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A B S T R A C T   

Since recent achievements of Artificial Intelligence (AI) have proven significant success and promising results 
throughout many fields of application during the last decade, AI has also become an essential part of medical 
research. The improving data availability, coupled with advances in high-performance computing and innovative 
algorithms, has increased AI’s potential in various aspects. Because AI rapidly reshapes research and promotes 
the development of personalized clinical care, alongside its implementation arises an urgent need for a deep 
understanding of its inner workings, especially in high-stake domains. However, such systems can be highly 
complex and opaque, limiting the possibility of an immediate understanding of the system’s decisions. Regarding 
the medical field, a high impact is attributed to these decisions as physicians and patients can only fully trust AI 
systems when reasonably communicating the origin of their results, simultaneously enabling the identification of 
errors and biases. Explainable AI (XAI), becoming an increasingly important field of research in recent years, 
promotes the formulation of explainability methods and provides a rationale allowing users to comprehend the 
results generated by AI systems. In this paper, we investigate the application of XAI in medical imaging, 
addressing a broad audience, especially healthcare professionals. The content focuses on definitions and tax
onomies, standard methods and approaches, advantages, limitations, and examples representing the current state 
of research regarding XAI in medical imaging. This paper focuses on saliency-based XAI methods, where the 
explanation can be provided directly on the input data (image) and which naturally are of special importance in 
medical imaging.   

1. Introduction 

In recent years, the number of Artificial Intelligence (AI) based ap
plications for research and clinical care in medicine has increased 
dramatically, with medical imaging clearly being the focus of such de
velopments [1]. Among the AI methods, Deep Learning (DL) has proven 
significant success in the field of computer vision, enabling promising 
solutions to medical-related image tasks, such as image preprocessing, 

registration, detection, and segmentation. To a certain extent, resulting 
systems have the potential to improve diagnostic accuracy or even 
exceed human performance [2]. The main advantage of a DL system is 
the versatile range of applications it can be deployed in, mainly because 
of the vast amount of successive layers within an Artificial Neural 
Network (ANN), a fundamental element of DL that enables variably 
derived mapping functions between input data and the desired outputs 
(e.g., prediction). The mapping for a neural network is approximated 
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during an elaborate training phase. However, the very nature of such 
networks often impedes a direct interpretation of the results, mainly 
because of the inherent unpredictability of mapping functions coupled 
with high structural complexity. The most relevant aspect concerning 
recent optimizations and advances of DL was initially limited to func
tional improvement [3,4]. Past years’ research focused on implementing 
innovative and powerful system architectures, pursuing the goal of 
providing the best possible solutions to several tasks. This led to 
increasingly opaque and complex systems. At the same time, explain
ability and interpretability suffered under this trend, resulting in 
increased difficulty in understanding the prediction process and inner 
workings of emerging solutions. Consequently, the complexity of newly 
published AI solutions continues to increase, in some cases already 
operating in the trillion parameter range [5]. While such large param
eter spaces lead to ever-increasing performance and expand application 
areas, the human ability to understand, comprehend and interpret how 
these systems work no longer keeps up, as depicted in Fig. 1. Conse
quently, the corresponding perspective on DL typically remains limited 
to a Black-Box principle impeding its implementation within the medical 
domain. 

Especially where decisions made with the help of AI can have severe 
consequences, efforts are usually made to control and supervise these 
systems by human experts. This applies extraordinarily to the healthcare 
sector, where the consequences of such decisions can mean life and 
death. Moreover, even though the lack of explainability and interpret
ability does not hinder an outstanding performance of DL approaches, 
nor (depending on the domain) is it mandatory, the introduction of 
methods to better understand AI can be beneficial in many aspects. First 
and foremost, the need for explainability is strongly related to the scope 
and potential impact of a system’s decisions in the application domain 
context. Consequently, in high-stake domains, such as law, autonomous 
driving, or healthcare, the question of “Why?” becomes existential. 
Especially against the background that the use of such systems aims at an 
interaction between healthcare professionals and AI-based support sys
tems, which directly impacts patients and their health, it becomes 
obvious why the origin of decisions must be explainable. In addition, 
interpretability and explainability enable the linking of clinicians’ and 
doctors’ domain expertise with specific results. Moreover, explainability 
not only aims at functional benefits but also adds to clinical confidence 
and consistent compliance with legal and ethical requirements. These 
refer to regulations such as the European Union’s General Data Protec
tion Regulation, which enforces the right of patients to receive trans
parent information about a decision’s origin [6], or the European AI Act, 
which introduces a regulatory and legal framework for AI systems. 
Lastly, identifying errors, limitations, and potential biases is essential in 
developing and applying AI systems and must be addressed accordingly 
[7]. For that reason, after the zeal to achieve exceedingly high perfor
mance, the demand for interpretability and explainability of AI has 
experienced a tremendous resurgence over recent years, promoting the 
formation of a new research field known as eXplainable AI (XAI) [8,9]. 
Generally, XAI refers to techniques that enable XAI stakeholders [10] to 
understand an AI algorithm and its decisions better. As proposed by 
Gilpin et al. [11] and later incorporated by Nauta et al. [12], this can be 
achieved by disclosing its reasoning, functioning, or behavior in human- 

understandable terms. However, depending on domain knowledge and 
AI expertise, the understandability, and need for explainability may vary 
across XAI stakeholder groups. In this paper, we primarily refer to end- 
users, including radiologists, clinicians, and doctors whose main need 
presumably might be the linking of knowledge and confirmation of 
diagnosis. For completeness, we disclosed an overview of all XAI 
stakeholder groups within the appendices (Appendix A). As depicted in 
Fig. 2, several approaches lead to an explanation, with the starting point 
depending on whether a given AI model is explainable by nature (called 
White-Box models) or not (named Black-Box model). 

In this review, we identify key concepts and present an overview of 
established saliency-based (also called visual) XAI methods mined from 
diverse literature to provide end-users in the medical imaging domain 
(radiologists, clinicians, and doctors) an understanding of XAI’s poten
tial in a non-technical manner. The paper’s contributions can be sum
marized as follows:  

- Presenting a taxonomy for categorizing saliency-based XAI methods 
into well-defined groups to provide an intuitive overview. 

