2,540 research outputs found

    A cross-layer approach to enhance QoS for multimedia applications over satellite

    Get PDF
    The need for on-demand QoS support for communications over satellite is of primary importance for distributed multimedia applications. This is particularly true for the return link which is often a bottleneck due to the large set of end-users accessing a very limited uplink resource. Facing this need, Demand Assignment Multiple Access (DAMA) is a classical technique that allows satellite operators to offer various types of services, while managing the resources of the satellite system efficiently. Tackling the quality degradation and delay accumulation issues that can result from the use of these techniques, this paper proposes an instantiation of the Application Layer Framing (ALF) approach, using a cross-layer interpreter(xQoS-Interpreter). The information provided by this interpreter is used to manage the resource provided to a terminal by the satellite system in order to improve the quality of multimedia presentations from the end users point of view. Several experiments are carried out for different loads on the return link. Their impact on QoS is measured through different application as well as network level metrics

    A traffic classification method using machine learning algorithm

    Get PDF
    Applying concepts of attack investigation in IT industry, this idea has been developed to design a Traffic Classification Method using Data Mining techniques at the intersection of Machine Learning Algorithm, Which will classify the normal and malicious traffic. This classification will help to learn about the unknown attacks faced by IT industry. The notion of traffic classification is not a new concept; plenty of work has been done to classify the network traffic for heterogeneous application nowadays. Existing techniques such as (payload based, port based and statistical based) have their own pros and cons which will be discussed in this literature later, but classification using Machine Learning techniques is still an open field to explore and has provided very promising results up till now

    A robust multimedia traffic SDN-Based management system using patterns and models of QoE estimation with BRNN

