15 research outputs found

    Deep neural network or dermatologist?

    Full text link
    Deep learning techniques have proven high accuracy for identifying melanoma in digitised dermoscopic images. A strength is that these methods are not constrained by features that are pre-defined by human semantics. A down-side is that it is difficult to understand the rationale of the model predictions and to identify potential failure modes. This is a major barrier to adoption of deep learning in clinical practice. In this paper we ask if two existing local interpretability methods, Grad-CAM and Kernel SHAP, can shed light on convolutional neural networks trained in the context of melanoma detection. Our contributions are (i) we first explore the domain space via a reproducible, end-to-end learning framework that creates a suite of 30 models, all trained on a publicly available data set (HAM10000), (ii) we next explore the reliability of GradCAM and Kernel SHAP in this context via some basic sanity check experiments (iii) finally, we investigate a random selection of models from our suite using GradCAM and Kernel SHAP. We show that despite high accuracy, the models will occasionally assign importance to features that are not relevant to the diagnostic task. We also show that models of similar accuracy will produce different explanations as measured by these methods. This work represents first steps in bridging the gap between model accuracy and interpretability in the domain of skin cancer classification

    On Interpretability of Deep Learning based Skin Lesion Classifiers using Concept Activation Vectors

    Full text link
    Deep learning based medical image classifiers have shown remarkable prowess in various application areas like ophthalmology, dermatology, pathology, and radiology. However, the acceptance of these Computer-Aided Diagnosis (CAD) systems in real clinical setups is severely limited primarily because their decision-making process remains largely obscure. This work aims at elucidating a deep learning based medical image classifier by verifying that the model learns and utilizes similar disease-related concepts as described and employed by dermatologists. We used a well-trained and high performing neural network developed by REasoning for COmplex Data (RECOD) Lab for classification of three skin tumours, i.e. Melanocytic Naevi, Melanoma and Seborrheic Keratosis and performed a detailed analysis on its latent space. Two well established and publicly available skin disease datasets, PH2 and derm7pt, are used for experimentation. Human understandable concepts are mapped to RECOD image classification model with the help of Concept Activation Vectors (CAVs), introducing a novel training and significance testing paradigm for CAVs. Our results on an independent evaluation set clearly shows that the classifier learns and encodes human understandable concepts in its latent representation. Additionally, TCAV scores (Testing with CAVs) suggest that the neural network indeed makes use of disease-related concepts in the correct way when making predictions. We anticipate that this work can not only increase confidence of medical practitioners on CAD but also serve as a stepping stone for further development of CAV-based neural network interpretation methods.Comment: Accepted for the IEEE International Joint Conference on Neural Networks (IJCNN) 202

    Usefulness of Heat Map Explanations for Deep-Learning-Based Electrocardiogram Analysis

    Get PDF
    Deep neural networks are complex machine learning models that have shown promising results in analyzing high-dimensional data such as those collected from medical examinations. Such models have the potential to provide fast and accurate medical diagnoses. However, the high complexity makes deep neural networks and their predictions difficult to understand. Providing model explanations can be a way of increasing the understanding of “black box” models and building trust. In this work, we applied transfer learning to develop a deep neural network to predict sex from electrocardiograms. Using the visual explanation method Grad-CAM, heat maps were generated from the model in order to understand how it makes predictions. To evaluate the usefulness of the heat maps and determine if the heat maps identified electrocardiogram features that could be recognized to discriminate sex, medical doctors provided feedback. Based on the feedback, we concluded that, in our setting, this mode of explainable artificial intelligence does not provide meaningful information to medical doctors and is not useful in the clinic. Our results indicate that improved explanation techniques that are tailored to medical data should be developed before deep neural networks can be applied in the clinic for diagnostic purposes

    Explainable deep learning models in medical image analysis

    Full text link
    Deep learning methods have been very effective for a variety of medical diagnostic tasks and has even beaten human experts on some of those. However, the black-box nature of the algorithms has restricted clinical use. Recent explainability studies aim to show the features that influence the decision of a model the most. The majority of literature reviews of this area have focused on taxonomy, ethics, and the need for explanations. A review of the current applications of explainable deep learning for different medical imaging tasks is presented here. The various approaches, challenges for clinical deployment, and the areas requiring further research are discussed here from a practical standpoint of a deep learning researcher designing a system for the clinical end-users.Comment: Preprint submitted to J.Imaging, MDP