- Categorization and summarization of the core components and al
gorithms of established XAI methods using the proposed taxonomy.  

- Outlining of the limitations, pitfalls, and potentials of included visual 
XAI methods concerning practical implementation, evaluation, and 
interpretation and providing accompanying implementations in 
medical imaging. 

- Summarization of the current state of XAI research in medical im
aging and pointing out future directions. 

1.1. Defining AI, ML, and DL 

Recently, the promotion and usage of AI-based solutions have 
become common, leading to an interchangeable use of the terms “arti
ficial intelligence”, “machine learning”, and “deep learning”. Even 
though they are closely related, noteworthy differences must be 
considered. AI is a broad field comprising Machine Learning (ML) and DL 
but also covers various other disciplines, not focusing on any learning 
mechanisms at all. Generally, problems solved by general-operating AI 
systems can be phrased mathematically by a list of formal rules. The real 
potential of AI proved to be solving tasks that can be performed by 
humans easily but are difficult to define formally. In other words, AI 
focuses on transferring tasks, usually performed by humans, to the 
computational domain, traditionally realized by formulating explicit 
rule sets. A subset of AI is ML, which does not focus on imitating human 
capabilities by being programmed explicitly but instead adapts human 
learning mechanisms. In order to learn how to solve a given problem, a 
so-called ML model must be trained with a sufficiently large amount of 
data, representing the knowledge base from which rules can be auto
matically derived. In this context, a model refers to a parameterizable 
entity obtained during the training process to gain the ability to perform 
a pre-defined task such as pattern recognition, regression, or classifica
tion. Despite successful implementations, traditional ML limitations are 
attributed to feature extraction from data requiring human involvement. 
Additionally, complex tasks can exceed the capacities of ML models and 

Fig. 1. Abstracted depiction of the interaction between AI models and end-users, which is not extended by the use of XAI.  
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not be adequately solved. Those limitations are what DL, a domain 
within ML comprising representational learning methods, excels at. As 
current DL algorithms are inspired by computational models of biolog
ical learning, one of the names that DL models go by is ANNs [13]. 
However, even though ANNs have partially been applied to understand 
brain function, it is essential to state that they can not be mistaken for 
realistic modeling of biological brain functionality. The modern defini
tion of DL transcends the neuroscientific perspective by proposing a 
general learning approach comprising multiple composition levels rep
resenting automatically extracted features [3]. Consequently, DL can be 
defined as a mathematical framework based on deep ANNs for auto
matically deriving representations from given data [10]. DL proved to be 
a suitable approach for solving challenging and highly complex prob
lems by automating the feature extraction process. Automatically 
extracted feature compositions allow a condensed representation, 
reflecting a hierarchy of structures in the data containing specific fea
tures – such as shapes, edges, and textures in the context of image data. 
Understanding how AI is implemented into visual imagery interpreta
tion requires understanding another currently relevant DL network ar
chitecture: Convolutional Neural Networks (CNNs) [14]. 

These are ANNs that are designed for image data. In general, this 
architecture benefits from its ability to drastically reduce the number of 
parameters within the network inspired by biological perception 
mechanisms. Within a CNN, convolutional layers successively use 
learnable filters on input images to produce so-called feature maps 
denoting the detection of certain features in input images, such as 
shapes, colors, or structures [15]. Subsequent pooling layers transform 
each obtained feature map into a more condensed depiction. During 
inference, these filters represent the weights and connections within the 
CNN that can parametrize complex mapping functions from input im
ages to specific outputs, also called predictions (e.g., “1” indicating the 

existence of a disease in the input image and “0” denoting its absence) as 
exemplarily depicted in Fig. 3 for a binary classification task. The for
ward pass (or forward propagation) refers to the calculation of inter
mediate variables (including predictions) from input to output. In 
contrast, during backpropagation, the order is traversed from the output 
to the input, yielding intermediate variables (partial derivatives) 
required while calculating the gradient with respect to specific param
eters. Backpropagation is used for weight adjustment during training but 
can also be used during inference. For example, if the network from 
Fig. 3 predicted class “1” (fracture), backpropagation could be applied to 
uncover which image features (stored in the learned feature maps) 
contributed to the model’s decision. 

1.2. XAI-based taxonomies 

Similar to AI, ML, and DL, in the research field of XAI, the terms 
“explainability” and “interpretability” are often used synonymously, 
without distinctive taxonomy or definition [16]. Concerning a clear 
taxonomic demarcation, there is neither a mathematical nor a fixed 
definition of interpretability in any other sense [17]. As stated by Lipton, 
“the term explainability holds no agreed-upon meaning, and yet ma
chine learning conferences frequently publish papers which wield the 
term in a quasi-mathematical way”, which underlines the ambiguity of 
the term [16]. However, for the context of this paper, a non- 
mathematical definition by Miller will be used, who studied the topic 
from the perspective of social sciences [18]: “Interpretability is the degree 
to which a person can understand the cause of a decision”. Generally, 
interpretability is concerned chiefly with the intuition behind produced 
outputs of a model to identify cause-and-effect relationships. In contrast, 
explainability is associated with a system’s internal logic and procedures 
[19]. As outlined in Fig. 4, the grouping of XAI methods throughout this 

Fig. 2. Distinction of a deployment setup concerning an AI system with XAI. White-Box models are explainable by nature and can directly yield explanations. In 
contrast, Black-Box models must be explained globally (the model as a whole) or locally (a model’s single prediction). Both views can optionally include the training 
of a subsequent surrogate model. Surrogate models are explainable models trained to approximate the predictions of an opaque Black-Box model. 
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Fig. 3. Architectural setup of a CNN solving a binary classification task for detecting fractures containing Convolution layers to generate feature maps by applying 
filters (red rectangles with dashed lines) and Pooling layers to reduce the feature maps’ dimensionality. The filters are moved iteratively across the whole image, 
capturing relevant image features. The specific filter values are learned during model training and are often called the weights of the CNN. 
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paper is conducted from the taxonomy proposed by the authors of [3]. 
This taxonomy scheme is primarily used to characterize the presented 
XAI methods within this paper. Even though a characterization of 
common properties serves as a distinctive classification, those properties 
are not necessarily mutually exclusive. 

