of ds = 300 dimensions are first input
to a hidden layer of N1 ReLu units. Subsequently, the output of
this hidden layer are fed to the semantic embedding layer of de
linear units. Note that for joint latent ranking embedding learn-
ing, the dimension of the semantic embedding space is set to the
same of the visual embedding space in our experiments. Like-
wise, there are no hyper-parameters involved in the score and
the average pooling layer in the semantic model during learn-
ing.
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4.4. Evaluation Scenarios

Multi-label zero-shot recognition is complex given the fact
that a test instance may be associated with a label set includ-
ing both known and unseen class labels. Thus, there are differ-
ent evaluation scenarios in previous works (Sandouk & Chen,
2016b; Zhang et al., 2016); each focuses on a specific aspect.
Following their settings (Sandouk & Chen, 2016b; Zhang et al.,
2016), we evaluate our framework along with other learning
models used in our comparative study described later on in this
section in three different scenarios:
Known-action only: In this setting, the performance is eval-
uated regarding only known (training) actions. This scenario
boils down to the conventional supervised multi-label learning.
In this circumstance, we no longer take any unseen action la-
bels into account during test; for a test instance, its relatedness
score ranking list contains only those regarding known action
labels in CTr and any unseen action label in CU in its ground-
truth label set, if there is, will be removed such that the modified
ground-truth set includes only known action labels in CTr.
Unseen-action only: In this setting, the performance is evalu-
ated regarding only unseen (test) actions. This scenario boils
down to a standard ZSL setting. In this situation, we no longer
consider any known action labels; for a test instance, its relat-
edness score ranking list contains only those regarding unseen
action labels in CU and any known action label in CTr in its
ground-truth label set, if there is, will be removed such that the
modified ground-truth set includes only unseen action labels in
CU .
Generalized ZSL: In this setting, the performance is evaluated
regarding all the actions of which labels appearing in a label
collection C without considering if an action label is known or
unseen during learning. This scenario has been named gener-
alized ZSL in the machine learning community. In this situa-
tion, both known and unseen action labels are treated equally;
for a test instance, its relatedness score ranking list contains
those regarding all the action labels in C and the evaluation is
made against its ground-truth label set that could be a mixture of
known and unseen labels. It is worth highlighting that the gen-
eralized ZSL setting is required by multi-label zero-shot human
action recognition in a real application.

4.5. Evaluation Metrics

There are a variety of evaluation metrics for multi-label
learning. Depending on the output of a multi-label learning
system, the evaluation metrics are generally divided into two
types: ranking-based and bipartition-based metrics (Nam et al.,
2015; Sorower, 2010). Ranking-based metrics work for the sit-
uation that a learning system yields a ranking list of continuous-
valued relatedness scores on all the candidate labels. In con-
trast, bipartition-based metrics are used when a learning system
produces only a binary indicator vector for all the candidate la-
bels, where 1/0 element expresses the presence/absence. Since
our model yields a ranking list of continuous-valued relatedness
scores, we employ two commonly used ranking-based met-
rics for performance evaluation (Li, Uricchio, Ballan, Bertini,
Snoek & Bimbo, 2016; Mensink et al., 2014; Nam et al., 2015;

Sorower, 2010; Zhang et al., 2016), Instance-centric Mean
Average Precision (I-MAP) and Label-centric Mean Average
Precision (L-MAP). In addition, we employ other metrics, pre-
cision, recall and F1 score, which have also been used in the
performance evaluation of multi-label learning (Gong, Jia, Le-
ung, Toshev & Ioffe, 2013; Zhang & Zhou, 2014).

To facilitate our presentation, we first define the precision-
at-k (Manning, Raghavan & Schütze, 2009) in a generic form:

P@k(A,B) =
1
k

∣∣A∩B[1, · · · ,k]
∣∣, (16)

where A is a ground-truth set, B is a set of all the retrieved en-
tities ranked in terms of relevance, and B[1, · · · ,k] indicates top
k entities in B. Given a test dataset, DT =

{
x̂xxi
}|DT |

i=1 , a learn-
ing model yields a label-based ranking list for a test instance,
x̂xxi ∈ DT , in terms of its relatedness scores to all the labels in C
(c.f. Eqs. (12) and (13)): L(x̂xxi) =

{
c j
}|C|

j=1, where ∀cp,cq ∈C,
Score(x̂xxi,cp) ≥ Score(x̂xxi,cq) if p < q. Let C(x̂xxi) denote the
ground-truth label set of x̂xxi. I-MAP over a test dataset DT is
defined by

I−MAP =
1
|DT |

|DT |

∑
i=1

∑
|C|
c=1 P@c

(
C(x̂xxi),L(x̂xxi)

)
δ
(
c,C(x̂xxi)

)
|C(x̂xxi)|

,

(17)
where δ

(
c,C(x̂xxi)

)
= 1 if c ∈ C(x̂xxi) and δ

(
c,C(x̂xxi)

)
= 0 other-

wise.
While I-MAP measures the accuracy in terms of test in-

stances, L-MAP is used to evaluate the performance from a
different perspective in light of candidate labels. Given a
specific label c ∈ C, a model predicts the relatedness scores
against the action specified by the c-th label for all the test
instances in DT . Hence, we can achieve an instance-based
ranking list for the c-th label, Lc =

{
x̂xxi j

}|DT |
j=1 , in terms of their

relatedness scores against the c-th label where ∀x̂xxip ,x̂xxiq ∈ DT ,
Score(x̂xxip ,c) ≥ Score(x̂xxiq ,c) if p < q. Let Dc denote the col-
lection of those test instances of which their ground-truth label
sets indeed include the c-th label. Thus, the L-MAP over a test
dataset, DT , is defined by

L−MAP =
1
|C|

|C|

∑
c=1

∑
|DT |
i=1 P@i

(
Dc,Lc

)
δ
(
x̂xxi,Dc)

)
|Dc|

, (18)

where δ (x̂xxi,Dc) = 1 if x̂xxi ∈ Dc and δ (x̂xxi,Dc) = 0 otherwise.
Those widely used evaluation metrics in information retrieval

have also been used in evaluating multi-label learning systems
(e.g., Gong et al., 2013; Zhang & Zhou, 2014). In our exper-
iments, we adopt overall top-k precision, recall and F1 score
measured over a test dataset, DT , which are defined as follows:

precision(k) =
∑
|DT |
i=1 P@k

(
C(x̂xxi),L(x̂xxi)

)
k ∗ |DT |

, (19)

recall(k) =
∑
|DT |
i=1 P@k

(
C(x̂xxi),L(x̂xxi)

)
∑
|DT |
i=1 |C(x̂xxi)|

, (20)

F1(k) =
2∗precision(k)∗ recall(k)

precision(k)+ recall(k)
. (21)
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4.6. Comparative Study

In our experiments, we systematically conduct a compara-
tive study from two different perspectives: ablation study and
state-of-the-art models. As a result, a number of baseline sys-
tems are designed to demonstrate roles played by the main com-
ponents in our framework while several state-of-the-art multi-
label ZSL algorithms are adapted for human action recognition.
For the comparative study, we evaluate each of different models
on three evaluation scenarios with evaluation metrics described
in Sections 4.4 and 4.5 under the exactly same conditions, in-
cluding visual and semantic representations. As there are alter-
native pooling strategies that could be used to implement our
framework, we further investigate those pooling strategies by
comparing them to the average pooling used in our framework.

4.6.1. Baseline Models
To investigate the roles played by different component

mechanisms employed in our framework, we design four
baseline models, random guess of scores, non-recurrent
connection, without semantic embedding and randomized label
representation, by manipulating our framework with different
purposes described as follows:
Random guess of scores (RGS): This is a general baseline
that provides a lowest performance bound used for a reference
to improvement made by a learning model. In our work, we
randomly generate relatedness scores of all the candidate labels
for a test instance. Then the performance of this baseline model
is evaluated based on the random guess of scores. For reliabil-
ity, we repeat the RGS process 100 times in our experiments
and the statistics of the RGS performance including mean and
standard error of mean (SEM) are reported.
Non-recurrent connection (NRC): In our framework, a
LSTM layer of recurrent connections is employed to capture
temporal coherence underlying sequential video data in the
visual embedding learning. To examine the role played by the
LSTM layer, we replace the recurrent connected layer with a
fully connected layer without recurrent connections and keep
all other components in our framework unchanged. By this
setting, our model is converted into a baseline model named
non-recurrent connection. During learning, obviously, this
baseline model no longer explicitly makes use of the temporal
dependency information underlying sequential segments in
a video clip. Algorithm 1 is used directly for parameter
estimation.
Without semantic embedding (WSE): In our framework,
there is a semantic model for semantic embedding with the
motivation that the use of a joint latent ranking embedding
space narrows the semantic gap between visual and semantic
domains and the zero-shot recognition should be done in
the joint latent ranking embedding space. However, some
existing works, e.g., Fast0Tag (Zhang et al., 2016), do not
learn a semantic embedding and the zero-shot recognition
takes place directly in the semantic space. To examine the
effectiveness of our semantic embedding, we come up with
a baseline model named without semantic embedding by
removing the semantic model from our framework. Thus,

the original semantic representations are used to replace the
semantic embedding representations, EEEs, required by the score
layer in the visual model, which amounts to mapping the
visual space directly onto the original semantic space. As this
baseline model has only the visual model, the learning becomes
simpler; i.e., solving the optimization problem formulated in
Eq. (6) based on the original semantic representation with
the Adam (Kingma & Ba, 2014). It is worth clarifying that
this baseline model is similar to Fast0Tag (Zhang et al., 2016)
apart from an LSTM-based visual embedding model and the
segment-level visual representation used in this baseline model
while a feed-forward neural network and instance-level visual
representation are employed by Fast0Tag for visual embedding.
Randomized label representation (RLR): One of the most
important issues in ZSL is exploring/exploiting the side infor-
mation conveyed in the semantic domain. As our framework
works for multi-label zero-shot recognition, we would investi-
gate whether the semantic relatedness information encoded in
the semantic embedding, inherited from the original semantic
representations, is effectively used in knowledge transfer. To
this end, we design another baseline model named randomized
label representation by replacing the word vector of a label
with a vector of the same dimensionality that is generated ran-
domly and normalized with the l2 norm to ensure that it has the
same range as that of the word vector. Apparently, the semantic
relatedness information no longer exists in such randomized
label representations. For parameter estimation, Algorithm 1
is used directly via replacing the semantic representations of
labels with the randomized label representations in training
data.