    Explainable AI in medical imaging:An overview for clinical practitioners - Saliency-based XAI approaches

    Get PDF
    Since recent achievements of Artificial Intelligence (AI) have proven significant success and promising results throughout many fields of application during the last decade, AI has also become an essential part of medical research. The improving data availability, coupled with advances in high-performance computing and innovative algorithms, has increased AI's potential in various aspects. Because AI rapidly reshapes research and promotes the development of personalized clinical care, alongside its implementation arises an urgent need for a deep understanding of its inner workings, especially in high-stake domains. However, such systems can be highly complex and opaque, limiting the possibility of an immediate understanding of the system's decisions. Regarding the medical field, a high impact is attributed to these decisions as physicians and patients can only fully trust AI systems when reasonably communicating the origin of their results, simultaneously enabling the identification of errors and biases. Explainable AI (XAI), becoming an increasingly important field of research in recent years, promotes the formulation of explainability methods and provides a rationale allowing users to comprehend the results generated by AI systems. In this paper, we investigate the application of XAI in medical imaging, addressing a broad audience, especially healthcare professionals. The content focuses on definitions and taxonomies, standard methods and approaches, advantages, limitations, and examples representing the current state of research regarding XAI in medical imaging. This paper focuses on saliency-based XAI methods, where the explanation can be provided directly on the input data (image) and which naturally are of special importance in medical imaging.</p

    Melanoma Skin Cancer Identification with Explainability Utilizing Mask Guided Technique

    Get PDF
    Melanoma is a highly prevalent and lethal form of skin cancer, which has a significant impact globally. The chances of recovery for melanoma patients substantially improve with early detection. Currently, deep learning (DL) methods are gaining popularity in assisting with the identification of diseases using medical imaging. The paper introduces a computational model for classifying melanoma skin cancer images using convolutional neural networks (CNNs) and vision transformers (ViT) with the HAM10000 dataset. Both approaches utilize mask-guided techniques, employing a specialized U2-Net segmentation module to generate masks. The CNN-based approach utilizes ResNet50, VGG16, and Xception with transfer learning. The training process is enhanced using a Bayesian hyperparameter tuner. Moreover, this study applies gradient-weighted class activation mapping (Grad-CAM) and Grad-CAM++ to generate heatmaps to explain the classification models. These visual heatmaps elucidate the contribution of each input region to the classification outcome. The CNN-based model approach achieved the highest accuracy at 98.37% in the Xception model with a sensitivity and specificity of 95.92% and 99.01%, respectively. The ViT-based model approach achieved high values for accuracy, sensitivity, and specificity, such as 92.79%, 91.09%, and 93.54%, respectively. Furthermore, the performance of the model was assessed through intersection over union (IOU) and other qualitative evaluations. Finally, we developed the proposed model as a web application that can be used as a support tool for medical practitioners in real-time. The system usability study score of 86.87% is reported, which shows the usefulness of the proposed solution

    Explaining the Black-box Smoothly- A Counterfactual Approach

    Full text link
    We propose a BlackBox \emph{Counterfactual Explainer} that is explicitly developed for medical imaging applications. Classical approaches (e.g. saliency maps) assessing feature importance do not explain \emph{how} and \emph{why} variations in a particular anatomical region is relevant to the outcome, which is crucial for transparent decision making in healthcare application. Our framework explains the outcome by gradually \emph{exaggerating} the semantic effect of the given outcome label. Given a query input to a classifier, Generative Adversarial Networks produce a progressive set of perturbations to the query image that gradually changes the posterior probability from its original class to its negation. We design the loss function to ensure that essential and potentially relevant details, such as support devices, are preserved in the counterfactually generated images. We provide an extensive evaluation of different classification tasks on the chest X-Ray images. Our experiments show that a counterfactually generated visual explanation is consistent with the disease's clinical relevant measurements, both quantitatively and qualitatively.Comment: Under review for IEEE-TMI journa
    corecore