2. Visual XAI methods in medical imaging 

In medical imaging, several frequently employed explainability ap
proaches are based on visual (saliency-based) explanations related to a 
model’s intermediate or final output [6]. For saliency-based approaches, 
the main idea is to exploit spatial information preserved through con
volutional layers of a model, analyzing which parts of an image lead to a 
resulting decision. Conclusively an image’s salient parts, with the highest 
attribution to the prediction, are then highlighted. When the attributions 
of all input features are arranged together to have the same shape as the 
input sample, they form so-called attribution maps, which usually are 
represented as heatmaps in which one color indicates a feature’s positive 
contribution to the activation of the target output, while another color 
indicates a suppressing effect [20]. In technical terms, the generation of 
attribution maps can be broken down into perturbation-based or back
propagation-based methods [3]. Commonly, both categories are imple
mented as post-hoc visualization approaches and provide local 
explanations, as will be shown using concrete examples in the upcoming 
sections. 

In order to determine which trends exist regarding the imple
mentation of XAI methods in medical imaging, we performed a PubMed 
analysis based on a manual categorization using Rayyan [22] of all 
methods into visual (saliency-based) and non-visual (textual, auxiliary, 
and case-based). Textual approaches contain methods to semantically 
explain a prediction [23–25], whereas auxiliary measures refer to 
methods providing insights in tabular or graphical form, such as feature 
importances or statistical indicators. Lastly, case-based explanations can 
help to identify task-related concepts [26] or influential samples [27]. 
As indicated by the results in Fig. 5, among existing XAI methods, visual 
explanations seem to be the most frequent choice in medical image 
analysis which might be attributed to the ease of understanding and 
interpretation. Generally, visual explanations enable ascertaining 
whether a model’s decision-making is similar to that of a radiologist and 
if relevant anatomical reference points are learned. If noticeable dif
ferences occur, such methods can be used to identify possible sources of 
error and biases quickly. However, the contribution of visual XAI ap
proaches is highly diversified and not confined to bias identification 
only but also allows for transparent systems and diagnosis confirmation. 

A vast amount of papers explaining DL models in medical image 
diagnosis use saliency-based (visual) methods, which is presumably due 
to their model-agnostic plug-and-play nature alongside conveniently 
available open-source implementations (see Appendix C) [3]. As justi
fied by the trend in Fig. 5, this work’s content is confined to visual XAI 
approaches. Moreover, we compared the Top 5 (measured by the 

Fig. 4. Distinction between common XAI-related attributes used for categorizing explanations methods.  

Fig. 5. Annual development of saliency-based (visual) and other non-visual (frequently divided into textual, example-based- case-based [21]) XAI methods applied in 
medical images, based on the cumulative number of citations (see Supplementary File 1). 
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citation/year-ratio) visual XAI methods in medical imaging, with 
GradCAMs being the most frequent, as shown in Fig. 6. All displayed 
methods will be explained in detail in the subsequent sections. 

2.1. Perturbation-based explanations 

Perturbation is a technique to analyze the effect of altering the input 
features on the output of an AI model. That is achieved by removing, 
masking, or modifying certain input features, then performing the for
ward pass (computing the model’s prediction) and measuring the de
viation from the initial prediction. Generally, if image dimensions are 
independent, then perturbation is perfectly suitable, as the marginal 
effect of each dimension can be measured precisely. Unfortunately, 
specifically for image data, dimensions and pixels are strongly interde
pendent. Having an X-ray image of the lungs, removing a single pixel 
would probably not cause a significant change in the image’s prediction 
class. The reason is that a pixel’s information can be reconstructed based 
on its neighbors. Therefore, removing whole patches instead of indi
vidual pixels is more effective in achieving an effect. Common patch 
sizes are 5 × 5, or 10 × 10, depending on the size of target features and 
computational capacities [3]. 

For example, Occlusion [28], which Zeiler and Fergus first used, is a 
technique to generate attribution maps showing which parts of the 
image positively or negatively contribute to the score for a specific class. 
When applying occlusion, the input image is divided into rectangular 
patches of a particular size which are iteratively replaced with a pre- 
defined baseline. The attribution map’s resolution is confined to the 
chosen patch size. A systematic perturbation of the input image is to 
monitor the effect on the output. This concept exploits that the most 
significant parts will strongly impact the output when altered. The 
implementation is model-agnostic as the method does not require access 
to the model’s internal components. Tang et al. [29] generated occlusion 
maps to interpret models developed to classify pathologies from histo
pathological slides related to Alzheimer’s disease, such as cored plaques, 
diffuse plaques, and cerebral amyloid angiopathy. However, a potential 
drawback is a high computational expense in terms of required 
computation time compared to other methods [30]. A similar approach, 
namely Local Interpretable Model-agnostic Explanations (LIME) 
[31], is a prevalent method using a comparative approach to occlusion, 
which involves training a secondary, interpretable surrogate model – e. 
g., linear regression or decision tree – to explain individual predictions 
made by the primary, opaque model. LIME’s approach to image data is 
based on producing variations of the images by contiguously grouping 