4.6.2. State-of-the-Art Methods
Although, to the best of our knowledge, there exists no work

in multi-label zero-shot human action recognition, we notice
that there are a few multi-label ZSL algorithms. In our compar-
ative study, we adopt and extend those multi-label ZSL algo-
rithms for human action recognition for a thorough evaluation
of our proposed framework. Below, we briefly describe those
multi-label ZSL algorithms used in our experiments.
Direct Semantic Prediction (DSP): DSP is a well-known base-
line model used in previous works for multi-label ZSL (e.g.,
Sandouk & Chen, 2016b). DSP is derived from direct attribute
prediction originally proposed for single-label ZSL (Lampert
et al., 2014). The idea behind DSP is learning a mapping func-
tion φ : X →S from visual to semantic space directly for ZSL.
In our experiments, we employ support vector regressor models
to learn the mapping function φ(·).
Convex combination of Semantic Embedding (ConSE):
ConSE is a ZSL algorithm proposed by Norouzi, Mikolov, Ben-
gio, Singer, Shlens, Frome, Corrado & Dean (2014), which can
be naturally applied to multi-label ZSL. As same as formulated
in DSP, ConSE also learns a mapping to predict a composi-
tional semantic representation from the visual representation of
a given video clip.
COSTA: COSTA is a method proposed by Mensink et al.
(2014) especially for multi-label zero-shot classification. In this
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method, multi-label classification is converted into a number of
binary classification problems via a one-vs-rest setting. |CTr|
linear binary SVMs are trained based on the examples regard-
ing |CTr| known actions. Then the parameters of the SVM for
an unseen label c ∈ CU is estimated by a weighted combina-
tion of the parameters of |CTr| trained SVMs corresponding to
known actions.
Graph Convolutional Network (GCN): GCN has been used
in ZSL by Wang, Ye & Gupta (2018) and Lee et al. (2018). We
follow the method in (Wang et al., 2018) and incorporate GCN
into our multi-label ZSL framework. A graph is constructed
for label representations with k Nearest Neighbour (k=3 and 6
for Breakfast and Charades datasets respectively). A GCN with
four convolutional layers is trained with classifier parameters
for known classes, then used to learn the classifier parameters
for unseen classes. We use SVMs as the classifiers whose pa-
rameters for known classes are obtained in the same way as in
COSTA.
Fast0Tag: Fast0Tag is a method for multi-label image tagging
and multi-label ZSL (Zhang et al., 2016). The main idea behind
Fast0Tag is learning a mapping function φ : X → S from visual
to semantic space for multi-label zero-shot tagging and recog-
nition. Unlike DSP, a ranking-based loss function, RankNet, is
used to train a deep network to carry out φ(·) so that for an
video clip, its relevant labels should be ranked ahead of those
irrelevant ones.
Fast0Tag+: Our work presented in this paper suggests that
the use of learned semantic embedding leads to better perfor-
mance than the use of the original semantic representations
directly. To further investigate this idea, we make an exten-
sion of Fast0Tag by incorporating our semantic model into the
Fast0Tag model and name our extension Fast0Tag+. As a re-
sult, Fast0Tag+ has an architecture resembling ours (c.f. the
left box of Fig.1), where the visual model is carried out by the
original Fast0Tag architecture while the semantic model is the
same as ours presented in Section 3. The original rank loss
functions in Fast0Tag are used and our alternate learning algo-
rithm described in Algorithm 1 is used for parameter estima-
tion. For recognition, the same procedure presented in Section
3.3 is used for a given test instance. Here, we argue that this
extension would provide further evidence in examining the ef-
fectiveness of semantic embedding learning.

4.6.3. Pooling Strategy
To investigate the effect of different pooling strategies over

temporal relatedness scores, we conduct a comparative experi-
ment by replacing the average pooling with either the maximum
pooling or the local average global maximum pooling in our
framework. For the maximum pooling, Eq.(4) for the average
pooling is thus altered to

oooi =
T

max
t=1

oooit . (22)

For the local average global maximum pooling, we firstly divide
the T segments into Ts groups with a 50% overlap between two
consecutive groups. As a result, there are Ng = 2∗T/Ts consec-
utive segments in each group. We calculate the average score in

each group and find the maximum as follows:

oooi =
Tsmax

ts=1

1
Ng

(ts+1)Ng/2

∑
t=(ts−1)Ng/2+1

oooit . (23)

Note that the local average global maximum pooling strategy is
generic, and the average pooling and maximum pooling can be
viewed as its special cases without between-group overlapping:
the average pooling when Ts = 1,Ng = T and the maximum
pooling when Ts = T,Ng = 1, respectively. To make a thorough
investigation, we set Ts = 10,Ng = 60 and Ts = 20,Ng = 30 as
two experimental settings for Breakfast dataset. For Charades
dataset, we set Ts = 5,Ng = 8 and Ts = 10,Ng = 4. All other
experimental settings are kept the same for a fair comparison.

In our comparative study, the optimal hyper-parameters in-
volved in baseline and state-of-the-art learning models are
sought during their learning with the same cross-validation
procedure as described in Section 4.3. Moreover, five state-
of-the-art methods described above and ours are extensible to
multi-label recognition straightforwardly; i.e., all the actions
are known in advance and their training examples are available
during learning. Thus, we also report the multi-label recog-
nition performance, which not only extends our comparative
study in a wider scope but also provides a benchmark to see how
much the performance of each method is degraded in a zero-
shot circumstance. For experiments in comparison of different
pooling strategies, all the components and setting are kept un-
changed except the pooling operations.

5. Experimental Results

In this section, we report the detailed experimental results in
different settings and exemplify some typical test instances via
visual inspection.

5.1. Results on Learning

We first report the experimental results regarding learning in-
cluding optimal hyper-parameters for all the models used in our
experiments and the evolution of the learning process for our
model trained with our proposed alternate learning algorithm
(Algorithm 1) under different data split settings.

As described in Section 4.3, we employ a grid-based search
procedure via cross-validation to find out the optimal hyper-
parameters in terms of both the loss used to train a model and
the I-MAP performance (c.f. Section 4.5) as this metric directly
evaluate the relatedness of a video instance to all the labels
in a considered action label collection. We seek an optimal
value from a set of candidate hyper-parameters involved in
all different learning models used in our experiments with the
exactly same procedure as follows:

Network architecture: The optimal architecture of neural net-
works in a model used in our experiments is investigated by
tuning different number of neurons in each hidden layer. In
our proposed model, there are totally four structural hyper-
parameters. The number of hidden units in the LSTM layer
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is selected from the candidate set, N1 = 256,512,1024. In
the visual model, the number of neurons in the hidden layer
above the LSTM layer is investigated with N2 = 1024,2048. In
the semantic model, the number of neurons in the first hidden
layer is selected from N1 = 300,500,700. As a critical hyper-
parameter in our algorithm, the dimension of latent embedding
space de, the number of neurons in the visual/semantic em-
bedding layers, is investigated by setting the candidate values,
de = 200,500,800. For the non-recurrent baseline model, the
number of neurons in the first hidden layer replacing the LSTM
layer is chosen from N1 = 1024,2048,4096. For Fast0Tag
and Fast0Tag+, the number of neurons in the first and sec-
ond hidden layers are selected from N1 = 2048,4096,8092 and
N2 = 1024,2048, respectively.
Learning rate: For all the neural networks in the proposed
model, the baseline and the state-of-the-art models, candidate
learning rates are {1e-2,1e-4} and {1e-4,1e-6} for the visual
and the semantic models, respectively.
Number of epochs: Learning is stopped when the I-MAP per-
formance on a validation set is no longer improved within the
last 10 epochs and the loss reaches a low level on both training
and validation sets. Then, the optimal model chosen is the one
that yields the highest value of I-MAP on the validation set.
Dropout rate: The dropout rate used in the first layer of a neu-
ral model during learning is selected from {0,0.5}.
Margin: The margin used in the hinge rank loss is selected for
m = 0.1,1,10.
SVM hyper-parameters: In our comparative study, ConSE
(Norouzi et al., 2014) and COSTA (Mensink et al., 2014) em-
ploy a linear SVM for classification and DSP (Lampert et al.,
2014) uses a linear SVR for regression. In our experiments, an
optimal soft-margin value is sought from C = 0.01,1,100. For
SVR, the percentage of support vectors is always set to ε = 0.1
as suggested in literature.

As a result, the resultant optimal hyper-parameter values in
different experimental settings are summarized in Table A.7.

To train our model described in Section 3, our proposed
learning algorithm optimizes two rank loss functions alternately
for joint visual and semantic embedding learning. With the reg-
ularized RankNet loss functions, we would exhibit the learning
behavior during the training. As illustrated in Figure 3, the reg-
ularized rank losses, Lv and Ls, with respect to the visual and the
semantic models keep decreasing steadily on training data as
the training epochs increase regardless of the data split settings
and datasets. Nevertheless, we adopt the early-stop strategy to
avoid overfitting. However, we observe that the change of two
ranking losses on validation data fluctuates wildly in learning
so that we cannot decide a proper early-stop point easily. In-
stead we use the I-MAP measured on validation data to decide
the proper early-stop points, as shown in Figure 3 where the
bars of dash line indicate the actual point that the learning is
stopped for different training datasets. In general, all our ex-
periments in learning (including not shown in Figure 3) suggest
that our alternate learning algorithm always converges regard-
less of different rank losses and datasets under different data
split settings.

5.2. Results on Comparison to Baseline Models
Tables 3 and 4 summarize all the results yielded by four

baseline models described in Section 4.6.1 and the full model
described in Section 3.2, with the use of regularized RankNet
loss and hinge rank loss described in Section 3.2.2 respectively.
The experimental results are reported based on two different
data split settings described in Section 4.1.2, instance-first split
(IFS) and label-first split (LFS), under three different evalua-
tion scenarios described in Section 4.4; i.e., generalized ZSL,
known-action only and unseen-action only scenarios. For re-
liability, we report the mean and standard error of the mean
(SEM) of results (k = 5 used in evaluation metrics, i.e., Eqs.(19-
21)) over three randomly generated known/unseen label splits
for each evaluation scenario.

For the IFS setting, it is observed from Tables 3 and 4 that
all the baseline models and the full model perform significantly
better than the RGS, a random guess model, on two datasets re-
gardless of evaluation scenarios apart from the RLR model un-
der the unseen-action only scenario. Due to a lack of knowledge
transfer in a random label representation, the zero-shot perfor-
mance of the RLR is expected. Overall, the full model outper-
forms all the baseline models on both datasets in the generalized
ZSL and unseen-action only scenarios regardless of evaluation
metrics. A comparison to the WSE suggests that the perfor-
mance of the full model is generally superior to this baseline on
both datasets under different evaluation scenarios, which lends
evidence to support the necessity of the semantic embedding
learning in multi-label learning problems. Also, we observe
that the full model outperforms the RLR on Breakfast but fails
to do so on Charades in the know-action only scenario when us-
ing RankNet loss (Table 3). This result suggests that a semantic
representation of labels is not critically important for known
actions in multi-label learning when the semantic embedding
learning has been employed to explore the between-action re-
lations from label co-occurrences. This observation further im-
plies that the semantic embedding learning cannot explore the
semantic relations between labels properly unless there are suf-
ficient training examples for different actions. Nevertheless, the
performance in the unseen-action only and the generalized ZSL
scenarios clearly indicates the importance of the semantic rep-
resentation of an action label for knowledge transfer required by
ZSL. It is also evident from Tables 3 and 4 that the full model
always outperforms the NRC where there are no recurrent con-
nections. Thus, the comparison to the baseline models clearly
suggest that the performance gain is brought by the use of an
LSTM layer in the visual model and the semantic embedding
learning fulfilled in the semantic model.

