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Blind Source Separation for Clutter and Noise
Suppression in Ultrasound Imaging: Review
for Different Applications

R. R. Wildeboer™, F. Sammali

, R. J. G. van Sloun

, Y. Huang™, P. Chen™, M. Bruce™, C. Rabotti,

S. Shulepov, G. Salomon, B. C. Schoot, H. Wijkstra™, and M. Mischi

Abstract—BIlind source separation (BSS) refers to a
number of signal processing techniques that decompose a
signal into several “source” signals. In recent years, BSS
is increasingly employed for the suppression of clutter
and noise in ultrasonic imaging. In particular, its ability
to separate sources based on measures of independence
rather than their temporal or spatial frequency content
makes BSS a powerful filtering tool for data in which
the desired and undesired signals overlap in the spectral
domain. The purpose of this work was to review the existing
BSS methods and their potential in ultrasound imaging.
Furthermore, we tested and compared the effectiveness of
these techniques in the field of contrast-ultrasound super-
resolution, contrast quantification, and speckle tracking.
For all applications, this was done in silico, in vitro, and
in vivo. We found that the critical step in BSS filtering is the
identification of components containing the desired signal
and highlighted the value of a priori domain knowledge to
define effective criteria for signal component selection.

Index Terms—Blind source separation (BSS),
contrast-enhanced ultrasound, independent component
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analysis (ICA), microbubbles, nonnegative matrix
factorization (NMF), principal component analysis (PCA),
speckle tracking (ST), super-resolution, singular value
decomposition (SVD), ultrasound imaging.

|. INTRODUCTION

N RECENT years, increasingly advanced algorithms have

been developed to analyze ultrasonic (US) acquisitions,
from the generation of super-resolution images revealing
vascular structures beyond the diffraction limit [1], [2] to
the distinct extraction of time-intensity curves (TICs) in the
cardiac system or well-perfused organs [3], [4] up to dedicated
speckle-tracking (ST) algorithms to estimate strain [5], [6]
in, e.g., the heart, arteries, and uterus. The gravity of data
preprocessing should not be overlooked when appreciating the
impressive results obtained by these methods. Particularly in
clinical application, US data are often obscured by prevalent
clutter sources, artifacts can arise due to patient or operator
motion, and noise levels may well exceed those in laboratory
conditions. Therefore, robust filtering is needed to separate the
desired signal(s) from the undesired signals prior to further
analysis.

Traditionally, clutter and noise suppression in US recordings
is performed with temporal filters (e.g., for clutter removal [7])
and spatial filters (e.g., for despeckling [8], [9]). Infinite
response filter (IIR) and finite impulse response filter (FIR)
as well as regression filters have been widely applied for this
purpose [7], [10]-[16]. These filters rely on the assumption
that the temporal or spatial frequency content of clutter, noise,
and the signal of interest is distinctly different [14]-[16]. This
assumption is not always valid; there is thus a real risk of
losing useful information or failing to remove signals that
affect the performance of the algorithms used for, e.g., super-
resolution and ST.

In this respect, blind source separation (BSS) techniques
have been receiving more and more attention. Unlike the
aforementioned filters, BSS techniques decompose data into
underlying “sources” or components. Components correspond-
ing to clutter or noise sources are subsequently discarded.
Particularly in blood flow imaging [14], [16]-[18] and, more
recently, ultrasound super-resolution imaging [19]-[21], BSS
is increasingly applied. The identification of the clutter and
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signal components is a relevant aspect for several applications.
Although thresholds might be heuristically or empirically
established, signal content can vary from application to appli-
cation, between different acquisitions, or even within the same
acquisition over time. In that respect, generalizable, adaptive
filtering is something to aim for [14], [17].

The purpose of this work was to review, evaluate, and
compare several existing BSS methods as well as a wide
range of (recently proposed as well as novel) adaptive cri-
teria for clutter and noise suppression in US imaging. The
implementation of BSS may be different from application to
application. To highlight important considerations, we tailored
the BSS filtering to three fields of interest as an example:
1) super-resolution by US localization microscopy; 2) contrast-
enhanced US (CEUS) quantification by TIC analysis, and
3) US ST. As BSS in Doppler imaging has been most
studied, we refer to some excellent articles on this subject
for a treatise on effective BSS implementation in blood flow
imaging [14], [16]-[18].

Albeit the three included applications are ultrasound-based,
generally very different features in the US videos are regarded
as undesired. For example, while speckles are considered noise
in contrast ultrasound, they are essential to ST. However,
as these application fields are very broad, we only refer to
the key articles of each application and focus more in-depth
on the implementation of adaptive BSS filtering. In this way,
we provide the reader with some guidelines for custom BSS
filter design in ultrasound imaging.

This article is organized as follows. In Section II, the the-
oretical framework of BSS is introduced and discussed.
Section III elaborates on the use of BSS for the adaptive
filtering of ultrasound data. Together, these sections provide
a general framework for the different strategies and imple-
mentations of dedicated US filtering that will be discussed and
tested for the three different US applications. This is described
in Section IV. Finally, the results are discussed in Section V
and conclusions are drawn in Section VI.

[I. THEORETICAL FRAMEWORK AND (BLIND)
SOURCE SEPARATION METHODS

A. Fundamentals of (Blind) Source Separation

Irrespective of the US imaging technique used, the relevant
information is to some extent distorted or obscured by unde-
sired signals [22]-[24]. In this work, we strive to specifically
separate the desired signal from noise (i.e., random distor-
tions of the signal—lectronic noise), clutter (i.e., undesired,
deterministic sources from the measurement space—tissue
movement and multiplicative (speckle) noise), and artifacts
(i.e., signal distortions caused by the operator, patient, or exter-
nal structures—motion artifacts and shadowing).

As we are interested in dynamic US acquisitions throughout
this article, we will refer to our observed signal using the
Casorati matrix X of size Ny x N;, with all our spatial
dimensions condensed in the rows (i.e., Ny = Ny - Ny) and
our temporal dimension distributed over the columns. X will
be a mix of all abovementioned sources. For BSS, we assume

that this mixing process occurs through linear combination

X= Xsignal + Xhoise + Xelutter + Xartefact - (1)

When filtering, we aim to maximize our signal-to-noise ratio
(SNR) by removing the undesired sources mixed into our
observed image X. This procedure is often based on signal
decomposition or basis transformation, that is, the mapping of
the signal onto new bases that will enable discrimination and
identification of the sources that make up the signal. When
appropriate bases are found, a filtered output image is readily
generated by transforming only a (weighted) subset of distinct
signal components back to the image space.

Traditionally, a priori knowledge of the signal and unde-
sired sources is used to determine the basis onto which X will
be projected. A widely used example of such a strategy is fre-
quency filtering, where the sampled signals are transformed to
the frequency domain through discrete Fourier transformation
(DFT). When the spectral characteristics of the desired signal
or, alternatively, the undesired signals (e.g., high-frequency
noise or interference by the power mains) are known, a filtered
image can be reconstructed by disregarding specific frequency
components. Spatial filters (e.g., smoothing) work essentially
in a similar fashion, filtering out undesired spatial frequencies.
In many applications, however, the desired and undesired
signals may be present in the same (spatial) frequency bands,
rendering the DFT strategy insufficient [7], [14], [16], [25].
The same holds for other nonblind transformations, such as
the discrete wavelet transformation often used in despeckling
strategies [8].