pixels of similar intensity into so-called superpixels. These superpixels, 
which can be of any arbitrary shape, are then “switched off” iteratively 
by replacing the entries in each superpixel with a user-defined value (e. 
g., a specific intensity like 0 or the median). Identified relevant regions 
can then be shown delimited or highlighted on the input image. Magesh 
et al. [32] developed a model for the binary classification of DaT scan 
images as having Parkinson’s disease or not and provided LIME expla
nations. Like occlusion, LIME is a model-agnostic and local method that 
can be applied to any model. The modularity and extensibility of this 
method compensate for the fact that it requires an appropriate specifi
cation of several parameters (i.e., surrogate model, image segmentation 
algorithm to derive the contiguous patches/ super-pixels, a similarity 
function for comparing original and perturbed sample, and the number 
of generated samples) [30]. Due to the number of tunable parameters, 
minor alterations can lead to significant differences in results. Therefore, 
concerning reproducibility, awareness of these parameters plays an 
important role. Moreover, in some cases, obtained attribution maps can 
convey a rather low image quality, as superpixels are coarse. However, 
other methods can yield improved quality. For example, Meaningful 
Perturbations [33] proposes optimized perturbation masks that blur 
the image as little as necessary while maximally decreasing a class score, 
posing an optimization problem. This differs from other visualization 
techniques using heuristics like high positive gradient values as an in
dicator of relevance. Instead of blocking out image parts (which can lead 
to out-of-distribution data), they suggested using naturalistic effects, 
such as blurring, noising, or constant value, to obtain more realistic 
perturbation and insightful explanations. However, Uzunova et al. [34] 
reasoned that this approach is unsuitable for medical imaging since 
replacement with constant values is implausible. Medical images natu
rally contain noise and blur, leading to inconsistencies. Instead, they 
proposed replacing pathologies on Optical Coherence Tomography 
(OCT) images and brain lesion MRIs with their healthy-looking equiv
alent using a variational autoencoder (VAE) and analyzed the effects on 
classification. Results indicate that the VAE’s perturbations realistically 
pinpoint pathological regions in both imaging studies, OCT and MRI. 
Moreover, the VAE’s localization of pathologies is superior to blurring or 
constant-value perturbations. Another extension of Meaningful Pertur
bation was pursued in Real-time Perturbations [35] by proposing a 
single forward-pass method of estimating an optimal perturbation mask. 
This specific task was delegated to a second neural network for which 
the generation of perturbation masks was defined as a learnable task of 
saliency detection. Moreover, Extremal Perturbations [36] aim to 
identify optimal perturbation masks by proposing a new operator called 
smooth max. In this context, optimal (extremal) perturbations refer to 
those areas with a maximal effect on the network’s output among all 
perturbations. In contrast, so-called SHapley Additive exPlanations 
(SHAP) [37] utilize additive feature attribution methods based on 
Shapley values. These refer to a method from a coalitional game theory 
that estimates how to fairly distribute the “payout” (prediction) among 
the model’s features [38]. In this case, the”players” are the individual 
features of a given instance, and the”pay-off” is the corresponding pre
diction minus the current average prediction for all instances. In general, 
it combines the idea of LIME with Shapley values. In practice, the input 
data is divided into coalitions and permuted by their presence or 
absence, on which a linear model is trained. However, the way the new 
instances are weighted differs from the LIME method using the Shapley 
value estimation of the corresponding coalitions. A downside of the 
original approach is that it scales exponentially in the number of fea
tures. Consequently, the authors of [37] proposed KernelSHAP, an 
approximate, computationally feasible method inspired by local surro
gate models. For SHAP, global interpretations are consistent with the 
local explanations as Shapley values are the unit of global in
terpretations. However, resulting values can be misinterpreted, and – 
like many perturbation-based methods – it ignores feature dependence 

Fig. 6. Annual development of Top 5 saliency-based XAI methods applied in 
medical image analysis based on the total number of citations. 
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(e.g., correlation). For example, the algorithm would assign a large 
weight to a feature when given a group of highly correlated features [A, 
B, C] and one arbitrary representative of the group, e.g., A. Conse
quently, B and C would hardly provide any additive information than A. 
Features B and C are redundant, and the model’s decision-making pro
cess will rely heavily on feature A. Consequently, features B and C will 
score poorly when SHAP is used to explain the model. If SHAP assigned 
high-importance scores to features B and C, it would not be faithful to 
the model, even though they might represent similar statistical relations 
as A concerning the label [38]. Generally, correlation bias occurs 
because of how the ML algorithm trains the model, not how SHAP es
timates feature importance. Young et al. [39] investigated the usage and 
explainability of KernelSHAP on dermoscopic images. Another 
perturbation-based approach employed in Randomized Input Sam
pling for Explanation of Black-box Models (RISE) [40] occludes input 
images using random occlusion patterns that are produced by sampling 
small binary masks (e.g., 7 × 7) and then interpolating them to larger 
resolutions. The model’s response to each masked image can be 
captured by subsampling the images, revealing significant image areas. 
The final attribution map is a linear combination of the binary masks 
using weighted sums of the predicted scores multiplied with the masks. 
One limitation of RISE and Occlusion is that they do not consider ob
jects’ morphology and produce only approximate results. Moreover, as 
pointed out by Cooper et al. [41], both RISE and Meaningful Perturba
tion rely on pre-defined parameters, such as the number of epochs or 
generated masks and kernel size. Therefore, it can be difficult to deter
mine optimal parameter values upfront to trade off accuracy and effi
ciency. Consequently, Cooper et al. [41] proposed a new technique 
called Hierarchical Perturbation (HiPe), which extends RISE. During 
their analyses, the authors’ key findings were that a large amount of 
computation occurs when regions with little effect on the model output 
are iteratively perturbed or when random perturbation region selection 
causes spatially similar or overlapping regions. To counteract these 
findings, salience thresholding was applied to perform model-agnostic 
saliency mapping of comparable quality and significantly faster than 
existing methods at a fraction of the computational cost. HiPe does this 
by focusing on perturbing the most salient regions with increasing res
olution while ignoring regions that do not change the model’s output. 
Respectively, regions with little impact are discarded [41]. 