For the LFS setting, results shown in Tables 3 and 4 suggest
that all the baseline models perform significantly better than a
random guess. Overall, the full model generally outperforms
those baseline models on both datasets. In few circumstances,
however, the full model slightly under-performs the WSE on
Breakfast in terms of L-MAP with a tiny margin (Table 3). Be-
sides, it is observed from Table 3 that in the unseen-action only
scenario, our model slightly under-performs the WSE and the
NRC on Charades although it yields the best performance on
Breakfast. While from Table 4 we can observe that our full
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Figure 3: The evolution of the regularized RankNet losses, Lv and Ls, on training data and the I-MAP values on validation data during the joint visual and semantic
embedding learning with our alternate learning algorithm described in Algorithm 1. All the results are achieved based on Split 1 on two datasets, Breakfast and
Charades, under the IFS and the LFS settings (c.f. Table 2).

Table 3: Multi-label zero-shot recognition performance (mean±SEM%) of the baseline models and the full model using the RankNet loss in three evaluation
scenarios under different data split settings. Notation: IFS – Instance-First Split; LFS – Label-First Split; GZSL – generalized ZSL scenario; KnownA – Known-
action only scenario; UnseenA – Unseen-action only scenario.

Data Split Evaluation Scenario Model Breakfast Charades
L-MAP I-MAP P R F1 L-MAP I-MAP P R F1

IFS

GZSL

RGS 10.9±0.0 15.4±0.0 8.8±0.0 10.2±0.0 9.4±0.0 5.9±0.0 8.5±0.0 5.6±0.0 3.2±0.0 4.1±0.0
NRC 27.9±0.7 49.1±1.1 35.1±0.9 40.5±1.1 37.6±1.0 9.2±0.1 20.9±0.7 20.7±0.9 11.9±0.5 15.1±0.7
WSE 30.2±0.4 50.1±0.4 36.7±0.6 42.4±0.7 39.3±0.6 9.3±0.1 20.6±0.4 20.5±0.5 11.7±0.3 14.9±0.3
RLR 29.6±0.3 50.4±0.5 36.7±0.7 42.3±0.8 39.3±0.8 9.4±0.1 20.7±1.0 21.1±1.4 12.0±0.8 15.3±1.0
Ours 32.8±0.7 53.5±1.2 38.6±1.6 44.5±1.9 41.4±1.8 9.7±0.1 22.4±0.4 22.7±0.4 13.0±0.2 16.5±0.3

KnownA

RGS 11.4±0.2 17.4±0.1 9.6±0.2 12.9±0.0 11.0±0.1 6.1±0.1 9.4±0.1 5.8±0.1 4.3±0.0 4.9±0.0
NRC 30.3±1.0 53.6±0.8 35.4±0.7 47.5±0.6 40.6±0.6 10.0±0.2 25.4±0.5 23.0±0.6 17.1±0.2 19.6±0.4
WSE 32.1±0.9 55.4±1.0 37.6±0.3 50.6±0.5 43.2±0.2 10.1±0.3 24.6±0.3 22.3±0.3 16.6±0.0 19.0±0.1
RLR 33.5±1.1 56.3±0.8 37.4±1.0 50.2±0.8 42.8±0.9 10.7±0.1 26.7±0.7 23.9±0.9 17.8±0.4 20.4±0.6
Ours 35.3±1.3 58.0±0.4 38.2±1.6 51.3±1.4 43.8±1.5 10.5±0.2 26.1±0.3 23.5±0.5 17.5±0.1 20.0±0.2

UnseenA

RGS 8.5±0.6 30.7±0.6 6.1±0.6 50.0±0.0 10.9±0.9 5.4±0.0 13.9±0.0 5.1±0.0 12.5±0.0 7.2±0.0
NRC 17.1±0.7 47.5±2.4 8.7±0.8 70.8±2.5 15.4±1.2 6.8±0.4 20.4±1.1 8.4±0.7 20.8±1.9 11.9±1.0
WSE 21.7±1.7 47.7±3.0 9.1±1.9 72.4±8.8 16.1±3.2 6.9±0.4 20.5±1.6 8.5±0.7 21.2±2.1 12.1±1.0
RLR 13.2±2.5 34.3±7.1 7.0±1.6 56.6±9.7 12.4±2.7 5.5±0.4 13.4±0.6 4.7±0.4 11.6±0.6 6.7±0.5
Ours 22.3±1.1 53.1±5.8 9.5±1.5 77.2±8.4 16.9±2.5 7.1±0.4 22.4±2.1 9.5±1.0 23.5±2.7 13.5±1.5

LFS

GZSL

RGS 15.2±1.5 17.8±0.4 11.3±0.4 10.2±0.0 10.7±0.2 5.2±0.1 7.9±0.1 5.1±0.1 3.2±0.0 3.9±0.0
NRC 21.9±2.2 27.6±1.2 19.2±1.0 17.3±1.1 18.2±1.0 8.9±0.2 20.5±0.5 21.2±0.8 13.3±0.5 16.4±0.6
WSE 25.2±1.4 31.0±2.7 23.0±2.0 20.7±1.4 21.7±1.6 9.1±0.0 20.3±0.0 21.0±0.2 13.2±0.2 16.2±0.2
RLR 22.6±2.1 29.6±1.9 22.0±0.7 19.8±0.2 20.9±0.3 9.3±0.2 19.6±0.4 19.8±0.6 12.4±0.4 15.2±0.5
Ours 25.0±1.4 32.6±2.9 23.6±2.1 21.2±1.5 22.3±1.7 9.2±0.1 20.8±0.3 21.6±0.7 13.5±0.4 16.6±0.5

KnownA

RGS 14.7±1.9 17.8±0.2 10.1±0.2 12.8±0.0 11.3±0.1 5.0±0.1 8.0±0.1 4.8±0.1 3.7±0.0 4.2±0.0
NRC 22.2±2.5 30.2±1.5 18.9±1.1 24.2±1.8 21.2±1.4 8.9±0.3 22.3±0.6 21.1±0.7 15.9±0.4 18.1±0.5
WSE 25.3±2.0 34.2±3.3 23.1±1.9 29.5±2.7 25.9±2.3 9.0±0.0 22.2±0.3 21.1±0.4 15.9±0.0 18.1±0.1
RLR 24.8±2.6 34.3±3.1 21.7±0.7 27.6±0.4 24.3±0.6 9.5±0.1 23.0±0.4 21.2±0.5 16.0±0.4 18.2±0.4
Ours 25.2±1.6 35.7±3.6 23.3±2.0 29.6±2.8 26.0±2.3 9.1±0.1 23.0±0.6 21.6±0.7 16.3±0.3 18.6±0.5

UnseenA

RGS 16.8±1.6 34.2±1.3 16.2±1.6 50.0±0.0 24.4±1.8 6.9±0.1 19.4±0.1 6.7±0.1 25.0±0.0 10.5±0.1
NRC 21.2±1.4 42.3±5.4 18.7±3.2 57.1±7.0 28.0±4.4 9.4±0.1 30.7±2.2 11.6±0.7 43.2±2.8 18.2±1.1
WSE 25.2±0.4 42.5±4.6 20.0±3.1 61.5±6.8 30.1±4.3 9.7±0.1 30.1±1.2 11.5±0.4 43.1±1.8 18.2±0.6
RLR 16.7±2.5 32.2±2.1 15.0±1.9 45.8±2.0 22.5±2.4 7.7±0.5 19.3±0.3 6.7±0.1 25.2±0.6 10.6±0.2
Ours 24.6±1.5 44.8±4.7 22.2±2.5 68.6±4.7 33.4±3.3 9.7±0.1 29.2±2.1 11.1±0.9 41.6±3.5 17.5±1.4
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Table 4: Multi-label zero-shot recognition performance (mean±SEM%) of the baseline models and our full model using the Hinge rank loss in three evaluation
scenarios under different data split settings. Notations are the same as described in Table 3.

Data Split Evaluation Scenario Model Breakfast Charades
L-MAP I-MAP P R F1 L-MAP I-MAP P R F1

IFS

GZSL

RGS 10.9±0.0 15.4±0.0 8.8±0.0 10.2±0.0 9.4±0.0 5.9±0.0 8.5±0.0 5.6±0.0 3.2±0.0 4.1±0.0
NRC 28.1±0.4 50.1±1.0 36.7±0.7 42.3±0.8 39.3±0.7 9.2±0.1 21.7±0.7 22.2±0.7 12.7±0.4 16.2±0.5
WSE 31.1±0.7 50.4±0.3 36.6±0.5 42.2±0.6 39.2±0.6 8.6±0.0 20.1±0.5 20.3±0.7 11.6±0.4 14.7±0.5
RLR 30.3±1.2 51.8±1.8 37.4±1.4 43.2±1.6 40.1±1.5 9.5±0.1 21.4±0.9 22.4±0.8 12.8±0.5 16.3±0.6
Ours 32.7±0.4 53.4±0.8 38.9±0.5 44.9±0.5 41.7±0.5 10.0±0.1 22.6±0.4 23.1±0.5 13.2±0.3 16.8±0.4

KnownA

RGS 11.4±0.2 17.4±0.1 9.6±0.2 12.9±0.0 11.0±0.1 6.1±0.1 9.4±0.1 5.8±0.1 4.3±0.0 4.9±0.0
NRC 30.5±0.6 54.9±0.9 36.6±0.4 49.3±0.4 42.0±0.2 10.1±0.3 25.4±0.5 23.2±0.6 17.2±0.2 19.8±0.4
WSE 33.0±0.9 55.4±0.7 37.1±0.6 49.9±0.6 42.6±0.5 9.3±0.2 23.7±0.4 21.5±0.5 16.0±0.2 18.3±0.3
RLR 34.9±1.8 59.0±1.3 38.6±0.7 51.9±1.1 44.3±0.8 10.8±0.2 26.5±0.7 23.7±0.8 17.7±0.4 20.3±0.5
Ours 35.6±0.5 58.2±1.0 38.6±0.3 52.0±0.5 44.3±0.0 10.9±0.2 26.4±0.3 24.1±0.3 17.9±0.2 20.6±0.1

UnseenA

RGS 8.5±0.6 30.7±0.6 6.1±0.6 50.0±0.0 10.9±0.9 5.4±0.0 13.9±0.0 5.1±0.0 12.5±0.0 7.2±0.0
NRC 17.6±1.6 46.7±3.2 9.1±1.2 73.4±4.0 16.1±2.0 6.7±0.4 21.8±1.2 9.3±0.4 23.1±1.4 13.2±0.6
WSE 22.7±2.1 43.6±6.0 9.1±1.9 72.6±8.3 16.1±3.1 6.6±0.4 21.3±1.9 8.7±0.7 21.7±2.6 12.4±1.1
RLR 10.5±2.0 35.5±2.1 5.9±0.3 48.4±2.1 10.5±0.5 5.6±0.3 14.7±1.9 5.0±0.7 12.4±2.0 7.1±1.1
Ours 20.3±0.6 47.6±1.6 8.8±1.0 71.6±2.2 15.7±1.6 7.3±0.5 22.6±1.5 9.6±0.7 23.9±2.0 13.7±1.0