Another approach would be to determine the basis transfor-
mation adaptively, that is, depending on the signal statistics
themselves. As we do not need prior information on the
sources underlying our observations or how the mixture is
formed, we refer to this strategy as BSS [23], [26]. Filtering
is then a three-step process, consisting of finding the bases
that provide the best separation of sources, identifying the
components that should subsequently be (partially) removed
from the signal, and mapping the remaining signal back to its
original domain [25]. In this section, the first and last steps
will be discussed; the second step will be treated in Section III.

B. Discrete Fourier Analysis

DFT is perhaps the most common form of non-BSS, where
X is decomposed into several frequency bands (in this case,
these are the “sources”). In the matrix form, the inverse DFT
reads

X" =Wyl YT 2)
where Y is a complex Ny x N; matrix containing the mag-

nitude and phase of every frequency component in each pixel
and Wpgr is the Ny x N; DFT matrix [27]

1 1 1 7
—j2n —j2x (Nt —1)
1 e M . e Nt
1 —Jjan —Jj4r (Nt —1)
N .. N,
Wppr = A 1 e ¢ ! (3)
rf.
—j2m (N =1) —j2n (N =1)?
B e M e N i
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No information is lost during the procedure, and the
image can be fully restored through its inverse transformation.
We refer to this as lossless. For comparison with BSS methods,
we show that the representation of an individual frequency
component k can be isolated through multiplication of the kth
column of matrix Y and the kth column of the inverse DFT
matrix

T -1 T
X = Wppr Yk - 4)
In the same way, by not using the transposed version of X,

spatial frequencies can be assessed. In the remainder of this
article, however, we primarily focus on temporal frequencies.

C. Singular Value Decomposition

As said, in contrast to DFT where the bases are defined
a priori, BSS infers them from the signal itself. One of
the most frequently used BSS techniques is singular value
decomposition (SVD), a generalization of eigendecomposition
that decomposes any matrix X as [28]

X=UxzvV’ (5)

where U is an Ny X N, unitary matrix (i.e., orthogonal
for real-valued inputs), £ is an Ng; x N; pseudodiagonal
matrix containing the singular values o as diagonal elements,
conventionally in descending order, and V is an N; x N,
unitary matrix. The columns in V can be viewed to contain
the singular vectors carrying the temporal information corre-
sponding to spatial information in the column vectors of U.
Accordingly, we have separated k = min (Ns, N;) sources that
can be retrieved through

X, = O'kukVZ- (6)

Statistically, we have now decomposed our data into orthog-
onal subspaces. The vectors ux in U and v; in V correspond
to the eigenvalues of the autocovariance matrix of X [29] and,
therefore, intrinsically provide a basis with maximum covari-
ance. In fact, according to the Eckart—Young theorem [30],
a partial SVD provides the lowest rank approximation of
X of all low-rank matrices and therefore, by definition,
equals or outperforms DFT in effectively decomposing X
[14], [31]. Although X is unique, its singular vectors are not.
The numerical algorithms to find the SVD are usually based
on (QR) bidiagonalization and Jacobi methods [32], of which
the first is the most popular [33].

Furthermore, while SVD and DFT (see equation [2]) create
an orthonormal temporal basis (i.e., Wppr and vT, respec-
tively), the spatial vectors in Y are not, by definition, orthogo-
nal as is UZ. Interestingly, Demené et al. [14] showed that for
their US data, the high singular vectors were associated with
low-frequency and low singular vectors with high-frequency
temporal signals. This is a consequence of the small (tissue-
related) movements being more spatiotemporally coherent
in blood flow imaging rather than a general rule; however,
similar behavior can be observed in many US applications.
On the other hand, for example, Sammali et al. [34] found the
frequency of periodic uterine contractions (and its harmonics)
in the first few singular components as these make up the most
dominant spatiotemporally coherent signals.

D. Principal Component Analysis

SVD methods are often presented in the framework of
principal component analysis (PCA), a widely used method for
dimensionality reduction, decomposing an image into a new
orthogonal representation that retains maximum covariance.
There are several ways to perform PCA [35], but the simplest
might be an eigendecomposition of the sample autocovariance
matrix, as can be estimated from the data. However, in this
work, we will refer to PCA only if the orthogonal axes are also
maximally decorrelated. When each column in X is centered
(i.e., has a mean of zero) and standardized (i.e., has a standard
deviation of 1), the autocovariance matrix translates into the
autocorrelation matrix R. As such, PCA is also referred to as
the Karhunen—Loeve transform [15], [36]. Decorrelation can
now be performed through eigendecomposition of the (square
and symmetric) sample autocorrelation matrix

R=X"X=vAV’ (7)

where, similar to SVD, A contains the eigenvalues A in
descending order along the diagonal and the matrix V contains
the temporal eigenvectors as columns, that is, the principal
components. In fact, SVD can be exploited to perform PCA
without having to perform eigendecomposition. Since V and U
are unitary matrices

R=X"X=vzTuTuzv! =vz2vT, (8)

Accordingly, the eigenvalues of the autocorrelation matrix
in time (or similarly, in transposed form, in space) are related
to the singular values through

I = af. )

Following 5, the spatial distribution of the principal com-
ponents can be retrieved through U = XVX~!. Therefore,
after centerization and standardization, one can perform ordi-
nary SVD and retrieve the individual principal components
through 6. Subsequently, these components form the original
image when multiplied with the former standard deviations
and added to the mean that was retracted previously.

E. Robust Principal Component Analysis

Rather than solely using the autocovariance or correlation
to decompose data, robust PCA (RPCA) actively promotes
sparsity in the decomposition process. This low rank plus
sparse methodology known as RPCA [41], implemented in
MRI [42]-[44] and, more recently, in ultrasound [45]-[47],
separates sparse and low-rank (highly coherent) elements in
an alternating two-step fashion so that

min(|[L|| +11|SI]1), st.L+S=X (10)

where L. and S are the low-rank and sparse component
matrices, respectively [41].

Depending on the nature of the (un)desired signals,
the inclusion of the /j-norm in the cost function further
minimizes the remaining overlap of signal and clutter in the
SVD components. However, when the clutter or the noise
sources are not necessarily considered sparse, this approach
does not improve upon SVD itself other than the sparse
rejection of potential outliers.
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F. Independent Component Analysis

In the thus far described BSS techniques, the desired
and undesired signals are assumed to principally end up in
distinct subspaces. Independence between the components is
promoted by requiring them to be orthogonal and of maximum
autocovariance. However, orthogonality does not necessarily
indicate that the components are mutually independent and
orthogonal axes might therefore not fully separate the different
sources [15].

As opposed to eigendecomposition-related techniques, inde-
pendent component analyses (ICAs) decompose signals by
assuming linear independence between the sources mixed into
the observed signal [48]. Often, ICA techniques iteratively
maximize the non-Gaussianity of N, sources. This originates
from the underlying concept that, as the central limit theorem
states that the sum of independent random variables grows
toward a Gaussian distribution, independent sources can be
identified by their deviation from this Gaussianity.