2.2. Backpropagation-based explanations 

In contrast, in backpropagation-based methods, an XAI algorithm 
performs one or more forward passes through the network and yields 
attribution maps calculating partial derivatives during the back
propagation stage to estimate the impact of gradients, weights, and 
activations. Therefore, this category subdivides further saliency maps, 
relevance maps, and class activation maps [42]. Simonyan et al. [43] 
were the first to propose a method utilizing backpropagation called 
Saliency Map Visualization. It calculates the partial derivative’s ab
solute value regarding the target output class w.r.t. the network’s input 
image. The idea is that a gradient’s value indicates input features 
(pixels) that have the highest impact on the output. Respectively, pixels 
of the input image can be highlighted based on the amount of the pos
itive gradient they receive, indicating their contribution. However, in 
some cases, the gradient is cut at zero when the input to the ReLU 
activation function during the forward pass is negative, resulting in a 
saturation problem [44]. This method is also known as Vanilla 
Gradient and can be seen as a generalization [38] of the later intro
duced Deconvolution Networks (DeconvNets) by Zeiler and Fergus 
[28]. DeconvNet’s fundamental idea is to visualize neural activations of 
individual layers by reversing the network flow and setting the gradients 
to zero during the backward pass. Therefore, DeconvNets produce a 
CNN’s opposite result with filters and unpooling operations, creating an 

activation map of neural (feature) activity. However, this method is 
confined to max-pooling layers, while the unpooling uses only an 
approximate inverse of the convolution features. De Vos et al. [45] 
predicted the slice-wise coronary artery calcium amount on CTs and 
subsequently applied deconvolution to visualize which slice region 
contributed to the prediction. A modification of this approach led to a 
new method called Guided BackPropagation (GBP) [46] which is 
based on the idea that neurons act as feature detectors. It is called 
“guided” because, during backpropagation, the activated neurons are 
chosen (guided) by setting negative gradients to zero, revealing image 
areas on which significant features exist. GBP is generic enough to work 
with several network architectures, like convolutional neural networks, 
generative adversarial networks, and fully-connected networks [47]. 
Adebayo et al. [48] showed one limitation: in some cases, GBP could be 
invariant to data and models, as in their evaluation, it performed partial 
input recovery. This is problematic, as recovering image parts does not 
explain predictions but emphasizes image features. Dubost et al. [49] 
introduced an automated method to quantify perivascular spaces on 
MRIs, which can indicate cerebral small vessel disease. To investigate if 
the neural networks learned the structures of interest or focused on other 
perivascular spaces’ correlated features, the authors used GBP. Another 
visual explanation technique is Layer-Wise Relevance Propagation 
(LRP) [50]. Intuitively, LRP uses a network’s weights and activations 
resulting from the forward pass and propagates the output back through 
the network until the input layer while assigning a relevance score to 
each input neuron from a preceding layer in each iteration. Put shortly, 
LRP is built upon the decomposition of the model’s decision and gen
erates distributed relevance scores that denote the connection between 
the activations of a given neuron and its input. Böhle et al. [51] used this 
method to identify regions from brain MRIs indicating Alzheimer’s 
disease. Moreover, they compared saliency maps generated with LRP 
against those generated with Guided Backpropagation and concluded 
that LRP was more accurate in identifying relevant regions. One po
tential drawback of LRP is that resulting heatmaps can be sensitive to 
specific parameters; e.g., in the case of LRP, this can be the β value used 
to produce them [51]. 

Following the work on LRP, Shrikumar et al. [44] proposed Deep 
Learning Important FeaTures (DeepLiFT), which uses a reference 
image alongside the input image. This enables it to compare each neu
ron’s activation to a reference activation and estimate the attribution 
according to the deviation. Moreover, separate consideration of positive 
and negative attributions can reveal dependencies that other approaches 
might not capture. De Souza et al. [52] applied DeepLiFT, among other 
methods, to highlight important regions for classifying early-cancerous 
tissues on endoscopic images in Barrett’s esophagus-diagnosed pa
tients. A limitation of DeepLIFT is that it is not implementation invariant, 
meaning that two identical models with different implementations but 
identical predictions can lead to deviating explanations [53]. Also, in 
response to a lack of sharpness in many attribution maps, Shrikumar 
et al. [54] proposed Input * Gradient, which calculates attribution by 
considering the output’s partial derivatives w.r.t. the input and multi
plying these with the input (pixel values). However, similar to Vanilla 
Gradients, this method can also encounter saturating gradients [55]. 
Stating that most gradient-based techniques lack certain “axioms” which 
are desirable characteristics for gradient-based approaches, Sundarar
ajan et al. [53] point out that LRP, DeconvNets, GBP, and DeepLift have 
specific back-propagation logic that violates some axioms. For example, 
the axiom completeness requires an attribution method to completely 
justify the output, in the sense that attributions add up to the difference 
between the output of an input and a corresponding baseline (e.g., an 
all-zero vector) [56]. Therefore, Sundararajan et al. [56] proposed In
tegrated Gradients (IG), which in contrast to Input * Gradient, does not 
compute a single derivative evaluated at the input, but instead computes 
the average gradient by varying the input along a provided baseline (a 
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starting point that does not contain any information for the model, e.g., a 
black image). In this method, completeness [56], is satisfied: The attri
butions sum up to the target output minus the target output that was 
evaluated at the baseline. Nauta et al. [12] defined a more extensive list 
of axioms with 12 desired properties, such as completeness, compact
ness, and correctness. Wargnier-Dauchelle et al. [57] used IG on MRIs 
for Multiple Sclerosis classification and showed that using IG-based 
tissue probability maps instead of raw MRIs as model input led to 
more accurate classifiers. Lastly, a special technique to make gradient- 
based explanations less noisy, called SmoothGrad, was proposed by 
Smilkov et al. [58]. During this procedure, multiple versions of an input 
image are produced by adding noise to it. Subsequently, resulting pixel 
attribution maps are averaged. The fundamental idea is to “smooth out” 
fluctuations occurring in derivatives within neural networks (e.g., Va
nilla Gradients heatmaps contain much noise caused by fluctuations in 
the output activation derivatives [59]). However, SmoothGrad is not a 
standalone XAI method but rather an extension to stabilize any gradient- 
based approach. The work of [60] deployed SmoothGrad to explain the 
DL-based classification of pancreatic tissue on histopathologic slides. 
Besides developments contributing to better performance in image 
recognition and localization, there are also approaches concerning 
architectural modifications for networks to become more interpretable. 