LFS

GZSL

RGS 15.2±1.5 17.8±0.4 11.3±0.4 10.2±0.0 10.7±0.2 5.2±0.1 7.9±0.1 5.1±0.1 3.2±0.0 3.9±0.0
NRC 22.6±2.0 26.6±1.7 18.5±1.3 16.7±1.2 17.5±1.2 8.9±0.1 20.7±0.1 21.2±0.3 13.3±0.3 16.4±0.3
WSE 24.4±1.7 31.3±3.0 23.4±1.9 21.1±1.4 22.2±1.6 8.1±0.2 19.4±0.2 19.4±0.4 12.2±0.3 14.9±0.3
RLR 22.2±1.4 31.6±1.6 24.3±2.1 21.8±1.6 23.0±1.8 9.0±0.1 19.9±0.7 20.7±1.0 13.0±0.5 16.0±0.6
Ours 24.7±1.4 32.9±2.9 24.6±2.5 22.1±1.9 23.3±2.2 9.2±0.1 21.1±0.4 22.1±0.7 13.9±0.4 17.1±0.5

KnownA

RGS 14.7±1.9 17.8±0.2 10.1±0.2 12.8±0.0 11.3±0.1 5.0±0.1 8.0±0.1 4.8±0.1 3.7±0.0 4.2±0.0
NRC 23.0±2.6 29.4±2.7 18.5±1.5 23.6±2.2 20.7±1.8 8.8±0.1 22.6±0.4 21.3±0.4 16.1±0.0 18.3±0.1
WSE 24.9±2.4 35.1±3.8 23.4±2.0 29.7±2.0 26.2±2.0 7.9±0.2 21.1±0.5 19.6±0.4 14.8±0.1 16.9±0.2
RLR 23.6±2.6 36.1±2.7 24.3±2.2 31.0±3.2 27.2±2.6 9.2±0.1 22.7±0.9 21.0±1.0 15.9±0.5 18.1±0.7
Ours 25.2±1.8 37.1±3.4 25.0±2.0 31.9±2.7 28.1±2.3 9.1±0.0 23.2±0.4 22.1±0.5 16.6±0.2 19.0±0.3

UnseenA

RGS 16.8±1.6 34.2±1.3 16.2±1.6 50.0±0.0 24.4±1.8 6.9±0.1 19.4±0.1 6.7±0.1 25.0±0.0 10.5±0.1
NRC 21.6±0.6 39.6±2.8 19.7±1.4 61.4±4.6 29.7±1.8 9.5±0.2 30.7±2.3 11.8±0.7 44.0±2.8 18.6±1.1
WSE 23.3±0.2 41.2±4.3 19.0±2.8 58.4±5.7 28.6±3.8 9.3±0.1 29.9±1.6 11.5±0.2 42.9±1.3 18.1±0.4
RLR 18.9±1.1 33.3±1.2 16.4±0.1 51.5±5.4 24.7±0.6 7.4±0.5 18.5±0.8 6.4±0.5 23.8±1.4 10.1±0.7
Ours 23.3±2.0 40.2±5.1 19.4±3.6 59.0±7.7 29.1±5.0 10.0±0.1 30.9±2.6 12.0±0.9 44.9±3.8 18.9±1.5

model performs the best on Charades but not on Breakfast.
These results reveal that the two employed rank losses are com-
plementary when learning the joint embedding space.

In summary, the comparison to the elaborated baseline mod-
els facilitates the understanding of different components and
ranking loss functions employed in our proposed framework for
multi-label zero-shot human action recognition. Two different
ranking losses used in our framework yield the similar perfor-
mance overall. By comparison to four baseline models, the full
model generally leads to better results on two datasets measured
with different evaluation metrics in all three evaluation scenar-
ios, although the experimental results also reveal the limitation
of components used in the full model to be investigated in our
future studies.

5.3. Results on Comparison to State-of-the-Art Methods
Table 5 summarizes the experimental results of the compar-

ative study described in Section 4.6.2. Multi-label ZSL per-
formance of five different methods including Fast0Tag+ (our
extension for Fast0Tag) with the reference to a random guess is
reported to be compared with our proposed framework where
two different rank losses and their fusion are employed, respec-
tively. Again, all the experiments are conducted with two differ-
ent data split settings and evaluated under three evaluation sce-
narios, as described in Section 5.2. For reliability, we report the
mean and the SEM of results (k = 5 used in evaluation metrics,
i.e., Eqs(19-21)) over three randomly generated known/unseen
label splits under each evaluation scenario.

For the IFS setting, it is seen from Table 5 that all the models
perform better than random guess in most of evaluation sce-
narios. However, DSP and ConSE result in the poorer perfor-
mance than random guess in the unseen-action only scenario on

Breakfast in terms of some specific metric, e.g., I-MAP. Over-
all, DSP and ConSE under-perform other methods considerably
in terms of all five evaluation metrics under all three evaluation
scenarios. Such results demonstrate that simply combining se-
mantic representations of co-occurred multiple labels into one
collective representation leads to catastrophic loss of semantic
information, which is mainly responsible for the poor perfor-
mance of DSP and ConSE in multi-label recognition. COSTA
and GCN perform comparably consistently in varying scenarios
which shows the limitation of GCN when a moderate number
of labels are involved and no extra label relationship is avail-
able. Note that the results of COSTA and GCN for known ac-
tions (i.e. KnownA) are the same since both of them employ
the same SVM classifiers for known actions. Fast0Tag gener-
ally outperforms COSTA and GCN on two datasets in terms of
most of evaluation metrics. While COSTA learns a classifier for
each label separately without considering a relationship among
co-occurred labels, the consideration of such a relationship in
Fast0Tag accounts for the better performance. By incorporating
the semantic embedding learning into Fast0Tag, Fast0Tag+, our
extension of Fast0Tag, constantly improves the performance of
its original version in most circumstances on two datasets. Once
again, this result lends us evidence to justify the necessity of
semantic embedding learning used in our framework for zero-
shot multi-label ZSL. In contrast, our model trained with ei-
ther RankNet loss or the hinge rank loss generally outperforms
all five models significantly in terms of five evaluation metrics
under different evaluation scenarios on two datasets, as high-
lighted with bold-font in Table 5. By comparing our model
to Fast0Tag+, we see three main differences between them as
follows: visual representations, network architectures for the
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Table 5: Multi-label zero-shot recognition performance (mean±SEM%) of six state-of-the-art methods and ours with the reference to random guess in three
evaluation scenarios under different data split settings. † denotes our adaptation to multi-label ZSL. The notations are the same as used in Tables 3.

Data Split Evaluation Scenario Model Breakfast Charades
L-MAP I-MAP P R F1 L-MAP I-MAP P R F1

IFS

GZSL

RGS 10.9±0.0 15.4±0.0 8.8±0.0 10.2±0.0 9.4±0.0 5.9±0.0 8.5±0.0 5.6±0.0 3.2±0.0 4.1±0.0
DSP(Lampert et al., 2014) 21.3±0.0 25.4±0.9 16.8±0.4 19.4±0.4 18.0±0.4 7.9±0.0 12.5±0.1 12.5±0.2 7.2±0.1 9.1±0.1

ConSE(Norouzi et al., 2014) 16.1±0.2 29.6±0.3 20.3±0.1 23.4±0.1 21.7±0.1 7.3±0.0 13.9±0.3 14.6±0.5 8.3±0.3 10.6±0.4
COSTA(Mensink et al., 2014) 19.7±0.2 37.4±0.3 28.8±0.4 33.2±0.5 30.8±0.5 8.5±0.1 16.9±0.7 17.6±0.9 10.1±0.5 12.8±0.6

†GCN(Wang et al., 2018) 20.0±0.2 36.6±0.4 27.9±0.4 32.2±0.5 29.9±0.4 8.5±0.1 16.6±0.5 17.2±0.8 9.8±0.5 12.5±0.6
Fast0Tag(Zhang et al., 2016) 22.3±1.1 38.6±0.2 27.5±0.1 31.8±0.1 29.5±0.1 9.3±0.0 20.6±1.0 20.6±1.4 11.8±0.8 15.0±1.0

Fast0Tag+ 23.4±0.3 40.6±0.7 29.2±0.3 33.7±0.3 31.3±0.3 9.7±0.1 21.7±0.6 21.9±0.8 12.5±0.5 15.9±0.6
Ours(RankNet) 32.1±0.8 53.3±1.0 39.0±0.9 45.0±1.0 41.8±0.9 9.7±0.1 22.4±0.4 22.8±0.4 13.0±0.2 16.5±0.3

Ours(Hinge) 32.7±0.4 53.4±0.8 38.9±0.5 44.9±0.5 41.7±0.5 10.0±0.1 22.6±0.4 23.1±0.5 13.2±0.3 16.8±0.4
Ours(Fusion) 33.9±0.4 54.7±1.1 40.0±1.1 46.1±1.3 42.8±1.2 10.1±0.1 23.3±0.5 23.7±0.7 13.5±0.4 17.2±0.5

KnownA

RGS 11.4±0.2 17.4±0.1 9.6±0.2 12.9±0.0 11.0±0.1 6.1±0.1 9.4±0.1 5.8±0.1 4.3±0.0 4.9±0.0
DSP(Lampert et al., 2014) 22.6±0.5 30.8±1.9 19.1±0.9 25.7±1.3 21.9±1.1 8.5±0.1 13.9±0.3 12.4±0.4 9.2±0.3 10.6±0.3

ConSE(Norouzi et al., 2014) 17.1±0.3 33.0±1.2 21.0±0.2 28.2±0.7 24.1±0.4 7.8±0.2 15.9±0.4 14.6±0.7 10.8±0.3 12.4±0.5
COSTA(Mensink et al., 2014) 22.1±0.7 41.6±0.7 28.8±0.4 38.7±0.2 33.0±0.3 9.3±0.2 19.7±0.6 17.6±0.9 13.1±0.5 15.0±0.6

†GCN(Wang et al., 2018) 22.1±0.7 41.6±0.7 28.8±0.4 38.7±0.2 33.0±0.3 9.3±0.2 19.7±0.6 17.6±0.9 13.1±0.5 15.0±0.6
Fast0Tag(Zhang et al., 2016) 23.9±1.3 44.3±0.5 29.8±0.7 40.0±0.6 34.1±0.6 10.0±0.2 24.6±0.6 22.4±0.7 16.6±0.3 19.1±0.4