There is a wide range of possible cost functions ensuring
non-Gaussianity, of which kurtosis, (neg)entropy, and mutual
information are most employed [49], [50]. The kurtosis is
easily implementable but often more sensitive to outliers.
Negentropy, on the other hand, is a less sensitive, information-
theory-based estimator of non-Gaussianity, but it is com-
putationally difficult to implement as it depends on, e.g.,
sample counting or kernel-density estimation [49]. Therefore,
the negentropy is often approximated rather than fully calcu-
lated. For both cost functions, the data need to be centered
and standardized prior to analysis. Often the data are also
whitened [51] so that signal components are uncorrelated such
as in PCA and the ICA problem is simplified. For uncorrelated,
unit-variance data, the negentropy and mutual information
differ only by a constant [49].

For ICA with N, sources, it is assumed that components
in an N, x Ny source matrix S are linearly mixed into the
observed signal by an N; x N,, mixing matrix Wica following:

Y

where N is the residual noise matrix, resulting from ICA not
being lossless. In this formulation, the temporal independence
between the bases vectors is promoted; likewise, a transposed
Casorati matrix formulation of the ICA procedure would
yield spatial independence [52]. Choosing the number of
independent sources N, is not a trivial problem; it might
be determined in an iterative fashion [53], by data reduction
through, e.g., SVD prior to analysis [52] or using information
theoretic criteria [54] (see Section III-1).

Once the number of sources is established, the unknown
matrices Wica and S can be approximated, for instance,
using the often used fast ICA fixed-point iteration algorithm
proposed by Hyvérinen [55]. Other methods include the joint
approximate diagonalization eigenmatrices (JADEs) [56], [57]
and Information-Maximization (InfoMax) algorithms [58].
Finally, in line with the other methods, also ICA allows the
extraction of individual components by multiplication of the
kth column of matrix Wica and the kth row of matrix S

XT = WicaS + NT

Xi = WicA kSk- (12)

The order of the independent sources in S depends on the
initialization of the iterative procedure. However, the sources
can readily be arranged in descending order of the discrete-
time signal energy (i.e., Ex = s,{sk), provided that the
corresponding columns in Wica all have the same energy [49].
In contrast to PCA and SVD, the ICA-decomposed subspaces
are not necessarily orthogonal.

When the desired and undesired sources are indeed indepen-
dent, ICA generally achieves more accurate separation [59].
This is likely the case for additive noise and some distinct
sources of clutter and artifacts. However, some other noise
sources can be very much interdependent with the desired sig-
nal: for example, multiplicative noise or the relation between
blood flow and wall motion [15]. Moreover, though Wicp is
assumed stationary in this ICA approach, the mixing may be
considerably time variant (i.e., nonstationary) [60].

G. Nonnegative Matrix Factorization

Another BSS approach is nonnegative matrix factorization
(NMF). This method does not impose independence, orthog-
onality, or maximum covariance, but it aims to decompose
the observations X into a nonnegative Ny X N, basis matrix
WnxME and an N, x N; nonnegative encoding matrix H given
a certain cost function [61], [62]

X = WnmrH + N. (13)

Because also NMF is lossy, 13 contains a residual noise
matrix N. Similar to the other methods, individual components
can be retrieved by multiplication of the kth column and kth
row of Wnmr and H

Xy = wnwmF, chi. (14)

There are a number of NMF algorithms available that range
from basic NMF decomposition to those with a structured fac-
torization or additional constraints such as sparsity or orthogo-
nality [63]. The alternating least squares and the multiplicative
update algorithm are most used, of which the first was chosen
for this work.

An advantage of NMF is that the nonnegativity constraint
leads to more physically intuitive bases than, for instance, ICA
and PCA [61]. Even though ultrasound images cannot contain
negative values, the bases found by the latter two methods
usually have abundant negative values that cancel out when
linearly combined to form the original image. In contrast,
being nonnegative by definition, the NMF-bases in Wnmr
generally have more physical correspondence to the sources
underlying X [62].

I1l. ADAPTIVE FILTERING

Now, we turn to examine how BSS filtering strategies (as
summarized in Table I) can be tailored to a US application.
An essential step is the identification of the signal components.
There are three approaches to select the appropriate subset of
the desired components: empirically per acquisition or appli-
cation (see [20], [64]-[69]), experimentally optimized per
acquisition (see [14], [21]), or adaptively based on the
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TABLE |
DETAILS OF (BLIND) SOURCE SEPARATION METHODS FOR US APPLICATION

method blind- pre- cost function properties  inverti- computational compt’n

ness processing bility complexity* time®**
Discrete Fourier Transform a priori - - orthogonal  lossless ~ O(N logy N¢) [37] 1.12 s
Singular Value Decomposition blind - autocovariance  orthogonal  lossless ~ O(min(N2Ny, NyN72)) [38]  0.62 s
Principal Component Analysis blind cent’d/stand’d  autocorrelation  orthogonal lossless ~ O(min(N2N¢, NsN2)) [38]  0.79 s
Independent Component Analysis  blind cent’d/stand’d  kurtosis - lossy O(max(N2k, N2k)) [39] 0.79 s
Non-negative Matrix Factorisation  blind - RMS residual - lossy O((Ns Nt)kQ) [40] 20 s

* order of computational cost for most common algorithms; **for comparison, decomposition time for the ULM simulation in Section IV.

maximum-intensity
projection

singular value decomposition

component selection
linear combination

S —Tme

US video

/ clutter

/ signal

Singular Value [dB]
Amplitude [a.u.]

-80

—n———

time

filtered US video

/ clutter

0 200 400 600 800 10

\. N° of Singular Value

a distribution of singular b
value magnitude

\. Frequency [Hz] \\

spectral content of
singular vectors

15

sparsity of spatial
singular vectors

2D autocorrelation of

C singular vectors d

Fig. 1. Schematic of a BSS filtering strategy for super-resolution imaging, depicting (1) the original data, (2) SVD, (3) component selection, (4) linear
combination of the remaining components, and (5) the filtered data. Component selection might be based on (a) distribution of the singular vectors,
(b) spectral content of the temporal singular vectors, (c) autocorrelation within the spatial singular vectors, or (d) sparsity model of the spatial

components.

characteristics of the components (see [16]-[18], [25], [34],
[701-[731]).

For the first two methods, respectively, a specific subset
of components is defined manually or by experimentally
maximizing specific quality measures such as the contrast-to-
noise ratio (CNR). The adaptive approach is generally more
robust and generalizable since it does not rely on qualitative
assessment of decomposition characteristics, which may differ
considerably across acquisitions. Several adaptive criteria for
component selection have been proposed in recent years.
Traditionally, information-theoretic criteria have been used
for dimensionality reduction and, thus, for pruning the noise
components from the signal. As these criteria are not able
to identify the undesired but deterministic clutter signals,
also approaches based on, e.g., each component’s spectral
content, spatial similarity, eigenvalue, or singular value dis-
tribution have been considered (see Fig. I for a schematic

of the filtering paradigm and Table II for an overview of
approaches).