    Full text link
    [EN] Nowadays, network infrastructures such as Software Defined Networks (SDN) achieve a huge computational power. This allows to add a high processing on the network nodes. In this paper, a multimedia traffic management system is presented. This system is based on estimation models of Quality of Experience (QoE) and also on the traffic patterns classification. In order to achieve this, a QoE estimation method has been modeled. This method allows for classifying the multimedia traffic from multimedia transmission patterns. In order to do this, the SDN controller gathers statistics from the network. The patterns used have been defined from a lineal combination of objective QoE measurements. The model has been defined by Bayesian regularized neural networks (BRNN). From this model, the system is able to classify several kind of traffic according to the quality perceived by the users. Then, a model has been developed to determine which video characteristics need to be changed to provide the user with the best possible quality in the critical moments of the transmission. The choice of these characteristics is based on the quality of service (QoS) parameters, such as delay, jitter, loss rate and bandwidth. Moreover, it is also based on subpatterns defined by clusters from the dataset and which represents network and video characteristics. When a critical network situation is given, the model selects, by using network parameters as entries, the subpattern with the most similar network condition. The minimum Euclidean distance between these entries and the network parameters of the subpatters is calculated to perform this selection. Both models work together to build a reliable multimedia traffic management system perfectly integrated into current network infrastructures, which is able to classify the traffic and solve critical situations changing the video characteristics, by using the SDN architecture.This work has been partially supported by the "Ministerio de Educacion, Cultura y Deporte", through the "Ayudas para contratos predoctorales de Formation del Profesorado Universitario FPU (Convocatoria 2015)", grant number FPU15/06837 and by the "Ministerio de Economia y Competitividad" in the "Programa Estatal de Fomento de la Investigation Cientffica y Tecnica de Excelencia, Subprograma Estatal de Generacion de Conocimiento" within the project under Grant TIN2017-84802-C2-1-P.Canovas Solbes, A.; Rego Mañez, A.; Romero Martínez, JO.; Lloret, J. (2020). A robust multimedia traffic SDN-Based management system using patterns and models of QoE estimation with BRNN. Journal of Network and Computer Applications. 150:1-14. https://doi.org/10.1016/j.jnca.2019.102498S114150Cånovas, A., Taha, M., Lloret, J., & Tomås, J. (2018). Smart resource allocation for improving QoE in IP Multimedia Subsystems. Journal of Network and Computer Applications, 104, 107-116. doi:10.1016/j.jnca.2017.12.020Canovas, A., Jimenez, J. M., Romero, O., & Lloret, J. (2018). Multimedia Data Flow Traffic Classification Using Intelligent Models Based on Traffic Patterns. IEEE Network, 32(6), 100-107. doi:10.1109/mnet.2018.1800121Burden, F., & Winkler, D. (2008). Bayesian Regularization of Neural Networks. Artificial Neural Networks, 23-42. doi:10.1007/978-1-60327-101-1_3Goodman, S. N. (2005). Introduction to Bayesian methods I: measuring the strength of evidence. Clinical Trials, 2(4), 282-290. doi:10.1191/1740774505cn098oaHirschen, K., & SchÀfer, M. (2006). Bayesian regularization neural networks for optimizing fluid flow processes. Computer Methods in Applied Mechanics and Engineering, 195(7-8), 481-500. doi:10.1016/j.cma.2005.01.015Huang, X., Yuan, T., Qiao, G., & Ren, Y. (2018). Deep Reinforcement Learning for Multimedia Traffic Control in Software Defined Networking. IEEE Network, 32(6), 35-41. doi:10.1109/mnet.2018.1800097Lin, Y. (2002). Data Mining and Knowledge Discovery, 6(3), 259-275. doi:10.1023/a:1015469627679Lopez-Martin, M., Carro, B., Lloret, J., Egea, S., & Sanchez-Esguevillas, A. (2018). Deep Learning Model for Multimedia Quality of Experience Prediction Based on Network Flow Packets. IEEE Communications Magazine, 56(9), 110-117. doi:10.1109/mcom.2018.1701156Hagan, M. T., & Menhaj, M. B. (1994). Training feedforward networks with the Marquardt algorithm. IEEE Transactions on Neural Networks, 5(6), 989-993. doi:10.1109/72.329697Nguyen, T. T. T., & Armitage, G. (2008). A survey of techniques for internet traffic classification using machine learning. IEEE Communications Surveys & Tutorials, 10(4), 56-76. doi:10.1109/surv.2008.080406Queiroz, W., Capretz, M. A. M., & Dantas, M. (2019). An approach for SDN traffic monitoring based on big data techniques. Journal of Network and Computer Applications, 131, 28-39. doi:10.1016/j.jnca.2019.01.016Rego, A., Canovas, A., Jimenez, J. M., & Lloret, J. (2018). An Intelligent System for Video Surveillance in IoT Environments. IEEE Access, 6, 31580-31598. doi:10.1109/access.2018.2842034Seshadrinathan, K., Soundararajan, R., Bovik, A. C., & Cormack, L. K. (2010). Study of Subjective and Objective Quality Assessment of Video. IEEE Transactions on Image Processing, 19(6), 1427-1441. doi:10.1109/tip.2010.2042111Soysal, M., & Schmidt, E. G. (2010). Machine learning algorithms for accurate flow-based network traffic classification: Evaluation and comparison. Performance Evaluation, 67(6), 451-467. doi:10.1016/j.peva.2010.01.001Tan, X., Xie, Y., Ma, H., Yu, S., & Hu, J. (2019). Recognizing the content types of network traffic based on a hybrid DNN-HMM model. Journal of Network and Computer Applications, 142, 51-62. doi:10.1016/j.jnca.2019.06.004Tongaonkar, A., Torres, R., Iliofotou, M., Keralapura, R., & Nucci, A. (2015). Towards self adaptive network traffic classification. Computer Communications, 56, 35-46. doi:10.1016/j.comcom.2014.03.02

