4 research outputs found

    Zero-bias Deep Learning Enabled Quick and Reliable Abnormality Detection in IoT

    Get PDF
    Abnormality detection is essential to the performance of safety-critical and latency-constrained systems. However, as systems are becoming increasingly complicated with a large quantity of heterogeneous data, conventional statistical change point detection methods are becoming less effective and efficient. Although Deep Learning (DL) and Deep Neural Networks (DNNs) are increasingly employed to handle heterogeneous data, they still lack theoretic assurable performance and explainability. This paper integrates zero-bias DNN and Quickest Event Detection algorithms to provide a holistic framework for quick and reliable detection of both abnormalities and time-dependent abnormal events in Internet of Things (IoT).We first use the zero bias dense layer to increase the explainability of DNN. We provide a solution to convert zero-bias DNN classifiers into performance assured binary abnormality detectors. Using the converted abnormality detector, we then present a sequential quickest detection scheme which provides the theoretically assured lowest abnormal event detection delay under false alarm constraints. Finally, we demonstrate the effectiveness of the framework using both massive signal records from real-world aviation communication systems and simulated data

    Artificial Intelligence based Anomaly Detection of Energy Consumption in Buildings: A Review, Current Trends and New Perspectives

    Get PDF
    Enormous amounts of data are being produced everyday by sub-meters and smart sensors installed in residential buildings. If leveraged properly, that data could assist end-users, energy producers and utility companies in detecting anomalous power consumption and understanding the causes of each anomaly. Therefore, anomaly detection could stop a minor problem becoming overwhelming. Moreover, it will aid in better decision-making to reduce wasted energy and promote sustainable and energy efficient behavior. In this regard, this paper is an in-depth review of existing anomaly detection frameworks for building energy consumption based on artificial intelligence. Specifically, an extensive survey is presented, in which a comprehensive taxonomy is introduced to classify existing algorithms based on different modules and parameters adopted, such as machine learning algorithms, feature extraction approaches, anomaly detection levels, computing platforms and application scenarios. To the best of the authors' knowledge, this is the first review article that discusses anomaly detection in building energy consumption. Moving forward, important findings along with domain-specific problems, difficulties and challenges that remain unresolved are thoroughly discussed, including the absence of: (i) precise definitions of anomalous power consumption, (ii) annotated datasets, (iii) unified metrics to assess the performance of existing solutions, (iv) platforms for reproducibility and (v) privacy-preservation. Following, insights about current research trends are discussed to widen the applications and effectiveness of the anomaly detection technology before deriving future directions attracting significant attention. This article serves as a comprehensive reference to understand the current technological progress in anomaly detection of energy consumption based on artificial intelligence.Comment: 11 Figures, 3 Table

    Real-Time Machine Learning for Quickest Detection

    Get PDF
    Safety-critical Cyber-Physical Systems (CPS) require real-time machine learning for control and decision making. One promising solution is to use deep learning to discover useful patterns for event detection from heterogeneous data. However, deep learning algorithms encounter challenges in CPS with assurability requirements: 1) Decision explainability, 2) Real-time and quickest event detection, and 3) Time-eficient incremental learning. To address these obstacles, I developed a real-time Machine Learning Framework for Quickest Detection (MLQD). To be specific, I first propose the zero-bias neural network, which removes decision bias and preferabilities from regular neural networks and provides an interpretable decision process. Second, I discover the latent space characteristic of the zero-bias neural network and the method to mathematically convert a Deep Neural Network (DNN) classifier into a performance-assured binary abnormality detector. In this way, I can seamlessly integrate the deep neural networks\u27 data processing capability with Quickest Detection (QD) and provide real-time sequential event detection paradigm. Thirdly, after discovering that a critical factor that impedes the incremental learning of neural networks is the concept interference (confusion) in latent space, and I prove that to minimize interference, the concept representation vectors (class fingerprints) within the latent space need to be organized orthogonally and I invent a new incremental learning strategy using the findings, I facilitate deep neural networks in the CPS to evolve eficiently without retraining. All my algorithms are evaluated on real-world applications, ADS-B (Automatic Dependent Surveillance Broadcasting) signal identification, and spoofing detection in the aviation communication system. Finally, I discuss the current trends in MLQD and conclude this dissertation by presenting the future research directions and applications. As a summary, the innovations of this dissertation are as follows: i) I propose the zerobias neural network, which provides transparent latent space characteristics, I apply it to solve the wireless device identification problem. ii) I discover and prove the orthogonal memory organization mechanism in artificial neural networks and apply this mechanism in time-efficient incremental learning. iii) I discover and mathematically prove the converging point theorem, with which we can predict the latent space topological characteristics and estimate the topological maturity of neural networks. iv) I bridge the gap between machine learning and quickest detection with assurable performance
    corecore