1) Information Theory: An advantage of information-
theoretic criteria for component selection is in that they do not
rely on user-set thresholds; we consider only the components
that are theoretically necessary to carry the information of
our image and, consequently, regard the other components as
noise. The optimal number of components arises as a tradeoff
between an as large as possible descriptive power (i.e., high
log-likelihood) and an as low as possible model complexity
(i.e., a low number of components). There are several ways
to weight this tradeoff, of which the minimum description
length [78] and Akaike’s information criterion (AIC) [79] are
the most common, that is [54], [80]

EwpL(®) = ~L®) + 5 kN — k) log(Ny) (1)
Entc(k) = —2L(K) + 2(2Nx — 1)) (16)
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TABLE Il
FILTERING APPROACHES FOR BSS COMPONENT SELECTION
Approach Criterium Domain Super- Speckle TIC
Knowledge*  Resolution Tracking Modelling
Empirical Arbitrary Subset of Components [20], [64]-[69]
Experimental Maximum CNR [14], [21], [74]
Information Theory =~ Minimum Description Length® N/A - - -
Akaike’s Information Criterion® N/A - - -
Noise Modelling Maréenko-Pastur Noise® [18] N/A - - -
Singular Curve Slope® [25] [ok+1/0k]le > 0.99 > 0.99 > 0.99
Cumulative Percent Variance® [17] Var[Xy]e > 99.9% > 90% > 20%
Average Eigenvalue® [70] N/A - - -
Spatiotemporal Entropy® N/A - - -
Component Energy Singular Value Magnitude® [16], [25], [73] oc; Ae 1 ~1010; ~107 -
Relative Singular Magnitude® [17] o [dB] > —20 dB h> —55 dB > —20 dB
u> —100 dB
Singular Curve Turning Point® [17] N/A - - -
Spectral Content Spectral Power Density [17], [25], [34] fe > 10, 12,25 Hzt  h: 0.5—1.5 Hz < 0.15 Hz [75]
u: 0.04—0.06 Hz
Spatial Coherence 2D Autocorrelation 2D FWHM,. < 0.13-mm h>0.21-mm > 0.5-mm [76]
u>0.24-mm
Spatial Frequency Spectrum & > 33 mm~! h<0.1 mm—1! < 0.75 mm~!
u<0.5 mm~—1!
Spatial Similarity Matrix [17], [71], [72] N/A - - -
Model Fitting Goodness-of-fit model; €. Sparsity K4 [77] Periodicity LDRW [4]

® = SVD / PCA only; *[-]c = cut-off value; *for the in-silico, in-vitro, and in-vivo data; h = heart; u = uterus

where Ny is the number of components and L(k) is the log-
likelihood function. For SVD and PCA, Wax and Kailath [80]
formulated a description of the log likelihood based on the
eigenvalues

% AN\ Wb,
L(k) = log (%) (17)
mzi:kﬂ Ai
To apply information-theoretic filtering, we include

only the first £ components, where k minimizes either
EwmpL (k) or Earc(k), a method that has been proven useful for
subspace selection in, e.g., contrast-ultrasound velocity imag-
ing [81]. For ICA and NMF, on the other hand, the number of
sources (i.e., components) is predefined. It has been proposed
to use the MDL and AIC criteria to determine the number
of (independent) sources that have to be assumed for the best
description of the data [54].

2) Noise Modeling: Instead of selecting the components that
contain signals, we could also identify those that contain noise.
Again, for ICA and NMF, the number of sources should be
chosen such that noise-containing components are avoided. For
SVD and PCA, however, a majority of the components will
predominately consist of noise. As described by Marcenko and
Pastur [82], a random matrix will have a set of eigenvalues that
log-linearly decreases in value. This fact can be exploited by
identifying the component number after which the eigenvalues
start decreasing linearly in the log domain [18].

In a more pragmatic implementation of this principle, Yu
and Lovstakken [25] described noise removal from Doppler
acquisitions by excluding components with an eigenvalue that
is too similar to the previous one (1x/Ax—1 =~ 1). Alterna-
tively, one could also exclude those components of which the
eigenvalues only explain the remaining amount of variance
(i.e., restricting the cumulative percentage variance (CPV)
[17], [70]) or those of which the eigenvalue is below the
average eigenvalue [70]. Finally, examining the spatiotemporal
entropy of each component [83], one can appreciate that signal
and noise components usually occupy a low-entropy and a
high-entropy domain, respectively.

3) Signal Energy: Unfortunately, the two aforementioned
approaches are only designed to separate (white) noise from
deterministic signals. To remove clutter signals from a record-
ing, we should take a closer look at our component char-
acteristics. In fact, closely related to the previous approach,
one could assume that clutter, signal, and noise differ in their
contribution to the signal energy. In flow imaging, for example,
the strongest signals are usually associated with clutter and the
lowest with noise [14], [17], [65].

For ICA and NMF, each component’s signal energy could
be considered. In SVD and PCA, the removal of the strongest
components is easiest by examining the eigenvalues and
(partially) rejecting those above a certain cutoff (1 > A.)
[16], [25]. Another approach is to examine the slope of
the singular value distribution and defining different regimes
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that are associated with clutter, signal, and noise [17]. Here,
the “turning points” in the singular curve defined by local
minima in the curvature radius mark the transition between
the regimes.

4) Spectral Content: Another way to separate clutter and
noise from the desired signal is by investigating each com-
ponent’s spectral content. This can be done by requiring the
selected components to have at least a certain fraction of their
spectral density within a preset frequency band. This approach
differs from the DFT approach in that not all frequency
components outside the desired band are filtered out, but only
those that are not in some way related to the desired sources.

For example, Sammali et al. [34] determined a band of
singular components for ST of uterine motion based on the
component’s spectral energy within the clinically relevant
bandwidth of uterine contractions, and Yu and Lovstakken [25]
reported on removing components with a mean Doppler
value in a certain clutter frequency band. Alternatively,
Wu et al. [84] enhanced motion artifacts prior to motion
compensation by iteratively determining the weights for every
PCA component so that the full-image energy content within
a predefined frequency band was maximized with respect to
the total.

5) Spatial Coherence: In a similar approach, one could look
at the spatial content of each component. As all spatial dimen-
sions are condensed in the Casorati matrix, the spatial image
of each component first has to be reconstructed. Subsequently,
for example, the spatial frequencies present in each spatial
vector reflect the size of the structures that are visualized
and could, therefore, be used to select smaller scale structures
such as individual bubbles in super-resolution imaging. The
2-D spatial autocorrelation quantified by, e.g., the 2-D full-
width half-maximum may represent a more robust measure for
spatial coherence; white noise would have the shape of a delta
function, whereas highly coherent effects, such as shadowing,
might have a very broad profile. Alternatively, [17], [71], [72]
looked at the spatial similarity between the different spatial
singular vectors. Specific blocks of high spatial similarity
were found to be related to clutter, signal, and noise, and the
boundaries of the signal block were adaptively estimated.

6) Model Fitting: Finally, one could also only select those
components of which the temporal or spatial vectors have
expected shapes. For instance, when filtering out the bolus
dynamics from a contrast video, only the components that
have a bolus-like shape are usable. Analogously, super-
resolution components should exhibit sparsity, and for ST
in cardiac or uterine movies, a certain degree of periodicity
can be assumed. Components with a significantly different
behavior are likely to contain clutter or noise. However,
it should be noted that, in particular for SVD and PCA,
only the combination of certain components might make up a
meaningful source signal.

IV. APPLICATION OF BSS FILTERING IN
ULTRASOUND IMAGING

To evaluate the described adaptive BSS framework,
we applied this type of filtering in three different US applica-
tions: 1) US localization microscopy; 2) TIC modeling; and

3) US ST. Since, for each application, different source signals
are considered desired and undesired, we briefly introduce
each application and its dedicated BSS filtering. To compare
the results with nonfiltered or conventionally filtered data,
we also introduce an objective performance measure for ver-
ification both in silico and in vitro. Finally, we also apply
BSS filtering to an in vivo example of each application. For
reference, the adopted application-specific thresholds are listed
in Table II.