Fast0Tag+ 25.4±0.2 45.0±0.5 29.9±0.4 40.2±1.1 34.3±0.6 10.5±0.3 25.7±0.7 23.3±0.9 17.3±0.4 19.8±0.6
Ours(RankNet) 34.5±1.0 57.8±0.7 38.5±1.0 51.8±0.6 44.2±0.9 10.5±0.2 26.1±0.3 23.5±0.5 17.5±0.1 20.0±0.2

Ours(Hinge) 35.6±0.5 58.2±1.0 38.6±0.3 52.0±0.5 44.3±0.0 10.9±0.2 26.4±0.3 24.1±0.3 17.9±0.2 20.6±0.1
Ours(Fusion) 36.6±0.7 59.4±0.5 39.6±0.9 53.2±0.5 45.4±0.8 11.0±0.3 27.1±0.4 24.6±0.5 18.3±0.2 21.0±0.3

UnseenA

RGS 8.5±0.6 30.7±0.6 6.1±0.6 50.0±0.0 10.9±0.9 5.4±0.0 13.9±0.0 5.1±0.0 12.5±0.0 7.2±0.0
DSP(Lampert et al., 2014) 15.9±1.5 27.0±4.7 5.8±1.6 47.6±11.5 10.4±2.7 6.2±0.4 17.3±1.4 7.4±0.8 18.4±1.9 10.6±1.1

ConSE(Norouzi et al., 2014) 12.2±0.3 29.9±5.0 6.2±0.9 51.0±6.9 11.1±1.5 5.8±0.4 17.3±0.8 7.0±0.7 17.2±1.1 9.9±0.8
COSTA(Mensink et al., 2014) 9.2±1.2 37.4±2.8 7.4±0.7 60.1±2.5 13.1±1.0 6.0±0.3 15.5±1.0 6.3±0.8 15.4±1.5 8.9±1.0

†GCN(Wang et al., 2018) 11.0±1.4 29.9±4.6 5.8±1.4 47.3±10.3 10.3±2.4 5.9±0.4 15.3±1.3 6.2±1.5 15.0±3.1 8.7±2.0
Fast0Tag(Zhang et al., 2016) 15.3±0.9 36.7±4.1 7.0±1.4 55.9±6.7 12.4±2.3 7.1±0.4 20.2±2.4 8.3±0.8 20.8±2.7 11.9±1.2

Fast0Tag+ 15.1±1.2 39.4±1.3 7.4±0.9 60.1±3.6 13.2±1.5 7.3±0.4 19.3±0.5 8.1±0.3 20.0±0.6 11.5±0.3
Ours(RankNet) 21.9±0.3 51.0±4.5 9.4±1.2 76.5±6.8 16.7±2.0 7.1±0.4 22.4±2.1 9.5±1.0 23.5±2.7 13.5±1.5

Ours(Hinge) 20.3±0.6 47.6±1.6 8.8±1.0 71.6±2.2 15.7±1.6 7.3±0.5 22.6±1.5 9.6±0.7 23.9±2.0 13.7±1.0
Ours(Fusion) 22.3±0.4 52.9±4.6 9.7±1.6 78.8±6.8 17.3±2.6 7.3±0.5 23.1±1.8 9.9±0.8 24.6±2.5 14.1±1.2

LFS

GZSL

RGS 15.2±1.5 17.8±0.4 11.3±0.4 10.2±0.0 10.7±0.2 5.2±0.1 7.9±0.1 5.1±0.1 3.2±0.0 3.9±0.0
DSP(Lampert et al., 2014) 20.7±1.7 18.6±1.9 11.0±1.5 9.9±1.0 10.4±1.2 7.4±0.1 12.1±0.3 12.4±0.6 7.7±0.3 9.5±0.4

ConSE(Norouzi et al., 2014) 18.5±2.1 20.2±1.8 12.7±1.1 11.4±0.6 12.0±0.8 7.0±0.1 13.8±0.1 14.8±0.1 9.3±0.1 11.4±0.1
COSTA(Mensink et al., 2014) 19.3±2.1 22.7±2.1 16.8±1.0 15.1±0.7 15.9±0.8 8.9±0.1 17.3±0.1 18.6±0.1 11.7±0.2 14.4±0.1

†GCN(Wang et al., 2018) 19.6±2.2 23.1±2.2 16.9±0.9 15.2±0.6 16.0±0.7 8.9±0.1 17.1±0.1 18.0±0.3 11.3±0.3 13.9±0.3
Fast0Tag(Zhang et al., 2016) 22.5±1.5 24.3±1.7 16.2±0.6 14.6±0.1 15.4±0.3 8.6±0.1 20.1±0.4 20.1±0.9 12.6±0.6 15.5±0.7

Fast0Tag+ 21.9±1.1 23.3±1.1 15.3±0.2 13.8±0.6 14.5±0.4 9.0±0.1 20.9±0.3 21.4±0.6 13.5±0.4 16.5±0.5
Ours(RankNet) 25.0±1.4 32.6±2.9 23.6±2.1 21.2±1.5 22.3±1.7 9.2±0.1 20.8±0.3 21.6±0.7 13.5±0.4 16.6±0.5

Ours(Hinge) 24.7±1.4 32.9±2.9 24.6±2.5 22.1±1.9 23.3±2.2 9.2±0.1 21.1±0.4 22.1±0.7 13.9±0.4 17.1±0.5
Ours(Fusion) 25.5±1.4 33.3±2.5 24.6±2.3 22.1±1.6 23.2±1.9 9.6±0.1 21.5±0.4 22.6±0.6 14.2±0.4 17.4±0.4

KnownA

RGS 14.7±1.9 17.8±0.2 10.1±0.2 12.8±0.0 11.3±0.1 5.0±0.1 8.0±0.1 4.8±0.1 3.7±0.0 4.2±0.0
DSP(Lampert et al., 2014) 14.1±1.2 18.1±2.7 8.5±1.8 10.3±2.1 9.4±1.9 7.3±0.1 12.9±0.4 12.3±0.7 9.3±0.3 10.6±0.5

ConSE(Norouzi et al., 2014) 12.2±0.8 22.1±0.6 13.1±0.6 14.6±1.2 13.8±0.9 6.8±0.1 15.0±0.1 14.7±0.2 11.1±0.1 12.6±0.1
COSTA(Mensink et al., 2014) 19.8±2.9 25.1±2.7 16.8±1.0 21.3±0.8 18.7±0.9 9.0±0.1 19.5±0.1 18.6±0.1 14.1±0.2 16.0±0.1

†GCN(Wang et al., 2018) 19.8±2.9 25.1±2.7 16.8±1.0 21.3±0.8 18.7±0.9 9.0±0.1 19.5±0.1 18.6±0.1 14.1±0.2 16.0±0.1
Fast0Tag(Zhang et al., 2016) 23.1±2.0 26.5±1.9 15.9±0.4 20.2±0.8 17.8±0.5 8.4±0.1 22.4±0.7 20.8±0.7 15.7±0.2 17.9±0.4

Fast0Tag+ 22.2±1.7 24.9±1.5 15.1±0.6 19.3±1.1 17.0±0.8 9.0±0.1 22.8±0.5 21.3±0.5 16.1±0.1 18.3±0.3
Ours(RankNet) 25.2±1.6 35.7±3.6 23.3±2.0 29.6±2.8 26.0±2.3 9.1±0.1 23.0±0.6 21.6±0.7 16.3±0.3 18.6±0.5

Ours(Hinge) 25.2±1.8 37.1±3.4 25.0±2.0 31.9±2.7 28.1±2.3 9.1±0.0 23.2±0.4 22.1±0.5 16.6±0.2 19.0±0.3
Ours(Fusion) 25.8±1.8 37.4±2.7 24.6±2.0 31.3±2.8 27.6±2.3 9.5±0.1 23.8±0.6 22.7±0.7 17.1±0.3 19.5±0.4

UnseenA

RGS 16.8±1.6 34.2±1.3 16.2±1.6 50.0±0.0 24.4±1.8 6.9±0.1 19.4±0.1 6.7±0.1 25.0±0.0 10.5±0.1
DSP(Lampert et al., 2014) 16.6±0.8 28.8±1.4 14.7±0.6 42.8±1.3 21.9±0.7 8.5±0.2 22.8±0.9 8.1±0.4 30.3±1.3 12.8±0.6

ConSE(Norouzi et al., 2014) 13.7±1.7 33.0±0.7 14.7±0.5 50.9±4.6 22.7±0.2 7.9±0.4 23.2±0.4 8.5±0.0 31.9±0.3 13.5±0.1
COSTA(Mensink et al., 2014) 18.2±1.1 35.8±1.2 16.9±1.7 52.2±2.0 25.4±2.0 7.6±0.2 24.9±1.0 9.2±0.4 34.4±1.8 14.5±0.7

†GCN(Wang et al., 2018) 19.5±1.1 32.6±2.6 15.3±2.6 46.7±4.9 23.0±3.5 7.9±0.2 18.4±0.9 5.8±0.4 21.7±1.5 9.2±0.6
Fast0Tag(Zhang et al., 2016) 21.1±1.1 39.1±4.0 18.5±3.6 56.0±6.5 27.8±4.9 9.5±0.1 28.4±2.5 11.0±0.5 41.1±2.2 17.4±0.8

Fast0Tag+ 21.2±0.8 45.5±3.4 19.9±1.8 61.7±2.4 30.0±2.1 9.3±0.1 30.2±2.9 11.6±0.7 43.2±3.1 18.2±1.2
Ours(RankNet) 24.6±1.5 44.8±4.7 22.2±2.5 68.6±4.7 33.4±3.3 9.7±0.1 29.2±2.1 11.1±0.9 41.6±3.5 17.5±1.4

Ours(Hinge) 23.3±2.0 40.2±5.1 19.4±3.6 59.0±7.7 29.1±5.0 10.0±0.1 30.9±2.6 12.0±0.9 44.9±3.8 18.9±1.5
Ours(Fusion) 24.7±1.5 42.6±6.1 19.6±3.9 59.7±8.6 29.5±5.4 10.2±0.1 31.1±2.7 12.2±0.9 45.6±3.7 19.2±1.4

Table 6: Multi-label recognition performance (mean±std%) of five state-of-the-art methods and ours.