So far, we have outlined methods for visualizing attribution maps of 
models. However, beyond these maps, CNNs, for example, have a stack 
of fully connected layers (on top of the last layer) converting feature 
maps to a pre-softmax score, which is not easily interpretable. As a 
countermeasure, Zhou et al. [61] proposed a procedure for generating 
so-called Class Activation Mappings (CAMs) by replacing the fully 
connected layers (except the last softmax-layer) with a Global Average 
Pooling (GAP) on each feature map of the (last) CNN layer. Conse
quently, a resulting class activation map denotes the direct impact of 
activation at a spatial point (x, y) regarding its corresponding class c. A 
disadvantage of CAM is its dependence on a particular architecture that 
includes GAP and one fully connected layer generating the prediction 
(CNNs). An extended version of CAM is Gradient-weighted CAM 
(Grad-CAM) [62] and uses gradients w.r.t. a target class c. More spe
cifically, the GAP can be replaced with any differentiable neural 
network layers (needed for gradient calculation). Similar to CAM, the 
authors of Grad-CAM argue, “we can expect the last convolutional layers 
to have the best compromise between high-level semantics and detailed 
spatial information.” [62]. The main difference between CAM and Grad- 
CAM is how feature maps are weighted to generate the final heatmap, 
whereas the pursued goal remains unchanged. In the work of Hosch 
et al. [63], GradCAMs identified that a model with outstanding accuracy 
incorrectly used image markings to classify a patient’s position from 

chest X-Rays which rigorously compromised the model’s integrity 
within the medical field. Such scenarios are called a Clever Hans phe
nomenon [64] or shortcut learning [65] and can often go unnoticed 
without analyzing the prediction process. After removing all image 
markings and re-training, the model focused on medically relevant 
reference areas such as the shoulders. Generally, Grad-CAM maps can be 
computed faster than the occlusion map. However, Grad-CAM maps 
usually have a lower spatial resolution than occlusion maps. Therefore, 
they can miss fine details since the underlying resolution of Grad-CAM 
matches the spatial resolution of the last convolutional feature map. 
Also, the occurrence of multiple objects from the same class can result in 
inconsistent coverage. Aiming at improvement, numerous extensions, 
such as GradCAMþþ [66], Score-CAM [67], or Guided GradCAM 
[62], have been developed. Opposed to attribution maps, as proposed by 
Das and Rad [42], activation maximization (a technique to maximally 
stimulate the activation of certain neurons) can be expanded to a global 
explanation method by using a so-called Class Model Visualization 
[43]. The main idea is to generate image visualizations that, in terms of 
activation maximization, are representative of a specific class or layer 
used by a network. This can be achieved in two manners: One way is to 
revert the network flow and guide it to alternate an image in such a way 
as to provide an interpretation for a target class. For example, when 
investigating which input would result in the network predicting the 
class “Banana”, the model can be provided with a random noise image, 
which is then modified towards what the network predicts as a banana. 
Due to its generative nature, this method is also called Deep Dream. 
Another way is to feed the network an arbitrary image and let it enhance 
whatever was detected. Generally, this is done layer-wise because each 
layer comprises features at different abstraction levels and is known as 
Inceptionism [68]. Commonly, lower layers are sensitive to fundamental 
features such as edges or patterns, while higher layers are sensitive to 
more sophisticated features or even detected objects. However, even 
though such visualizations are insightful for natural images, they can be 
challenging to interpret in medical images, generally limiting the 
application of this method. Based on the concept of DeepDream, Cou
teaux et al. [69] investigated how segmentation networks can be 
interpreted in terms of feature sensitivity (robustness) or indifference 
during tumor segmentation in liver CT images. To achieve this, an image 
is forwarded in the network iteratively to retrieve a gradient belonging 
to an arbitrary neuron activation from the resulting output map. The 
image and segmentation features are determined to update the image 
following the gradient for the next iteration, allowing the evolution of 
“deep dreamed” features. This provides insights into the sensitivity and 
robustness of specific high-level features [69]. 

Fig. 7. Overview of a subset of backpropagation-based methods from captum [70] applied to DenseNet121 [71] trained on MedNIST [70,72] to classify images into 
the classes ’AbdomenCT’, ’BreastMRI’, ’CXR’, ’ChestCT’, ’Hand’, and ’HeadCT’. The displayed image was classified as ‘Hand” with a prediction score of 0.98. Red areas 
denote positive contribution, whereas blue areas indicate negative contribution. 
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3. Conclusion 

Visual XAI methods enable the identification of potentials, limita
tions, and biases in the application of AI in medical imaging. For 
example, by comparing medically known reference points and the 
reference points used by a model during prediction. This helps to un
derstand if the model has learned relevant features; otherwise, its 
integrity in the medical domain could be considered limited. Moreover, 
since a model is trained on data, visual XAI methods also allow assessing 
the data. For example, imbalances or flaws can be identified by applying 
activation maximization techniques either by constructing images from 
the noise that correspond to a specific class or by investigating what 
features a model’s layer focuses on. Lastly, visual XAI methods enable 
predictions to be justified and contribute to the transparency of this 
process. Consequently, three explanatory goals pursued by visual XAI 
methods were identified, as depicted in Fig. 8. Generally, visual XAI 
methods seem to play a predominant role in medical imaging, with 
GradCAM currently being the most popular method (as presented in 
Fig. 6), presumably due to the ease of implementation and intuitiveness 
of interpretation. Even though the implementation of XAI in medical 
research is increasing, its usage in the clinical workflow does not reflect 
that trend. We reason that this is because no scientific recommendation 
guidelines are known yet, and satisfactory factors constituting an 
explanation and interpretation have yet to be agreed on by the XAI 
research community in cooperation with healthcare professionals. For 
example, in Fig. 7, several explanation methods for a model decision are 
presented, and it is evident that each method highlights slightly different 
image areas. Moreover, in each image, an X-Ray specific marking is 
captured (left to the hand), which could indicate a Clever Hans phe
nomenon, as such markings are not present in the other classes con
taining CTs and MRIs. Consequently, the question arises of which 
explanation best suits the given classification task. However, providing 
an answer to that question remains challenging. Intuitively, an inter
esting measure would be the accordance between a method’s high
lighted image areas and a radiologist’s reference areas. However, inter- 
and intraobserver variability among healthcare professionals [73] im
pedes the direct usage of such measures. One important work in this area 
was presented by Xie et al. [74] in CheXplain, who conducted a 
physician-centered design to outline recommendations for human- 
centered medical AI development confining their results to four pre
dominant categories: motivation vs. constraint and explanation vs. 
justification. Importantly, one mentioned limitation is that survey 
questions were mainly speculative due to the limited incorporation of AI 
in current medical practices. Moreover, even though XAI methods can 