A. Ultrasound Localization Microscopy

Super-resolution microvascular imaging by ultrasound local-
ization microscopy (ULM) is a relatively recent development
within the field of US, primarily inspired by advances in
optical super-resolution [85]. It exploits the known backscat-
tering nature of ultrasound contrast agents (UCAs), which
are microbubbles with a size comparable to red blood cells,
to track and visualize their position with a higher precision
than the resolution of the imaging system [2]. In this way,
super-resolved images can be generated, which reveal vascular
structures beyond the diffraction limit.

Accurate, uncorrupted detection of isolated UCA signals
is vital to this technique. Its fidelity is, therefore, largely
affected by noise, clutter, and movement. Even if contrast-
specific imaging is used [86], signals arising from tissue are
still present. To cope with this problem, SVD-filtering is
already widely applied for this purpose, aimed at removing
the spatiotemporally highly coherent clutter by omitting a
certain number of the lowest order singular components. The
number of excluded components can be preset [19], [20],
[66] or adaptively determined to optimize tissue—vessel con-
trast [18], [21]. The reported preset thresholds concerned the
10 and 20 to 30 first components without further clarification
[20], [66]; in cases where thresholds were chosen experimen-
tally, the optimal CNR was found by excluding approximately
the first 30 components [18], [21]. However, there might still
be (higher singular order) components that only carry noise
[17], [18], [18], [21]. In that respect, the isolation of the UCA
signals is twofold: 1) separation of microbubbles and tissue
and 2) removal of electronic and speckle noise.

In our adaptive BSS framework (i.e., where the thresholds
are based on components characteristics rather than experi-
ment), we, therefore, assess a combination of component selec-
tion methods. First, for the lossless methods only, we remove
the noise using information-theoretic criteria, a component
energy threshold or noise modeling. Subsequently, for all
methods, we examine either the spatiotemporal spectral con-
tent, spatial coherence, or sparsity of each component to
separate the clutter from the signal. Here, we define X €
RNxNy x Nt a¢ the received RF data, where Ny and N, are
the image sizes in x and y, respectively, and N, is the number
of frames.

As the tissue moves slowly compared with blood and is
spatially much more coherent [14], [17], [65], we favor high-
frequency and spatially low-coherent components. Component
sparsity is quantified by the normalized kurtosis of the spatial
vector K4 = N(Z),i\’:1 Q;{‘) \ (E,i\’:1 Q,%)z, where Q is the pixel
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Fig. 2. (1) In silico verification of BSS for super-resolution imaging, depicting maximum intensity projections and super-resolution images overlaying
the artificial vascular phantom. (2) Super-resolution image of a phantom with two diagonal vessels, compared with a photographic ground truth.
(3) Super-resolution image of a rat’s spinal vasculature after SVD-spectrally filtered data preprocessing.

gray levels and N is the number of pixels [77]. Table II lists
all used cutoff values. As the thresholds for frequency and
sparsity depend on image features such as pixel spacing and
field of view, we adjust these accordingly for each verification
step. Furthermore, we would like to specifically mention that
for the “turning points” approach [17], we assess the singular
curve and compute the radius of the curvature to find two
local minima. As these are assumed to separate the clutter,
signal, and noise regimes, the components defined by the
values between these minima are assumed to carry the signal.

In this work, we implemented a basic ULM approach. Sin-
gle UCA centroids were localized in the beamformed image
assuming a Gaussian-shaped point spread function (PSF),
similar to [1]. BSS was applied to the RF data for all methods
except NMF, as the nonnegative nature of backscatter intensity
can only be exploited after envelope detection. Subsequently,
the super-resolution performance was quantified by the local-
ization Fi-score [87], which, in this case, reads

_ 2tl
21+ fl+ml

in which, for each pixel, ¢/ accounts for a true, fI for a
false, and ml for a missed localization. The Fi-score is hence
a reflection of the tradeoff between the wrong and missed
localizations.

1) In Silico Verification: To compare the BSS filtering tech-
niques for ULM, a relatively sparse in silico phantom was
designed to specifically highlight how these algorithms gen-
erally cope with intervessel distances below the diffraction
limit, clutter domination with multiple clutter scatterers per
resolution cell, and clear image deterioration due to ultrasound
interference. US imaging of microbubbles traveling through

Fi (18)

a (micro)vascular network was simulated by propagating
26 microbubbles with random backscatter coefficients along
digitally generated trajectories at 2 mm/s (comparable with the
fifth-generation microvasculature [88]), in a similar approach
as in [19]. Subsequently, we mimicked the tissue signal by
adding 500 scatterers of random backscatter intensities that
were on average 1/3 lower than that of the microbubbles. These
tissue scatterers moved together following a random walk at a
speed of approximately 0.2 mm/s. Image formation was then
simulated through the 7-MHz-modulated PSF: a 2-D Gaussian
with a standard deviation of 0.14 mm and 0.16 mm in the axial
and lateral directions, respectively. The simulation resulted in
a 2-s CEUS video of size 116 x 146, with a pixel spacing of
0.03 x 0.03 mm and a frame rate of 400 Hz.

We found that especially the SVD-based approach in combi-
nation with spectral, turning-point, and sparsity-based criteria
yielded the best F; scores of 0.86, 0.84, and 0.84, respectively.
A spectral threshold of f > 10 Hz (roughly resembling
the PSF traveling at 2 mm/s) and a sparsity threshold of
k4 > 8 (corresponding roughly to half z4 of 13 PSFs in an
empty measurement domain) were adopted. For comparison,
the nonfiltered and DFT-filtered image yielded the scores
of 0.29 and 0.64, respectively. Although the noise threshold did
not significantly affect the performance, appropriate thresholds
allowed a substantial reduction in the number of components
to be included. ICA and NMF had difficulty in represent-
ing the sparse source signals but could identify the clutter.
Subsequently, subtracting the clutter sources from the origi-
nal video led to an appreciable Fi-score of 0.86. We refer
to Fig. 2(1) for an illustration of the filtering performance
and to Table I in the Supplementary Material for the full
comparison.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on November 24,2021 at 06:45:31 UTC from IEEE Xplore. Restrictions apply.



WILDEBOER et al.: BSS FOR CLUTTER AND NOISE SUPPRESSION IN ULTRASOUND IMAGING

1505

2) In Vitro Verification: We evaluated both spectral and
sparsity-based BSS filtering on an in vitro phantom con-
sisting of two 300-um channels crossing each other in a
slab of polyacrylamide. The phantom was infused with a
1/500 dilution of ~1-mL SonoVue UCA (Bracco, Milan, Italy)
at 5.9 mm/s. It was imaged for 10 s with a Vantage ultrasound
system (Verasonics, Seattle, WA, USA), equipped with a
3.5-MHz L11-4V probe, at a frame rate of 100 Hz, a resolution
of 0.5 mm, and a size of 249 x 295 with the pixel spacing
of 0.15 x 0.15 mm. Whereas, this phantom is comparable
with the in vivo situation in terms of scattering by material
inhomogeneities and noise levels, it does not include a vessel-
like structure or deliberate motion artifacts.

