44 research outputs found

    Ultrasound Signal Processing: From Models to Deep Learning

    Get PDF
    Medical ultrasound imaging relies heavily on high-quality signal processing algorithms to provide reliable and interpretable image reconstructions. Hand-crafted reconstruction methods, often based on approximations of the underlying measurement model, are useful in practice, but notoriously fall behind in terms of image quality. More sophisticated solutions, based on statistical modelling, careful parameter tuning, or through increased model complexity, can be sensitive to different environments. Recently, deep learning based methods have gained popularity, which are optimized in a data-driven fashion. These model-agnostic methods often rely on generic model structures, and require vast training data to converge to a robust solution. A relatively new paradigm combines the power of the two: leveraging data-driven deep learning, as well as exploiting domain knowledge. These model-based solutions yield high robustness, and require less trainable parameters and training data than conventional neural networks. In this work we provide an overview of these methods from the recent literature, and discuss a wide variety of ultrasound applications. We aim to inspire the reader to further research in this area, and to address the opportunities within the field of ultrasound signal processing. We conclude with a future perspective on these model-based deep learning techniques for medical ultrasound applications

    A Deep-Unfolded Spatiotemporal RPCA Network For L+S Decomposition

    Full text link
    Low-rank and sparse decomposition based methods find their use in many applications involving background modeling such as clutter suppression and object tracking. While Robust Principal Component Analysis (RPCA) has achieved great success in performing this task, it can take hundreds of iterations to converge and its performance decreases in the presence of different phenomena such as occlusion, jitter and fast motion. The recently proposed deep unfolded networks, on the other hand, have demonstrated better accuracy and improved convergence over both their iterative equivalents as well as over other neural network architectures. In this work, we propose a novel deep unfolded spatiotemporal RPCA (DUST-RPCA) network, which explicitly takes advantage of the spatial and temporal continuity in the low-rank component. Our experimental results on the moving MNIST dataset indicate that DUST-RPCA gives better accuracy when compared with the existing state of the art deep unfolded RPCA networks

    Blind source separation for clutter and noise suppression in ultrasound imaging:review for different applications

    Get PDF
    Blind source separation (BSS) refers to a number of signal processing techniques that decompose a signal into several 'source' signals. In recent years, BSS is increasingly employed for the suppression of clutter and noise in ultrasonic imaging. In particular, its ability to separate sources based on measures of independence rather than their temporal or spatial frequency content makes BSS a powerful filtering tool for data in which the desired and undesired signals overlap in the spectral domain. The purpose of this work was to review the existing BSS methods and their potential in ultrasound imaging. Furthermore, we tested and compared the effectiveness of these techniques in the field of contrast-ultrasound super-resolution, contrast quantification, and speckle tracking. For all applications, this was done in silico, in vitro, and in vivo. We found that the critical step in BSS filtering is the identification of components containing the desired signal and highlighted the value of a priori domain knowledge to define effective criteria for signal component selection

    Model-Based Deep Learning

    Full text link
    Signal processing, communications, and control have traditionally relied on classical statistical modeling techniques. Such model-based methods utilize mathematical formulations that represent the underlying physics, prior information and additional domain knowledge. Simple classical models are useful but sensitive to inaccuracies and may lead to poor performance when real systems display complex or dynamic behavior. On the other hand, purely data-driven approaches that are model-agnostic are becoming increasingly popular as datasets become abundant and the power of modern deep learning pipelines increases. Deep neural networks (DNNs) use generic architectures which learn to operate from data, and demonstrate excellent performance, especially for supervised problems. However, DNNs typically require massive amounts of data and immense computational resources, limiting their applicability for some signal processing scenarios. We are interested in hybrid techniques that combine principled mathematical models with data-driven systems to benefit from the advantages of both approaches. Such model-based deep learning methods exploit both partial domain knowledge, via mathematical structures designed for specific problems, as well as learning from limited data. In this article we survey the leading approaches for studying and designing model-based deep learning systems. We divide hybrid model-based/data-driven systems into categories based on their inference mechanism. We provide a comprehensive review of the leading approaches for combining model-based algorithms with deep learning in a systematic manner, along with concrete guidelines and detailed signal processing oriented examples from recent literature. Our aim is to facilitate the design and study of future systems on the intersection of signal processing and machine learning that incorporate the advantages of both domains