contribute to explainability and interpretability, no solid scientific 
validation framework is known, reflected by a limited number of studies 
investigating the impact on clinical accuracy, relevance, and accep
tance. Especially in medical imaging, validation often focuses on the 
accordance between a model prediction and the ground truth, 
concluding that a match indicates similar reasoning between the model 
and clinicians (reference points). However, little emphasis is laid on 
measuring the correspondence between the model’s output and the re
sults of an accompanying XAI method. Therefore, Venugopal et al. [75] 
define an Explainability Failure as a case where the classification gener
ated by an AI algorithm matches with the study-level ground truth, but 
the explanation output is inadequate to justify the algorithm’s output. 

This is just one example of the complexity XAI evaluation can incur 
and the difficulty of comparing methods. A thorough investigation 
concerning the quantitative evaluation of XAI methods was proposed by 
the work of Nauta et al. [12], identifying 12 conceptual aspects, intro
duced as Co-12 properties, that serve as a categorization scheme for 
reviewing the evaluation practice. The coherence of an explanation w.r.t. 
human intuition is only one of them, as it has been shown that only 
relying on the plausibility of explanations can be misleading [12,76]. 
The authors consider interpretability a multi-faceted characteristic and 
state that quantitatively measuring interpretability should lead to a 
multi-dimensional assessment indicating to which extent specific prop
erties are satisfied. Conclusively, in order to enable a successful inter
play between AI and healthcare professionals in the future, domain- 
specific knowledge needs to be integrated into AI, and, in turn, health
care professionals need to gain further knowledge of what XAI is and 
how methods from this research area can contribute to their handling of 
AI-based systems. Moreover, to enable the implementation of XAI into 
the medical imaging domain, the XAI and medical community has yet to 
agree on standardized approaches concerning implementation guide
lines and validation methods. Consequently, this review attempted to fill 
that gap by identifying and presenting established and commonly used 
XAI methods for medical imaging alongside their practical impact, 
shortcomings, and limitations (Appendix B, Appendix C) in a non- 
technical manner to be comprehensive for a broader audience but spe
cifically for healthcare professionals. 
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Visual XAI methods 
(Perturbation-based + Backpropagation-based)

Identification of errors
Identification of imbalances
Identification of outliers

Features specific to neurons
Features specific to layers
Features specific to channels

Comparing reference points
Providing visual feedback
Providing justifications

AI model

Internals PredictionData

Fig. 8. A summarizing depiction of explanation targets pursued during the application of visual XAI methods. Applying visual XAI methods to an AI model enables 
the explanation of data, model internals, or model prediction. 
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Appendix A 

(See Fig. A1)

AI model 
explanations

AI model builders
Who: Data scientists, developers, 
engineers
Need:  Sanity-cheks, optimization 

Expertise in AI
No expertise in data domain 

No expertise in AI
No expertise in data domain 

AI model affected users
Who: Patients
Need: Understand reasoning/prediction  

Expertise in data domain 
No expertise in AI

Regulatory entities
Who: Ethics commitees, EU (GDPR)
Need: Audits, compliance confirmation 

AI model end-users
Who: Radiologists, clinicians, doctors
Need: Confirmation, knowledge linking

Figure showing different XAI stakeholder groups for AI models deployed in the medical domain, which depending on their domain knowledge and expertise, seek 
different explanation needs. The overview is partially inspired by [8]. 

Appendix B 

(See Table B1)  

Table B1 
Listing of all included XAI methods ordered by a descending year-citation-ratio (according to google Scholar, see Supplementary File 2 in Appendix D) and divided by 
their explanation outcome. In addition, strengths, weaknesses, and open-source implementation are provided. Methods with a comparatively low number of citations 
are denoted with an asterisk.  

Signal flow Method Strength Weakness Citations/year 
ratio 

Perturbation-based Occlusion [28] No access to mode internals required, so 
model-agnostic 

High computational cost 
Approximate results of object morphology 

1,900  

SHAP [37] Denotes positive and negative contributions High computational expense 1,770  
LIME [31] Denotes positive and negative contributions Relies on pre-defined parameters 

High computational cost 
1,597  

Meaningful 
Perturbations [33] 

Perturbation mask generated based on 
optimization approach 

Blur and noise naturally contained in medical images 209  

RISE [40] Realistic perturbations Approximate results of object morphology 
Relies on pre-defined parameters 

123  

Real-time 
Perturbations [35] 

Individual neural network generated 
perturbation mask 

High implementational effort 77  

Extremal 
Perturbations [36] 

Investigates the perturbation’s effect w.r.t. 
its size 

Blur and noise naturally contained in medical images 67 

Backpropagation- 
based 

Grad-CAM [62] Intuitive, no explicit labeling of data needed Multiple occurences of same class objects result in partial 
coverage 

2,007  

DeconvNet [28] Fast computation Uses only an approximate inverse of the convolution features 1,900  
CAM [61] Intuitive, no explicit labeling of data needed Architectural dependence 

Inaccurate localization of heatmap 
1,074  

Deep Dream [43] Versatile range of implementations 
(neurons, layers, images, atlases) 

Results can be challenging to interpret, especially for medical 
images 

597  

Vanilla Gradient [43] Straightforward and direct computation of 
gradients 

Saturating gradients 597  

Integrated Gradients 
[56] 

satisfies mathematical axioms regarding 
sensitivity and invariance 

Results may differ, depending on selected baseline and 
number of iterations 

572  

GBP [46] Applicable to several network architectures In some cases, invariant to data and model 559  
Deep LiFT [44] Counters the saturation during 

Input*Gradient 
Does not satisfy implementation invariance 446  

LRP [50] Fast and scalable computation Results are sensitive to specific parameters 396  
SmoothGrad [58] Reduces visual noise Results depend on hyper-parameters: σ, (the noise level) and n 

(number of samples to average over) 
234  

Input * Gradient [54] Simple process Saturating gradients 78  
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Appendix C 

(See Table C1)  

Table C1 
Listing of presented XAI methods in alphabetical order alongside a corresponding open-source repository link (if available).  