Following the same reasoning as for the in silico verifica-
tion, a frequency and sparsity threshold >12 Hz and >50 were
chosen, respectively. In Fig. 2(2), it can be appreciated how the
filtering effectively removes the background clutter. Using a
photograph of the phantom as a reference, an F;-score of 0.79,
0.82, and 0.83 was maintained for the spectral, turning-point,
and sparsity criteria in the in vitro situation. In contrast to the
simulations, the choice of noise criterion was more critical
to ensure a high super-resolution performance. In particular,
the noise modeling strategies (i.e., Maréenko—Pastur) proved
useful, the information-theoretic criteria being too strict due to
the dominance of clutter. The ICA approach failed to remove
the clutter.

3) In Vivo Verification: To assess the performance of the
BSS techniques in vivo, we filtered a high-frame-rate CEUS
acquisition of a rat spinal cord. For this, a Sprague-Dawley
rat (Harlan Labs, Indianapolis, IN, USA) was imaged at the
University of Washington [89]. The study was approved by
the Institutional Animal Care and Use Committee and all
appropriate guidelines were followed. The spinal cord was
exposed by laminectomy. After tail-vein infusion of 0.15 mL
of Definity (Lantheus, N. Billerica, MA, USA), 400-Hz
CEUS was performed with the Vantage scanner (Verason-
ics, Seattle, WA, USA) equipped with a 15-MHz trans-
ducer. A power-modulation scheme was adopted for contrast
enhancement [90]. The video consists of 720 frames and has
a pixel spacing of 0.03 x 0.03 mm; the super-resolved image
has a 10-um pixel spacing.

The spectral and sparsity thresholds were adjusted to
f > 50 Hz and a sparsity threshold of x4 > 25 to fit the
in vivo acquisition. In absence of a ground truth, we can only
qualitatively compare the images [see Fig. 2(3)]. While the
sparsity-based and turning-point approaches could not remove
all artifacts, the spectral approach was robust for in vivo use.

B. Contrast-Ultrasound Time-Intensity Curve Analysis

The intravascular nature of UCAs does not only allow
CEUS imaging to visualize vascularity, but it can also be used
for quantification of blood flow and perfusion. Over the years,
several methods have been developed to extract meaningful
features from the evolution of contrast intensity over time,
referred to as TICs [91]. For example, extracted parameters
were shown to correlate with tumor presence or progression
(after treatment) in, e.g., liver, thyroid, breast, kidney, and
prostate [92], [93]. In addition, CEUS quantification has

been shown useful to estimate, e.g., pulmonary blood volume
[94], [95]. Quantification of CEUS can be performed either
using a bolus injection [4] or a continuous infusion combined
with a disruption-replenishment technique [96].

BSS has been used in dynamic CEUS to eliminate breathing
artifacts in parametric abdominal perfusion recordings, using
ICA [97] or NMF [98], where the respiratory component
was identified based on its frequency content or energy,
respectively. In the remainder of this section, we will focus on
filtering CEUS videos for lesion localization in the prostate
using a bolus injection. However, the implementation can
readily be extrapolated to perfusion quantification in other
organs. More specifically, BSS was employed to retrieve the
TIC wash-in time (WIT), a heuristic parameter often used to
assess tissue perfusion [91]. The performance was quantified
by both the coefficient of determination (R?) reflecting the
goodness of fit of the TIC by the physics-driven local density
random walk (LDRW) model [4], [99] and the relative error
in the WIT estimation (AWIT) at each pixel. We, therefore,
define our data X € RNx"Ny xNi a5 the beamformed CEUS cine
loops. As the influx of UCAs is the dominant signal in these
videos, all single-threshold techniques were implemented such
that the high-frequency, low-coherence, and noise-containing
components are removed.

1) In Silico Verification: The 2-D CEUS imaging of the
prostate was simulated using a ~4 x 4-cm 2-D phantom image
containing two lesions. For each pixel (~0.5 mm, reflecting
the resolution of a iU22 commercial scanner (Philips, Bothell,
WA, USA) at ~4 cm [100]), TICs were simulated using
the LDRW model and parameters typically encountered in
malignant lesions (i.e., « = 1 +0.1 s~ and 2+0.1 s7!
and ¢ = 25%£1 s and 15+£0.1 s) and benign tissue (i.e.,
0.5£0.1 s™' and 4 = 30 £ 0.1 s) [99]. The
resulting 2-min videos were subsequently degraded by multi-
plicative noise, a scanner-specific PSF modeled by a Gaussian
spatial smoothing filter (¢, = 1 mm), a sinusoidal 1-mm
motion artifact resembling a breathing frequency of 0.2 Hz
[101], random-walk displacement representing manual probe
handling, and Gaussian-distributed electronic noise (SNR of
~4 dB compared with mean signal). Again, based on the
iU22 scanner, a frame rate of 10 Hz was adopted.

All BSS methods and component selection criteria were
evaluated for this simulation. In general, the relevant TIC
dynamics were captured in the first few components of each
BSS technique [see Fig. 3(1)]. Although many selection cri-
teria yielded a similar performance, spectral thresholding of
PCA and ICA was generally superior in terms of median
goodness of fit (both R*> > 0.99) and error in parameter
estimation, AWIT = 5% and 5.1%, respectively. The unfil-
tered, 0.15-Hz DFT and 0.5-mm spatially smoothed images
yielded the performances of R? = 0.14, 0.94, and 0.71 and
AWIT = 12.2%, 12.1%, and 5.5%, respectively. Full results
are provided in Table II in the Supplementary Material.

K =

2) In Vitro Verification: In vitro testing comprised a sponge
encapsulated in gelatin that was perfused with a bolus of
1-mL SonoVue (Bracco, Milan, Italy) UCA dilution in 10-mL
saline and imaged in the contrast mode with the Vantage
ultrasound system (Verasonics, Seattle, WA, USA), using a
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Fig. 3. (1) First four component vectors after SVD and ICA of an in silico transrectal CEUS video of the prostate with two, early-enhancing regions.
(2) TIC modeling results of the contrast bolus infused into a sponge phantom, with and without a deliberate artifact. (3) Unfiltered and SVD-spectrally
filtered in vivo CEUS video with the corresponding R2 and WIT maps; a prostate cancer lesion was found at the location of the arrow.

3.5-MHz L11-4V transducer. The images were ~2 min long
and had at a frame rate of 50 Hz and a pixel spacing of
0.18 x 0.18 mm. Recordings were performed with the probe
fixed to the setup, the probe subjected to controlled motion,
and the probe undergoing irregular handheld movements. After
filtering, the TICs were measured at each pixel, linearized, and
fit by the LDRW model. Since the simulations were based on
the LDRW model, thus allowing for a perfect fit, nonsynthetic
data were expected to yield lower fitting performances due
to the limitations of the model. The unfiltered and 0.5-mm
spatially smoothed data could be fit with an R* of 0.17 and
0.66 in the fixed scenario and 0.14 and 0.44 in the worst-case
scenario, respectively. Both spectrally filtered PCA and ICA
were able to generate data with R2-scores of 0.87 and 0.83 in
the fixed and 0.54 and 0.62 in the worst-case scenario. The
WIT estimates were similar over all methods.

3) In Vivo Verification: In a prospective 48-patient trial at
the Martini Klinik (University Hospital, Hamburg-Eppendorf,
Germany), patients with biopsy-proven prostate cancer under-
went three CEUS recordings with an Aixplorer ultra-
sound scanner (Supersonic Imagine, Aix-en-Provence, France)
equipped with a 3.2-MHz SE12-3 probe at a frame rate
of 27 Hz. After radical prostatectomy, prostate histopathology
was matched to the CEUS images by assigning benign and
malignant regions of interest. By extracting the pixel-wise
WIT in those regions, we evaluated this metric’s diagnostic
potential in terms of the area under the receiver operating
characteristics curve (ROC-AUC).