Model Breakfast Charades
L-MAP I-MAP P R F1 L-MAP I-MAP P R F1

DSP(Lampert et al., 2014) 21.6±0.0 25.2±0.0 16.6±0.0 19.1±0.0 17.7±0.0 8.0±0.0 12.6±0.0 13.0±0.0 7.4±0.0 9.5±0.0
ConSE(Norouzi et al., 2014) 16.7±0.0 30.8±0.0 21.1±0.0 24.4±0.0 22.7±0.0 7.4±0.0 14.6±0.0 15.8±0.0 9.0±0.0 11.5±0.0

COSTA(Mensink et al., 2014) 21.5±0.0 39.3±0.0 29.5±0.0 34.0±0.0 31.6±0.0 9.1±0.0 18.6±0.0 19.5±0.0 11.2±0.0 14.2±0.0
Fast0Tag(Zhang et al., 2016) 21.6±1.5 40.7±0.6 28.7±0.6 33.1±0.7 30.7±0.6 9.5±0.0 23.4±0.0 23.7±0.1 13.6±0.1 17.3±0.1

Fast0Tag+ 23.2±0.3 42.1±0.5 30.4±0.3 35.1±0.3 32.6±0.3 10.0±0.0 24.3±0.2 24.6±0.3 14.1±0.2 17.9±0.2
Ours (RankNet) 32.7±0.4 54.0±0.5 39.1±0.5 45.1±0.5 41.9±0.5 10.2±0.1 24.9±0.4 25.5±0.4 14.6±0.3 18.5±0.3

Ours (Hinge) 33.8±0.2 55.0±0.3 39.7±0.2 45.8±0.2 42.5±0.2 10.5±0.1 25.2±0.1 25.5±0.3 14.6±0.2 18.6±0.2
Ours(Fusion) 34.1±0.2 55.2±0.2 39.7±0.3 45.8±0.4 42.5±0.4 10.8±0.1 25.8±0.1 26.3±0.2 15.0±0.1 19.1±0.1
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visual model and loss functions. Regarding visual representa-
tions, our model uses the segment-based visual features for an
instance while Fast0Tag+ employs an instance-level holistic vi-
sual representation. For network architectures, we employ an
LSTM layer with recurrent connections to capture temporal co-
herence among segments of a video clip while Fast0Tag+ sim-
ply uses a feed-forward network. As described in Section 3.2.2,
we use an alternative loss function to that in Fast0Tag. Thus,
those differences together leverage our performance gain over
Fast0Tag+, which yet again lends us evidence to support our
proposed framework. Finally, it is observed from Table 5 that
in the IFS setting, the RankNet and the hinge rank losses per-
form differently on two datasets; the hinge rank loss generally
outperforms the RankNet loss on both datasets with the excep-
tions of unseen action only scenarios on Breakfast. Neverthe-
less, the fusion of two models trained with different losses leads
to the best performance in most circumstances as highlighted
with bold-font in Table 5. Such results reveal that two losses
behave quite differently and the diversity can be exploited via
fusion, which provides useful information to develop more ef-
fective rank loss functions.

For the LFS setting, experimental results suggest that most of
the models in question have similar behavior to that in the IFS
setting, as shown in Table 5. Once again, DSP and ConSE gen-
erally perform worse than other models and even under-perform
random guess on Charades in the unseen-action only scenario.
While COSTA and GCN yields better performance than DSP
and ConSE overall, they generally under-perform Fast0Tag,
Fast0Tag+ and ours in all three evaluation scenarios. It is note-
worthy that GCN performs no better than RGS for unseen ac-
tions in terms of all metrics except L-MAP. These results fur-
ther validate the limitation of GCN when extra information of
relations between labels is not available. In the LFS setting, our
model trained with different rank losses generally outperforms
others in most circumstances except for the unseen-action only
scenario on Breakfast where Fast0Tag+ performs better than
ours marginally in terms of I-MAP. Regarding two rank losses
used in our experiments, the hinge rank loss marginally outper-
forms the RankNet loss in most circumstances on two datasets.
Once again, the fusion of results brought by two rank losses
further improves the performance in most circumstances, which
provides the further evidence on the complementary aspect of
two different rank losses. As described in Section 5.2, the LFS
setting is more challenging than the IFS setting and some salient
visual features on test instances corresponding to unseen ac-
tions could completely miss in training examples. In this case,
the use of a segment-level based visual representation and an
LSTM layer in the visual model may not be able to generalize
well due to a lack of training examples. Although such a result
does not sufficiently favour the use of a segment-level based vi-
sual representation and an LSTM layer in the visual model in
the presence of limited training data, it is no doubt that intro-
ducing a semantic model to Fast0Tag leverages the performance
gain. Once again, experimental results here along with those
compared to the baseline models under our LFS setting reveal
a training data sparsity issue that has to be addressed in any
future multi-label zero-shot human action recognition study.

Furthermore, Table 6 shows the experimental results in con-
ventional multi-label human action recognition, i.e., all the ac-
tions are known in learning. In this circumstance, only the IFS
setting is applicable. Hence, we use the same IFS setting as de-
scribed in Section 4.1.2 but, unlike what has been done for sim-
ulating a zero-shot scenario, do not reserve any actions. Also
we use the same procedure as done for zero-shot learning to
search for optimal hyper-parameters for five models and ours
and repeat the experiments on the same data split as the IFS set-
ting for three trials with different parameter initialization. As a
result, we report the mean and standard deviation (std) of three-
trial results yielded by different methods. It is worth clarifying
that we do not have any GCN results in Table 6 since GCN is
not applicable for this experimental setting; in fact, all action
label classifiers can be learned from training data and hence no
additional GCN is required to predict unseen action classifiers.
It is evident from Table 6 that our model trained with either
of two rank losses as well as their fusion outperform others in
conventional multi-label recognition on both datasets. Without
unseen classes, our model trained with the hinge rank loss gen-
erally performs slightly better than its counterpart trained with
the RankNet loss. Once again, the fusion of results generated
by those two models leads to the best performance. To see the
degraded performance in a zero-shot scenario, we can compare
the performance in the generalized ZSL evaluation scenario un-
der the IFS setting, as shown in Table 5, to that reported in
Table 6. By such a comparison, it is seen that the zero-shot per-
formance of our model drops with a narrow margin (approxi-
mately less than 10% overall in terms of five different evalua-
tion metrics). Given the fact that 10 out of 49 and 40 out of 157
human actions are reserved as unseen labels on Breakfast and
Charades, respectively, this comparison on experimental results
suggests that our proposed framework yields the promising per-
formance for multi-label zero-shot human action recognition,
which is close to the performance in multi-label human action
recognition. Experimental results shown in Table 6 also sug-
gest that other state-of-the-art methods behave similarly to ours
in general. However, we also observe an unusual phenomenon
from their performance; i.e., by a comparison to the general-
ized ZSL performance reported in Table 5, DSP yields slightly
worse performance in multi-label recognition in terms of four
of five evaluation metrics on Breakfast and so do Fast0Tag and
Fast0Tag+ in terms of L-MAP. By a closer look at the dataset
and results in two experiments as well as our analysis, we find
that at least two factors account for this unusual phenomenon:
a) co-occurred labels associated with most of video clips on
Breakfast are redundant in light of semantics, and b) the sin-
gle collective semantic representation of co-occurred multiple
labels used in DSP is insensitive to missing of few co-occurred
labels due to the label information redundancy and the infor-
mation loss resulting from the average operation in forming the
single representation. Thus, we reckon that this phenomenon is
rather specific to the nature of this dataset and the ZSL setting
where there are only a small number of unseen labels.
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Figure 4: Performance of different pooling strategies used to aggregate the temporal relatedness scores in the joint ranking embedding learning on two datasets,
Breakfast and Charades, in three evaluation scenarios. Avg: average pooling; Lagm: local average global maximum pooling; Max: maximum pooling; Ts is the
number of groups over which the pooling is done (c.f. Section 4.6.3).

5.4. Results on Pooling Strategy
We report the performance of three pooling strategies in

terms of five evaluation criteria. It is evident from Figure 4
the average pooling always performs the best and the maxi-
mum pooling performs the worst regardless of evaluation cri-
teria. In addition, the local average global maximum pooling
performs better when Ts is set smaller. Such results imply that
our framework interprets the visual information at a global level
that tends to recognize actions appearing in a video clip rather
than a local level that identifies the accurate boundaries between
different actions. From our empirical study, it is observed that
the average pooling takes into account all information in a video
to yield the relatedness scores while the maximum pooling uses
only the local information regarding an abrupt change in visual
domain but likely overlooks a large portion of useful informa-
tion related to the nature of actions. Nevertheless, the maximum
pooling might be beneficial for unsupervised action localization
in the weak supervision setting, which is beyond the scope of
this paper but worth studying in future.

In summary, our comparative study suggests that our pro-
posed framework yields the favourable results and outperforms
the existing state-of-the-art methods in general. The average
pooling generally outperforms other alternatives in question.
Also, our experimental results demonstrate challenges in multi-
label ZSL via our novel LFS setting especially when training

data are less correlated to test instances associated with unseen
classes in both semantic and visual domains.

5.5. Visual Inspection
In general, visual inspection provides a manner that helps

us understand the behaviour of a method intuitively. To gain
an intuitive insight into the multi-label zero-shot human action
recognition, we visualize a number of typical test video clips
on Breakfast and the top-5 labels predicted by different state-
of-the-art methods described in Section 4.6.2 and ours in terms
of semantic relatedness scores. Our visual inspection mainly
focuses on understanding of the behaviour of our model and
issues arising from our work. As a result, Figures 5-8 illustrate
several key frames to human actions in typical test video clips
and the top-5 predicted labels by different methods, where a
correctly predicted known label is highlighted with bold font
and a correctly predicted unseen label is marked with bold-italic
font.

For the IFS setting, Figures 5-7 illustrate three typical results
yielded by different methods. Figure 5 exemplifies the success
of our model, where four out of the top-5 labels predicted by
our model are the ground-truth actions and no other methods
can match the performance of our model. This exemplified test
instance suggests that the use of an LSTM layer in our visual
model facilitates the recognition of distinctive actions in a video
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Figure 5: A test video clip in the IFS setting and the top-5 labels predicted by different methods (c.f. Section 4.6.2). Its ground-truth labels are take bowl, crack egg,
put egg2plate, take plate,stir egg, pour egg2pan, stir fry egg, add salt pepper, butter pan.
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Figure 6: A test video clip in the IFS setting and the top-5 labels predicted by different methods (c.f. Section 4.6.2). Its ground-truth labels are cut orange,
squeeze orange, pour juice.

clip. Figure 6 shows a test instance where all the methods fail to
have any ground-truth labels in their top-5 predicted labels. Our
visual inspection on this test instance reveals that non-trivial ob-
jects pertaining to different actions are concentrated in a small
region located in top-right of frames in this video clip. Thus,
it is extremely difficult to capture the useful information in the
visual domain, which poses a challenge to all the existing hu-
man action recognition techniques. Figure 5-8 reveal that our
models trained with two rank losses yield different results for
a test instance. Specially in Figure 8, three of the top-5 la-
bels predicted by two models are in common, however, the fu-
sion method described in Section 3.3 successfully predicts five
ground truth labels. These instances vividly demonstrate the
different aspects of two rank losses and the synergy achieved
by their fusion. Besides, these test instances illustrated in Fig-
ures 5-8 also provide some insight regarding the behaviour of
other state-of-the-art models used in our comparative study. For
example, ConSE is more likely to yield the labels regarding fre-
quently used words in a human action domain. For those test
instances shown in Figures 5-7, at least four out of the top-5
labels predicted by ConSE are regarding different actions taken
on “egg”. For the instance shown in Figure 8, all the top-5
labels predicted by ConSE are completely regarding “pour” ac-
tions commonly taken in kitchen. This limitation is due to the
fact that ConSE uses a single collective semantic representa-
tion resulting from averaging the semantic representations of
multiple co-occurred labels, which favors those frequently used
word vectors but diminishes the opportunity of finding out in-

frequently used word vectors in prediction. We can also see that
COSTA and GCN always predict the same top-5 results which
are all known actions. These results suggest that the methods
aiming to predict unseen action classifiers such as COSTA and
GCN are more likely to rank known labels ahead of unseen
ones.