    A telecom analytics framework for dynamic quality of service management

    Get PDF
    Since the beginning of Internet, Internet Service Providers (ISP) have seen the need of giving to users? traffic different treatments defined by agree- ments between ISP and customers. This procedure, known as Quality of Service Management, has not much changed in the last years (DiffServ and Deep Pack-et Inspection have been the most chosen mechanisms). However, the incremen-tal growth of Internet users and services jointly with the application of recent Ma- chine Learning techniques, open up the possibility of going one step for-ward in the smart management of network traffic. In this paper, we first make a survey of current tools and techniques for QoS Management. Then we intro-duce clustering and classifying Machine Learning techniques for traffic charac-terization and the concept of Quality of Experience. Finally, with all these com-ponents, we present a brand new framework that will manage in a smart way Quality of Service in a telecom Big Data based scenario, both for mobile and fixed communications

    Application-Based Online Traffic Classification with Deep Learning Models on SDN Networks

    Get PDF
    The traffic classification based on the network applications is one important issue for network management. In this paper, we propose an application-based online and offline traffic classification, based on deep learning mechanisms, over software-defined network (SDN) testbed. The designed deep learning model, resigned in the SDN controller, consists of multilayer perceptron (MLP), convolutional neural network (CNN), and Stacked Auto-Encoder (SAE), in the SDN testbed. We employ an open network traffic dataset with seven most popular applications as the deep learning training and testing datasets. By using the TCPreplay tool, the dataset traffic samples are re-produced and analyzed in our SDN testbed to emulate the online traffic service. The performance analyses, in terms of accuracy, precision, recall, and F1 indicators, are conducted and compared with three deep learning models

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Context-driven encrypted multimedia traffic classification on mobile devices

    Get PDF
    The Internet has been experiencing immense growth in multimedia traffic from mobile devices. The increase in traffic presents many challenges to user-centric networks, network operators, and service providers. Foremost among these challenges is the inability of networks to determine the types of encrypted traffic and thus the level of network service the traffic needs to maintain an acceptable quality of experience. Therefore, end devices are a natural fit for performing traffic classification since end devices have more contextual information about device usage and traffic. This paper proposes a novel approach that classifies multimedia traffic types produced and consumed on mobile devices. The technique relies on a mobile device’s detection of its multimedia context characterized by its utilization of different media input/output (I/O) components, e.g., camera, microphone, and speaker. We develop an algorithm, MediaSense, which senses the states of multiple I/O components and identifies the specific multimedia context of a mobile device in real-time. We demonstrate that MediaSense classifies encrypted multimedia traffic in real-time as accurately as deep learning approaches and with even better generalizability.Peer reviewe

    A Survey of Machine Learning Techniques for Video Quality Prediction from Quality of Delivery Metrics

    Get PDF
    A growing number of video streaming networks are incorporating machine learning (ML) applications. The growth of video streaming services places enormous pressure on network and video content providers who need to proactively maintain high levels of video quality. ML has been applied to predict the quality of video streams. Quality of delivery (QoD) measurements, which capture the end-to-end performances of network services, have been leveraged in video quality prediction. The drive for end-to-end encryption, for privacy and digital rights management, has brought about a lack of visibility for operators who desire insights from video quality metrics. In response, numerous solutions have been proposed to tackle the challenge of video quality prediction from QoD-derived metrics. This survey provides a review of studies that focus on ML techniques for predicting the QoD metrics in video streaming services. In the context of video quality measurements, we focus on QoD metrics, which are not tied to a particular type of video streaming service. Unlike previous reviews in the area, this contribution considers papers published between 2016 and 2021. Approaches for predicting QoD for video are grouped under the following headings: (1) video quality prediction under QoD impairments, (2) prediction of video quality from encrypted video streaming traffic, (3) predicting the video quality in HAS applications, (4) predicting the video quality in SDN applications, (5) predicting the video quality in wireless settings, and (6) predicting the video quality in WebRTC applications. Throughout the survey, some research challenges and directions in this area are discussed, including (1) machine learning over deep learning; (2) adaptive deep learning for improved video delivery; (3) computational cost and interpretability; (4) self-healing networks and failure recovery. The survey findings reveal that traditional ML algorithms are the most widely adopted models for solving video quality prediction problems. This family of algorithms has a lot of potential because they are well understood, easy to deploy, and have lower computational requirements than deep learning techniques
    • 

    corecore