    Clutter Suppression in Ultrasound: Performance Evaluation of Low-Rank and Sparse Matrix Decomposition Methods

    Get PDF
    Vessel diseases are often accompanied by abnormalities related to vascular shape and size. Therefore, a clear visualization of vasculature is of high clinical significance. Ultrasound Color Flow Imaging (CFI) is one of the prominent techniques for flow visualization. However, clutter signals originating from slow-moving tissue is one of the main obstacles to obtain a clear view of the vascular network. Enhancement of the vasculature by suppressing the clutters is an essential step for many applications of ultrasound CFI. In this thesis, we focus on a state-of-art algorithm framework called Decomposition into Low-rank and Sparse Matrices (DLSM) framework for ultrasound clutter suppression. Currently, ultrasound clutter suppression is often performed by Singular Value Decomposition (SVD) of the data matrix, which is a branch of eigen-based filtering. This approach exhibits two well-known limitations. First, the performance of SVD is sensitive to the proper manual selection of the ranks corresponding to clutter and blood subspaces. Second, SVD is prone to failure in the presence of large random noise in the data set. A potential solution to these issues is the use of DLSM framework. SVD, as a means for singular values, is also one of the widely used algorithms for solving the minimization problem under the DLSM framework. Many other algorithms under DLSM avoid full SVD and use approximated SVD or SVD-free ideas which may have better performance with higher robustness and lower computing time due to the expensive computational cost of full SVD. In practice, these models separate blood from clutter based on the assumption that steady clutter represents a low-rank structure and the moving blood component is sparse. In this thesis, we exploit the feasibility of exploiting low-rank and sparse decomposition schemes, originally developed in the field of computer vision, in ultrasound clutter suppression. Since ultrasound images have different texture and statistical properties compared to images in computer vision, it is of high importance to evaluate how these methods translate to ultrasound CFI. We conduct this evaluation study by adapting 106 DLSM algorithms and validating them against simulation, phantom and in vivo rat data sets. The advantage of simulation and phantom experiments is that the ground truth vessel map is known, and the advantage of the in vivo data set is that it enables us to test algorithms in a realistic setting. Two conventional quality metrics, Signal-to-Noise Ratio (SNR) and Contrast-to-Noise Ratio (CNR), are used for performance evaluation. In addition, computation times required by different algorithms for generating the clutter suppressed images are reported. Our extensive analysis shows that the DLSM framework can be successfully applied to ultrasound clutter suppression

    Deep Proximal Learning for High-Resolution Plane Wave Compounding

    Get PDF
    Plane Wave imaging enables many applications that require high frame rates, including localisation microscopy, shear wave elastography, and ultra-sensitive Doppler. To alleviate the degradation of image quality with respect to conventional focused acquisition, typically, multiple acquisitions from distinctly steered plane waves are coherently (i.e. after time-of-flight correction) compounded into a single image. This poses a trade-off between image quality and achievable frame-rate. To that end, we propose a new deep learning approach, derived by formulating plane wave compounding as a linear inverse problem, that attains high resolution, high-contrast images from just 3 plane wave transmissions. Our solution unfolds the iterations of a proximal gradient descent algorithm as a deep network, thereby directly exploiting the physics-based generative acquisition model into the neural network design. We train our network in a greedy manner, i.e. layer-by-layer, using a combination of pixel, temporal, and distribution (adversarial) losses to achieve both perceptual fidelity and data consistency. Through the strong model-based inductive bias, the proposed architecture outperforms several standard benchmark architectures in terms of image quality, with a low computational and memory footprint

    Create a Model to Detect Audiovisual Videos by Breaking Down Superscribing Tensor and Using Less Frequency and a Lower Ranking

    Get PDF
    The aim of this study is to develop a model for audiovisual video detection by decomposing superscribing tensors and using reduced frequency and lower rank. This model will be used for identifying videos that have audio with low frequencies and visual frames with low rankings. The proposed model would use a convolutional neural network (CNN) and a recurrent neural network (RNN) to detect and classify the audiovisual characteristics. The Convolutional Neural Network (CNN) will be used to record the video frames with high frequency, while the Recurrent Neural Network (RNN) will be utilised to capture the audio characteristics with low frequency. The training process will use an extensive dataset of audiovisual videos. The performance of the model will be assessed by testing it using a validation dataset. Ultimately, the model will be used in a live setting to identify audiovisual recordings with low occurrence rates
    corecore