Experimental results reported in Tables 3-5 suggest that all
the models including ours generally perform worse under the
LFS setting than under the IFS setting. On the one hand, the
LFS setting results in a training data sparsity issue in con-
trast to the IFS setting. To see this issue, let us take the first
split on Breakfast as an example. In this split shown in Table
2, there are 1,196 and 1,019 training examples in the IFS and
the LFS setting, respectively. However, the number of train-
ing examples pertaining to specific known actions is signifi-
cantly different in two split settings due to different data split
protocols described in Section 4.1.2. For example, there are
330, 217, 254, 109 and 156 training examples with target la-
bels,“crack egg”, “put egg2plate”, “take plate”, “stir fry egg”
and “add salt pepper”, respectively, in the IFS setting. In con-
trast, there are only 23, 23, 81, 23 and 20 examples with the
same target labels, respectively, in the LFS setting. On the
other hand, there is a major difference between those models
and ours; i.e., our visual model employs a hidden layer of re-
current connection to capture temporal coherence underlying
intrinsic visual features while those state-of-the-art models used
in our comparative study do not have such a mechanism. It is
well known that a learning model of a higher complexity or a
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Figure 7: A test video clip in the IFS setting and the top-5 labels predicted by different methods (c.f. Section 4.6.2). Its ground-truth labels are crack egg, fry egg,
put egg2plate, take plate, add salt pepper, butter pan.

Data Split DSP ConSE COSTA GCN Fast0Tag Fast0Tag+ Ours(RankNet) Ours(Hinge) Ours (Fusion)
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Figure 8: A test video clip appearing in in the IFS and LFS settings and the top-5 labels predicted by different methods (c.f. Section 4.6.2) in two data split settings.
Its ground truth labels are take bowl, crack egg, put egg2plate, take plate, stir egg, pour egg2pan, stir fry egg, add salt pepper, butter pan in the IFS setting,
and take bowl, crack egg, put egg2plate, take plate, stir egg, pour egg2pan, stir fry egg, add salt pepper, butter pan in the LFS setting, respectively.

larger capacity demands more informative training data. To this
end, the training data sparsity issue affects the performance of
our model more severely than other models; it is evident that
the performance gain from the use of an LSTM layer in our vi-
sual model disappears due to a lack of sufficient training data
required in training our visual model for capture temporal co-
herence.

To understand the difference between the IFS and the LFS
settings and the training data sparsity issue intuitively, we il-
lustrate the results yielded by the state-of-the-art methods and
ours on a common instance appearing in test sets in two data
split settings, as shown in Figure 8. It is evident that four out of
the top-5 action labels predicted by our model are the ground
truth and all other models can predict some of ground-truth ac-
tions correctly under the IFS setting. In contrast, however, none
of the models correctly predicts more than one ground-truth ac-
tion for this exactly same test instance under the LFS setting.
The visual inspection on this test instance clearly demonstrates
the distinction between two data split settings; i.e., visual fea-
tures associated with unseen actions are available in the IFS
setting (an unrealistic scenario) but unavailable in the LFS set-
ting (a realistic scenario), and the training data sparsity issue in
the LFS setting, which poses a big challenge to all the existing
multi-label ZSL methods including ours.

5.6. Model Complexity

The architecture complexity of our learning model depends
on the number of hidden layers, hidden units and their types as
well as their connections used in neural networks to implement
the visual and the semantic models for a data set.

In our current implementation, the number of parameters in
the visual model varies from 4.9 to 24.7 millions, and the num-
ber of parameters in the semantic model varies from 0.15 to
0.77 millions under different hyper-parameter settings. Obvi-
ously, the semantic model has much fewer parameters com-
pared with the visual model, suggesting that introducing a se-
mantic model does not incur a much higher computational bur-
den but leads to the performance gain. In general, our model of-
ten takes longer training time than other state-of-the-art learn-
ing models used in our comparative study due to the use of a
LSTM layer to capture temporal coherence.

Practically, with a GTX1080Ti GPU, the averaging time
spent for training our learning model is roughly 13 minutes
on Charades (i.e., 40s per epoch multiplies approximately 20
epochs) and one hour on Breakfast due to a larger number of
time steps (T=300). One limitation of our learning model is a
large memory requirement for training. Recall that the visual
representations have to be reserved for use in the training of se-
mantic model, it is required to load one large matrix with a size
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of n×de×T into memory . In our implementation, the amount
of GPU memory used for training on Charades and Breakfast is
3.5 GB and 10.5 GB, respectively.

6. Concluding Remarks

In this paper, we have formulated human action recognition
as a multi-label zero-shot learning problem and provide an ef-
fective solution by proposing a novel framework via joint latent
ranking embedding learning. To carry out our framework, we
employ a neural network of the heterogeneous architecture for
visual embedding, where an LSTM layer is used to facilitate
capturing temporal coherence information underlying different
actions from weakly annotated video data. Also, we advocate
the use of semantic embedding learning to facilitate bridging
the semantic gap and effective knowledge transfer, which is
implemented by a feed-forward neural network. All the above
contributions have been thoroughly verified via our compara-
tive study with various well-motivated settings. Experimental
results on two benchmark multi-label human action datasets
suggest that our proposed framework generally outperforms not
only the baseline systems but also several state-of-the-art multi-
label ZSL approaches in all the different test scenarios.

Although we have demonstrated favourable results on two
benchmark datasets in comparison to state-of-the-art ap-
proaches, our observations on the performance of all the ap-
proaches used in our comparative study including ours suggest
that the existing multi-label ZSL techniques are not ready for a
real application; the instance-first split setting fails to simulate
real multi-label zero-shot human action recognition scenarios
while the performance becomes even worse under the label-
first split setting that simulates a real scenario. Nevertheless,
our experimental results including visual inspection provide
the insightful information for improving our proposed frame-
work. In our ongoing work, we would address issues arising
from our experiments and observations with proper techniques.
To address the training data sparsity issue revealed in our ex-
periments, we would develop unsupervised learning algorithms
to discover salient yet intrinsic visual features from unlabelled
video clips and further incorporate proper temporal constraints
into our rank loss functions to better capture temporal coher-
ence. Also, the GAN-based synthetic feature generation idea
could be further developed for weakly-supervised multi-label
video clips to addressing the training data sparsity issue. More-
over, we would consider diverse pooling strategies and intro-
duce attention mechanisms to our model for improving implicit
salient feature extraction and accurate localization of different
yet complex actions involved in a video clip during the visual
embedding learning. Also, we would employ alternative se-
mantic representations developed by ourselves (Wang & Chen,
2017a), which encode the semantic relatedness between action
labels more accurately, in the semantic embedding learning to
facilitate knowledge transfer.

While our framework is proposed especially for multi-label
zero-shot human action recognition, we would highlight that
it is directly applicable to multi-label human action recognition
without modification as demonstrated in our experiments. Also,

our framework is easy to adapt for tackling various multi-label
ZSL problems in different domains. For example, we can apply
our framework to miscellaneous multi-label zero-shot classifi-
cation tasks on temporal or sequential data, e.g., acoustic event
classification, straightforward as well as multi-label zero-shot
learning tasks on static data, e.g., object recognition, by re-
placing a neural network of the heterogeneous architecture only
with a neural network of only feed-forward connections in the
visual model. Thus, we are going to explore such extensions
and applications in our future work.
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Appendix A. Hyper-parameters

In this appendix, we report all the optimal hyper-parameter
values of different learning models used in our experiments to
enable one to replicate our experimental results. Table A.7 sum-
marizes all the optimal hyper-parameter values obtained with a
grid-based search via cross-validation as described in Section
5.1.
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Table A.7: Optimal hyper-parameter values of different learning models found by grid search. Notation: IFS – Instance-First Split; LFS – Label-First Split; V –
Visual model; S – Semantic model; lr – learning rate; C, ε – soft-margin and percentage of support vectors in SVM/SVR; m – margin in the hinge ranking loss.
N1 → N2 → de indicates a neural network architecture where N1(dropout rate) is the number of neurons in the first hidden layer and dropout rate used in learning;
N2 is the number of hidden neurons in the second hidden layer; and de is the number of neurons in the latent embedding layer.

Dataset Data Split Model Split
1 2 3

Breakfast

IFS

NRC(RankNet) V: lr = 1e−4;1024(0.5)→ 2048→ 500 V: lr = 1e−4;1024(0.5)→ 2048→ 500 V: lr = 1e−4;2048(0.5)→ 1024→ 500
S: lr = 1e−6;500→ 500 S: lr = 1e−6;500→ 500 S: lr = 1e−6;500→ 500

NRC(Hinge) V: lr = 1e−4;1024(0.5)→ 2048→ 500 V: lr = 1e−4;1024(0.5)→ 2048→ 500 V: lr = 1e−4;1024(0.5)→ 2048→ 500
S: lr = 1e−6;500→ 500;m = 1 S: lr = 1e−6;500→ 500;m = 1 S: lr = 1e−6;700→ 500;m = 1

WSE(RankNet) V: lr = 1e−4;512(0)→ 2048 V: lr = 1e−4;512(0)→ 1024 V: lr = 1e−4;1024(0)→ 2048
WSE(Hinge) V: lr = 1e−4;1024(0.5)→ 2048;m = 1 V: lr = 1e−4;512(0)→ 1024;m = 1 V: lr = 1e−4;1024(0)→ 1024;m = 1

RLR(RankNet) V: lr = 1e−4;512(0)→ 2048→ 800 V: lr = 1e−4;256(0.5)→ 1024→ 500 V: lr = 1e−4;256(0.5)→ 2048→ 200
S: lr = 1e−6;700→ 800 S: lr = 1e−6;500→ 500 S: lr = 1e−6;300→ 200

RLR(Hinge) V: lr = 1e−4;1024(0)→ 2048→ 500 V: lr = 1e−4;512(0.5)→ 1024→ 500 V: lr = 1e−4;512(0.5)→ 2048→ 200
S: lr = 1e−6;700→ 500;m = 10 S: lr = 1e−6;500→ 500;m = 10 S: lr = 1e−6;500→ 200;m = 10

DSP C = 1,ε = 0.1 C = 1,ε = 0.1 C = 1,ε = 0.1
ConSE C = 1 C = 1 C = 1
COSTA C = 1 C = 1 C = 1
Fast0Tag V: lr = 1e−4;8192(0)→ 1024 V: lr = 1e−4;8192(0.5)→ 2048 V: lr = 1e−2;8192(0.5)→ 2048

