6 research outputs found

    Deep finger texture learning for verifying people

    Get PDF
    Finger Texture (FT) is currently attracting significant attentions in the area of human recognition. Finger texture covers the area between the lower knuckle of the finger and the upper phalanx before the fingerprint. It involves rich features which can be efficiently used as a biometric characteristic. In this paper, we contribute to this growing area by proposing a new verification approach, i.e., Deep Finger Texture Learning (DFTL). To the best of our knowledge, this is the first time that deep learning is employed for recognizing people by using the FT characteristic. Four databases have been used to evaluate the proposed method: the Hong Kong Polytechnic University Contact-free 3D/2D (PolyU2D), Indian Institute of Technology Delhi (IITD), CASIA Blue spectral (CASIA-BLU) corresponding to spectral 460nm and CASIA White spectral (CASIA-WHT) from the CASIA Multi-Spectral images database. The obtained results have shown superior performance compared with recent literature. The Verification Accuracies (VAs) have attained 100%, 98.65%, 100% and 98% for the four databases of PolyU2D, IITD, CASIA-BLU and CASIA-WHT, respectively

    Earprint recognition using deep learning technique

    Get PDF
    Earprint has interestingly been considered for recognition systems. It refers to the shape of ear, where each person has a unique shape of earprint. It is a strong biometric pattern and it can effectively be used for authentications. In this paper, an efficient deep learning (DL) model for earprint recognition is designed. This model is named the deep earprint learning (DEL). It is a deep network that carefully designed for segmented and normalized ear patterns. IIT Delhi ear database (IITDED) version 1.0 has been exploited in this study. The best obtaining accuracy of 94% is recorded for the proposed DEL

    Deep fingerprint classification network

    Get PDF
    Fingerprint is one of the most well-known biometrics that has been used for personal recognition. However, faked fingerprints have become the major enemy where they threat the security of this biometric. This paper proposes an efficient deep fingerprint classification network (DFCN) model to achieve accurate performances of classifying between real and fake fingerprints. This model has extensively evaluated or examined parameters. Total of 512 images from the ATVS-FFp_DB dataset are employed. The proposed DFCN achieved high classification performance of 99.22%, where fingerprint images are successfully classified into their two categories. Moreover, comparisons with state-of-art approaches are provided

    Interpreting Arabic Sign Alphabet by using the Deep Learning

    Get PDF
    Sign Language (SL) is a communication method between people. It is an essential language; especially for people who are speech impaired and hearing impaired, it can be considered as their mother tongues. Hand gestures form the nonverbal communication of this language. We focus on interpreting Arabic Sign Alphabet (ASA) in this study and, as a case study, the recognition of alphabet in Iraqi Sign Language (IrSL) is carried out with the help of specialists from the “Al-Amal Institute for the Deaf and Dumb”. A new ASA dataset of various hand gestures was created and adopted. In addition, a deep learning model named the Deep Arabic Sign Alphabet (DASA) is proposed, which is a developed version of the Convolutional Neural Network (CNN). It can efficiently interpret the ASA, achieving a high interpretation accuracy of 95.25%
    corecore