Signal flow Method Open source library available Surrogate Model-agnostic 

Perturbation-based Extremal Perturbations [36] https://github.com/facebookresearch/TorchRay ⨯ ⨯  
LIME [31] https://github.com/marcotcr/lime ✓ ✓  
Meaningful Perturbations [33] https://github.com/ruthcfong/perturb_explanations ⨯ ✓  
Occlusion [28] https://github.com/keiserlab/plaquebox-papers ⨯ ✓  
Real-time Perturbations [35] https://github.com/PiotrDabkowski/pytorch-saliency ⨯ ✓  
RISE [40] https://github.com/eclique/RISE ⨯ ✓  
SHAP [37] https://github.com/slundberg/shap ✓ ✓ 

Backpropagatio-based CAM [61] https://github.com/zhoubolei/CAM ⨯ ⨯  
DeconvNet [28] https://github.com/pytorch/captum (PyTorch) ⨯ ⨯  
Deep Dream [43] https://github.com/pytorch/captum ⨯ ⨯  
DeepLift [44] https://github.com/kundajelab/deeplift ⨯ ⨯  
Grad-CAM [62] https://github.com/ramprs/grad-cam ⨯ ⨯  
Input * Gradient [54] https://github.com/pytorch/captum (PyTorch) ⨯ ⨯  
Integrated Gradients [56] https://github.com/ankurtaly/Integrated-Gradients ⨯ ⨯  
LRP [50] https://github.com/sebastian-lapuschkin/lrp_toolbox ⨯ ⨯  
Vanilla Gradient [43] https://github.com/pytorch/captum (PyTorch) ⨯ ⨯  
SmoothGrad [58] https://github.com/pair-code/saliency ⨯ ⨯  
GBP [46] https://github.com/pytorch/captum ⨯ ⨯  

Appendix D. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ejrad.2023.110787. 
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[51] M. Böhle, F. Eitel, M. Weygandt, and K. Ritter, “Layer-Wise Relevance Propagation 
for Explaining Deep Neural Network Decisions in MRI-Based Alzheimer’s Disease 
Classification,” Frontiers in Aging Neuroscience, vol. 11, 2019, Accessed: Apr. 07, 

2022. [Online]. Available: https://www.frontiersin.org/article/10.3389/fnagi.2 
019.00194. 

[52] L.A. de Souza, et al., Convolutional Neural Networks for the evaluation of cancer in 
Barrett’s esophagus: Explainable AI to lighten up the black-box, Comput. Biol. 
Med. 135 (Aug. 2021), 104578, https://doi.org/10.1016/j. 
compbiomed.2021.104578. 

[53] M. Sundararajan, A. Taly, and Q. Yan, “Axiomatic attribution for deep networks,” 
in Proceedings of the 34th International Conference on Machine Learning - Volume 70, 
Sydney, NSW, Australia, Aug. 2017, pp. 3319–3328. 

[54] A. Shrikumar, P. Greenside, A. Shcherbina, and A. Kundaje, “Not Just a Black Box: 
Learning Important Features Through Propagating Activation Differences.” arXiv, 
Apr. 11, 2017. doi: 10.48550/arXiv.1605.01713. 

[55] E. Prakash, A. Shrikumar, and A. Kundaje, “Towards More Realistic Simulated 
Datasets for Benchmarking Deep Learning Models in Regulatory Genomics.,” in 
Machine Learning in Computational Biology Meeting, MLCB 2021, online, November 
22-23, 2021., 2021, pp. 58–77. [Online]. Available: https://proceedings.mlr.press 
/v165/prakash22a.html. 

[56] M. Sundararajan, A. Taly, and Q. Yan, “Axiomatic Attribution for Deep Networks.” 
arXiv, Jun. 12, 2017. doi: 10.48550/arXiv.1703.01365. 

[57] V. Wargnier-Dauchelle, T. Grenier, F. Durand-Dubief, F. Cotton, and M. Sdika, “A 
More Interpretable Classifier For Multiple Sclerosis,” in 2021 IEEE 18th 
International Symposium on Biomedical Imaging (ISBI), Apr. 2021, pp. 1062–1066. 
doi: 10.1109/ISBI48211.2021.9434074. 

[58] D. Smilkov, N. Thorat, B. Kim, F. B. Viégas, and M. Wattenberg, “SmoothGrad: 
removing noise by adding noise.,” CoRR, vol. abs/1706.03825, 2017, [Online]. 
Available: http://arxiv.org/abs/1706.03825. 

[59] I. Palatnik de Sousa, M. M. B. R. Vellasco, and E. Costa da Silva, “Explainable 
Artificial Intelligence for Bias Detection in COVID CT-Scan Classifiers,” Sensors, vol. 
21, no. 16, Art. no. 16, Jan. 2021, doi: 10.3390/s21165657. 

[60] M. Kriegsmann, K. Kriegsmann, G. Steinbuss, C. Zgorzelski, A. Kraft, M.M. Gaida, 
Deep Learning in Pancreatic Tissue: Identification of Anatomical Structures, 
Pancreatic Intraepithelial Neoplasia, and Ductal Adenocarcinoma, Art. no. 10, Int. 
J. Mol. Sci. 22 (10) (Jan. 2021), https://doi.org/10.3390/ijms22105385. 
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