Fast0Tag+ V: lr = 1e−4;4096(0)→ 1024→ 800 V: lr = 1e−4;8192(0.5)→ 2048→ 800 V: lr = 1e−4;8192(0)→ 1024→ 200
S: lr = 1e−6;500→ 800 S: lr = 1e−6;700→ 800 S: lr = 1e−6;300→ 200

Ours(RankNet) V: lr = 1e−4;512(0)→ 2048→ 800 V: lr = 1e−4;1024(0)→ 2048→ 500 V: lr = 1e−4;1024(0)→ 2048→ 500
S: lr = 1e−6;700→ 800 S: lr = 1e−6;700→ 500 S: lr = 1e−6;700→ 500

Ours(Hinge) V: lr = 1e−4;256(0.5)→ 2048→ 500 V: lr = 1e−4;256(0.5)→ 1024→ 500 V: lr = 1e−4;1024(0)→ 1024→ 500
S: lr = 1e−6;700→ 500; m = 1 S: lr = 1e−6;700→ 500; m = 1 S: lr = 1e−6;500→ 500; m = 1

LFS

NRC(RankNet) V: lr = 1e−4;2048(0.5)→ 2048→ 200 V: lr = 1e−4;2048(0)→ 2048→ 800 V: lr = 1e−4;2048(0)→ 2048→ 500
S: lr = 1e−6;500→ 200 S: lr = 1e−6;500→ 800 S: lr = 1e−6;700→ 500

NRC(Hinge) V: lr = 1e−4;4096(0)→ 2048→ 500 V: lr = 1e−4;4096(0)→ 2048→ 500 V: lr = 1e−4;2048(0.5)→ 2048→ 200
S: lr = 1e−6;300→ 500;m = 10 S: lr = 1e−6;300→ 500;m = 10 S: lr = 1e−6;500→ 200;m = 1

WSE(RankNet) V: lr = 1e−4;1024(0)→ 1024 V: lr = 1e−4;1024(0)→ 1024 V: lr = 1e−4;1024(0.5)→ 1024
WSE(Hinge) V: lr = 1e−4;1024(0.5)→ 2048;m = 10 V: lr = 1e−4;1024(0.5)→ 2048;m = 10 V: lr = 1e−4;512(0)→ 2048;m = 1

RLR(RankNet) V: lr = 1e−4;256(0.5)→ 1024→ 500 V: lr = 1e−4;512(0.5)→ 1024→ 200 V: lr = 1e−4;512(0.5)→ 2048→ 200
S: lr = 1e−6;500→ 500 S: lr = 1e−6;700→ 200 S: lr = 1e−6;500→ 200

RLR(Hinge) V: lr = 1e−4;512(0)→ 2048→ 800 V: lr = 1e−4;256(0)→ 1024→ 800 V: lr = 1e−4;512(0)→ 2048→ 800
S: lr = 1e−6;500→ 800;m = 10 S: lr = 1e−6;700→ 800;m = 10 S: lr = 1e−6;700→ 800;m = 10

DSP C = 100,ε = 0.1 C = 100,ε = 0.1 C = 100,ε = 0.1
ConSE C = 100 C = 100 C = 100
COSTA C = 100 C = 100 C = 100
Fast0Tag V: lr = 1e−4;4096(0.5)→ 2048 V: lr = 1e−4;4096(0)→ 1024 V: lr = 1e−2;8192(0.5)→ 2048

Fast0Tag+ V: lr = 1e−4;8192(0.5)→ 1024→ 800 V: lr = 1e−4;8192(0.5)→ 1024→ 800 V: lr = 1e−4;4096(0)→ 1024→ 200
S: lr = 1e−6;500→ 800 S: lr = 1e−6;500→ 800 S: lr = 1e−6;300→ 200

Ours(RankNet) V: lr = 1e−4;512(0)→ 1024→ 800 V: lr = 1e−4;256(0)→ 1024→ 800 V: lr = 1e−4;512(0.5)→ 1024→ 200
S: lr = 1e−6;500→ 800 S: lr = 1e−6;700→ 800 S: lr = 1e−6;700→ 200

Ours(Hinge) V: lr = 1e−4;512(0.5)→ 1024→ 200 V: lr = 1e−4;512(0.5)→ 1024→ 800 V: lr = 1e−4;256(0)→ 2048→ 500
S: lr = 1e−6;500→ 200; m = 10 S: lr = 1e−6;500→ 800; m = 10 S: lr = 1e−6;500→ 500; m = 1

Charades

IFS

NRC(RankNet) V: lr = 1e−4;1024(0)→ 1024→ 500 V: lr = 1e−4;1024(0)→ 1024→ 500 V: lr = 1e−4;2048(0)→ 1024→ 200
S: lr = 1e−6;500→ 500 S: lr = 1e−6;500→ 500 S: lr = 1e−6;700→ 200

NRC(Hinge) V: lr = 1e−4;2048(0)→ 2048→ 800 V: lr = 1e−4;2048(0)→ 2048→ 800 V: lr = 1e−4;4096(0.5)→ 2048→ 500
S: lr = 1e−6;700→ 800;m = 10 S: lr = 1e−6;500→ 800;m = 10 S: lr = 1e−6;300→ 500;m = 10

WSE(RankNet) V: lr = 1e−4;1024(0.5)→ 2048 V: lr = 1e−4;512(0.5)→ 2048 V: lr = 1e−4;256(0.5)→ 2048
WSE(Hinge) V: lr = 1e−4;1024(0.0)→ 2048 V: lr = 1e−4;1024(0.0)→ 1024 V: lr = 1e−4;1024(0.0)→ 2048

RLR(RankNet) V: lr = 1e−4;256(0.5)→ 1024→ 500 V: lr = 1e−4;256(0.5)→ 1024→ 500 V: lr = 1e−4;256(0.5)→ 1024→ 500
S: lr = 1e−6;500→ 500 S: lr = 1e−6;500→ 500 S: lr = 1e−6;500→ 500

RLR(Hinge) V: lr = 1e−4;1024(0.5)→ 2048→ 500 V: lr = 1e−4;1024(0.5)→ 2048→ 500 V: lr = 1e−4;1024(0.5)→ 2048→ 500
S: lr = 1e−6;700→ 500;m = 10 S: lr = 1e−6;700→ 500;m = 10 S: lr = 1e−6;700→ 500;m = 10

DSP C = 1,ε = 0.1 C = 1,ε = 0.1 C = 1,ε = 0.1
ConSE C = 1 C = 1 C = 1
COSTA C = 1 C = 1 C = 1
Fast0Tag V: lr = 1e−4;4096(0.5)→ 2048 V: lr = 1e−4;8192(0)→ 2048 V: lr = 1e−4;4096(0.5)→ 2048

Fast0Tag+ V: lr = 1e−4;8192(0.5)→ 2048→ 800 V: lr = 1e−4;8192(0.5)→ 2048→ 800 V: lr = 1e−4;8192(0.5)→ 1024→ 800
S: lr = 1e−6;700→ 800 S: lr = 1e−6;700→ 800 S: lr = 1e−6;500→ 800

Ours(RankNet) V: lr = 1e−4;256(0.5)→ 2048→ 800 V: lr = 1e−4;256(0.5)→ 2048→ 800 V: lr = 1e−4;1024(0.5)→ 1024→ 800
S: lr = 1e−6;700→ 800 S: lr = 1e−6;700→ 800 S: lr = 1e−6;500→ 800

Ours(Hinge) V: lr = 1e−4;256(0.5)→ 2048→ 500 V: lr = 1e−4;256(0.5)→ 2048→ 800 V: lr = 1e−4;1024(0.5)→ 1024→ 800
S: lr = 1e−6;700→ 500; m = 1 S: lr = 1e−6;700→ 800; m = 1 S: lr = 1e−6;500→ 800; m = 1

LFS

NRC(RankNet) V: lr = 1e−4;1024(0)→ 2048→ 800 V: lr = 1e−4;2048(0)→ 1024→ 200 V: lr = 1e−4;4096(0)→ 2048→ 500
S: lr = 1e−6;700→ 800 S: lr = 1e−6;700→ 200 S: lr = 1e−6;300→ 500

NRC(Hinge) V: lr = 1e−4;2048(0)→ 2048→ 500 V: lr = 1e−4;2048(0)→ 1024→ 800 V: lr = 1e−4;2048(0)→ 2048→ 500
S: lr = 1e−6;500→ 800;m = 10 S: lr = 1e−6;700→ 200;m = 1 S: lr = 1e−6;500→ 800;m = 10

WSE(RankNet) V: lr = 1e−4;1024(0.5)→ 2048 V: lr = 1e−4;512(0.5)→ 2048 V: lr = 1e−4;1024(0.5)→ 2048
WSE(Hinge) V: lr = 1e−4;1024(0.0)→ 2048;m = 10 V: lr = 1e−4;256(0.0)→ 2048;m = 1 V: lr = 1e−4;1024(0.5)→ 2048;m = 10

RLR(RankNet) V: lr = 1e−4;256(0.5)→ 1024→ 500 V: lr = 1e−4;256(0.5)→ 2048→ 800 V: lr = 1e−4;256(0.5)→ 2048→ 800
S: lr = 1e−6;500→ 500 S: lr = 1e−6;700→ 800 S: lr = 1e−6;700→ 800

RLR(Hinge) V: lr = 1e−4;512(0.5)→ 2048→ 800 V: lr = 1e−4;512(0.5)→ 2048→ 800 V: lr = 1e−4;512(0.5)→ 2048→ 800
S: lr = 1e−6;700→ 800;m = 10 S: lr = 1e−6;700→ 800;m = 10 S: lr = 1e−6;500→ 800;m = 10

DSP C = 1,ε = 0.1 C = 1,ε = 0.1 C = 1,ε = 0.1
ConSE C = 1 C = 1 C = 1
COSTA C = 1 C = 1 C = 1
Fast0Tag V: lr = 1e−4;4096(0.5)→ 1024 V: lr = 1e−4;8192(0.5)→ 2048 V: lr = 1e−4;4096(0.5)→ 1024

Fast0Tag+ V: lr = 1e−4;8192(0.5)→ 2048→ 800 V: lr = 1e−4;8192(0)→ 1024→ 500 V: lr = 1e−4;4096(0.5)→ 1024→ 500
S: lr = 1e−6;700→ 800 S: lr = 1e−6;500→ 500 S: lr = 1e−6;500→ 500

Ours(RankNet) V: lr = 1e−4;512(0.5)→ 2048→ 800 V: lr = 1e−4;512(0.5)→ 2048→ 800 V: lr = 1e−4;1024(0.5)→ 2048→ 500
S: lr = 1e−6;700→ 800 S: lr = 1e−6;500→ 800 S: lr = 1e−6;700→ 500

Ours(Hinge) V: lr = 1e−4;512(0.5)→ 1024→ 500 V: lr = 1e−4;256(0.5)→ 2048→ 500 V: lr = 1e−4;1024(0.5)→ 1024→ 800
S: lr = 1e−6;700→ 500; m = 1 S: lr = 1e−6;700→ 500; m = 1 S: lr = 1e−6;500→ 800; m = 1
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