By appending the preprocessing with a spectral-threshold-
based SVD and to a lesser extent with PCA, we found
an improvement in tumor classification compared with the

conventionally filtered recordings, increasing the ROC-AUC
from 0.66 to 0.68 for prostate cancer. The goodness of fit (R?)
improved only slightly from 0.68+0.07 to 0.69£0.12, but we
observed a substantial decrease in the number of TICs that
could not be fit by the LDRW model (from 23% to 14%). As
these nonfit pixels are usually left blank when presented to the
clinician, filtering clearly allows for a more complete assess-
ment of especially low-quality recordings. Hence, the use of
BSS substantially improved the parametric maps while also
increasing the classification performance. Fig. 3(3) shows an
example of filtered images.

C. Ultrasound ST

US ST imaging allows quantitative evaluation of global and
regional tissue motion. A speckle is commonly defined as a
typical spatial distribution of grey-level values in US B-mode
images caused by constructive and destructive interference
of reflections from individual tissue scatterers, forming a
unique and deterministic pattern. ST techniques track the
speckle pattern during the subsequent frames allowing for
motion and strain imaging analysis. ST by US imaging is
an active field of research that has already been translated
into several applications, in particular, for cardiovascular [102]
and muscular [103] investigations and vector Doppler imaging
[104]-[106] and, recently, for the assessment of uterine motion
outside pregnancy [34]. Motion tracking technology is based
on the estimation of tissue displacement rather than on exact
formulas; therefore, the presence of small errors is inescapable
during the evaluation of relative motion. Errors can occur in
the estimated displacements when these inaccuracies accumu-
late over the consecutive frames.
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(1) 3-D finite-element model of a human heart and the corresponding 2-D US simulation that was SVD-spectrally and CPV-filtered prior to

ST. (2) Experimental setup inducing controlled, rhythmic motion during 2-D US imaging of an ex vivo uterus; the blocks’ position during deflation
and inflation used for ST are indicated in the unfiltered uterine images. (3) Unfiltered and SVD-spectrally filtered US uterine video used for the
comparison of motion tracking along (a) longitudinal and (b) transversal directions.

US loops recorded, e.g., in the heart, skeletal muscle, and
uterus comprise slow and fast tissue movement, respiratory
motion, stationary tissue clutter, shadowing, and other artifacts.
ST algorithm may underestimate the true motion due to the
noise and artifacts present in the images, which limits the
performance of the ST algorithm. To mitigate the effect of
clutter and noise on tracking results, BSS filtering can be
performed to suppress the signals that are uncorrelated with
tissue motion signals and that affect UST results. BSS has
been mostly used for blood velocity estimation [14], [107]
as well as for clutter suppression to enhance skeletal muscle
displacement [108] using UST where the blood component and
the true muscle motion were identified based on its spectral
content or energy.

For this work, we studied the effect of BSS filtering prior
to US ST in an in silico cardiac image sequence, an ex vivo
uterine motion acquisition, and an in vivo uterine recording.
The B-mode videos were defined as our data X € RN«Ny < N,
Similar to TIC modeling, the desired signal is generally
the most prominent signal in this application, and thus,
the first few BSS components were selected for the single-
threshold methods. Furthermore, as we apply ST to periodic
movements, we adopted periodicity as an additional criterion
for component selection. For this criterion, we compute the
normalized temporal autocorrelation of each component and
only include those with a sufficiently high autocorrelation peak
(i.e., >0.6) aside from the one at zero lag.

To objectively assess the tracking quality in terms of
agreement with the reference motion before and after BSS

filtering, the Pearson correlation coefficient (Pearson ) and
mean squared error (mse) were employed as metrics.

1) In Silico Verification: To study the effect of BSS filtering
on ST echocardiography, a synthetic 2-D cardiac US acqui-
sition was simulated and tracked over several cardiac cycles.
The video was generated using a 3-D finite-element model
of the human living heart that follows cardiac excitation and
contraction based on a two-field finite-element formulation
of coupled electrical and mechanical fields [109]. The finite-
element nodes moving with the mechanical deformation of
the heart served as US scatterers. A 2-D four-chamber view
by a phased-array transducer was created by 3-D modeling
161 scan lines positioned every 0.6° in a coronal plane. For
each line, all scatterer contributions were simulated by a
convolution between the scatterer location and the location-
dependent PSF. This PSF was approximated by assuming a
Fraunhofer pressure field modulated by a four-cycle 2.5-MHz
cosine function in the propagation direction. In order to
reduce the sidelobes of the rectangular transducer, Hamming
apodization was adopted [110]. Prior to generating a 54-Hz
multicycle US heart video through demodulation of the scan
lines, clutter and Gaussian noise were introduced in the RF
data. The resulting 1334 x 1001 2-D US video of the heart
had a pixel spacing 0.15 mm and consisted of 432 frames,
the first of which is shown in Fig. 4(1).

On the 2-D US synthetic heart image, speckles associated
with tissue deformation of the left ventricle (LV) can be
identified and tracked by calculating frame-to-frame changes.
Out-of-plane motion occurs due to rotation and motion of the
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heart into the chest cavity and may cause the disappearance
of the speckles over a few frames [111].

In this work, a pyramidal Lucas—Kanade optical flow
method was implemented for the tracking, as this method
provides sufficient tracking accuracy for large and fast
motion [112]. Two blocks were manually selected in the
LV wall [see Fig. 4(1)] and tracked over time during three
cardiac cycles of the video, both before and after BSS filtering.
The estimated motion of the tracked blocks, calculated as
the absolute motion (i.e., Euclidean distance from the initial
position), was compared with the absolute motion of the
corresponding scatterer in the 3-D finite-element model.

All BSS methods and component selection criteria were
evaluated for this in silico verification [see Fig. 4(1)]. Only
four selection criteria yielded an improved performance com-
pared with unfiltered US image sequences. Among these
four criteria, the CPV of SVD-filtered data revealed to be
generally superior in terms of correlation coefficient (Pear-
son r = 0.724+0.08), while [0.5 Hz — 1.5 Hz]-spectral
thresholding of the SVD was superior in terms of mse
(mse = 0.0048+0.0032 mm?2). ST on the unfiltered US
image sequences yielded performances of Pearson r =
0.6440.06 and mse = 0.13£0.1 mm?. Table III in the Sup-
plementary Material shows the full results.

2) In Vitro Verification: The use of BSS filtering in ST in
vitro and in vivo is evaluated in US imaging of the uterus.
Similar to the heart, uterine US loops not only capture the
uterine motion (i.e., uterine peristalsis) but also fast motion
of neighboring organs, respiration, and probe motion. First,
all BSS methods and component selection criteria were eval-
vated in an ex vivo human uterus, removed by laparoscopic
hysterectomy, undergoing controlled and rhythmic motion to
establish a reference for the assessment of ST performance.
The US acquisitions were performed at Catharina Hospital
(Eindhoven, The Netherlands). The patient signed informed
consent; all the acquired US postsurgical loops were exempt
from relevant ethical committee approval.

The controlled motion was generated by a dedicated exper-
imental setup described in [113]; a sinusoidal displacement of
a syringe piston was generated by an electromagnetic actuator
injecting saline water through a balloon catheter inserted into
the uterine cavity. Rhythmic inflation and deflation of the uter-
ine cavity was generated with a period of 20 s corresponding
to a frequency of 0.05 Hz, representing the averages during
the most active phase of the menstrual cycle [114]. Reference
for the uterine motion was realized by inserting two needles
in the myometrial wall.

The 4-min US recording was performed immediately after
surgical removal of the uterus with a US scanner WSS0A
(Samsung Medison, Seoul, South Korea) equipped with a
transvaginal V5-9 probe imaging at 5.6-MHz central fre-
quency. The employed frame rate was 30 Hz, amply sufficient
to meet the Nyquist condition given the limited bandwidth
of the uterine motion [115]. A block-matching ST technique
was applied based on 12 blocks that were manually positioned
around each needle marker, as described in [113].

In general, the relevant uterine dynamics were captured
in the first few components of each BSS technique. Many

selection criteria yielded comparable ST performances in
terms of Pearson r between the average of the 12 blocks and
the needle marker, but spectral thresholding of SVD performed
best both in Pearson r (0.84+0.15) and mse (0.29+0.24 mm?),
outperforming ST of the unfiltered data (Pearson r =
0.6640.38 and mse = 0.34+0.30 mm?). As uterine dynamics
are slower than the heart contractions, a frequency interval
fe =10.04 Hz — 0.06 Hz] was used.

3) In Vivo Verification: For the ethical-committee-approved
study described in [34], several healthy women underwent
4-min US recordings during four selected phases of the natural
menstrual cycle, suggested to indicate variations in uterine
contractility [116]. The US scanner and settings were the same
as in the in vitro acquisitions, and four blocks were manually
defined along the myometrial wall in the fundus area, which
is considered to be the most contractile part of the uterus.
These four sites were then tracked over time by a dedicated
US ST algorithm [34] and the Euclidean distances between
the longitudinal and transversal pairs, as shown in Fig. 4(3),
served as a measure of absolute motion.

For this work, we evaluated the spectral thresholding of
SVD by adjusting the frequency interval to f. = [0.008 Hz —
0.066 Hz] to cover the entire motion range of the different
menstrual cycle phases. We extracted the median frequency
(MF) from both filtered and unfiltered distance signals as rep-
resentative of uterine motion frequency for the given example
in Fig. 4(3). The filtered signal presented MF = 0.0360 Hz,
while the unfiltered signal yielded MF = 0.0176 Hz,
indicating that the BBS filtering produces better estimates
of the contraction frequency when the values reported in
the literature for the specific menstrual phase are considered
as ground truth (0.035-0.055 Hz [115]). Indeed, as can
be appreciated in Fig. 4(3), larger uterine motions can be
tracked, which may lead to a more robust estimate of the MF.

V. DISCUSSION

In this work, we reviewed and compared several BSS
approaches for noise and clutter suppression in US recordings.
As the nature of the desired signal differs among applications,
it is important to tailor a filtering approach to the acquisi-
tion at hand using specific domain knowledge. Furthermore,
although the decompositions comprising BSS are intrinsically
adaptive, the retrieval of the signal subspace is often performed
manually. Adaptive strategies to identify the components that
make up the desired signal are far from established; therefore,
we also focused on several adaptive criteria for component
(i.e., “source”) rejection. After all, even though it is possible
that the qualitatively best-looking images are formed using
a heuristic or empirical rather than an adaptive approach,
especially when optimizing CNR, such a strategy has limited
generalizability and reproducibility. Clutter source dominance
as well as noise levels can substantially change from acqui-
sition to acquisition. While Demené ef al. [14] observed that
the cutoff value is not critical, we have found substantial dif-
ferences in the applications investigated. A similar experience
is reported in [17].

For the discussed applications, well-tailored BSS filter-
ing outperformed the more traditional filtering techniques.
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Probably, the reason for this is that BSS exploits the statistical
independence or orthogonality of the image ‘“sources”; there-
fore, it is less affected by the overlap of clutter and noise in the
spatial or temporal (frequency) domain. Although we aimed
to design our simulations in such a way that they represented
typical filtering challenges for our systematic comparison,
it has not been possible to cover all subtle differences among
the US data and methods. Some caution should, therefore,
be exercised in the interpretation of the results.

Nevertheless, we found that for all US applications con-
sidered in this work, SVD in combination with spectral
thresholding generally performed among the best. This tech-
nique exploits the known temporal characteristics of the
desired sources aside the BSS decomposition; nonnoise high-
frequency components revealed UCA signals in ULM, the low-
frequency components harbored the TIC information, and a
well-chosen frequency passband allowed for the separation
of cardiac and uterine motion from uncorrelated sources
and noise contamination in US ST. Of all BSS techniques
examined, SVD best isolated the temporal components for this
purpose.

On the other hand, while ICA and NMF show benefit for
TIC modeling, they underperform for super-resolution. This is
the result of the linear mixing matrix assuming a steady state,
as a consequence of which spatial translation over time cannot
be captured by a limited number of components. We believe
that for blood flow imaging, where clutter is abundant but
blood vessel signals are less sparse, also ICA and NMF
could be considered. Also in US ST, NMF underperformed
compared with the other BSS methods, possibly because
periodic motion is best approximated by allowing negative
values. This effect can be appreciated within the first few
components of the in silico TIC modeling validation, where
the simulated breathing frequency is clearly visible.

It is worth noting that BSS techniques, which decompose
based on spatiotemporal coherence, are limited in coping with
noise sources that have low temporal and spatial coherence
due to, e.g., motion [117]. In Fig. 3(1), the effect of temporally
coherent motion can be recognized in the second component
of SVD and both the third and fourth components of ICA.
As its temporal characteristics are in this case different from
the signal dynamics, these effects can be filtered out. To correct
for movements with low spatial/temporal coherence, which
are not easily identified in specific BSS components, other
techniques, such as (elastic) registration or coherent flow
power Doppler [117], are required.

Another drawback of BSS techniques is that they generally
require substantially more computational power and time
compared with conventional filters, in particular when dealing
with the vast amount of data obtained in ultrafast imaging
and long-running acquisitions. As all spatial dimensions are
collected as rows in the Casorati matrix, filtering can easily
be extended to volumetric videos. In fact, as discussed in [14],
the availability of a larger spatial support might even lead to
an improved BSS performance.

Although beyond the scope of this article, there are methods
available to speed up processing without compromising the
accuracy or effectiveness of the decomposition itself, for

example, randomized SVD [64] or a block-wise method as
proposed in [18]. The latter method even allows for a more
accurate clutter and noise rejection, as it can adapt to spatial
variations in SNR and resolution. Alternatively, one could
think of an approach in which frequency requirements are
adjusted during the recording, for example, having a differ-
ent frequency threshold for different phases of the cardiac
cycle [14]. In one such approach [69], the ideal clutter cutoff
was manually initialized for the first 60 frames and then
adaptively retained by tracking the evolution of singular values
for each consecutive 60-frame SVD as the coronary ultrafast
Doppler video progressed.

Even more promising are approaches that circumvent filter
cutoff values by integrating filtering in the BSS algorithm.
A straightforward example is the RPCA approach introduced
in Section II; for the simulation of ULM in which the signal
is sparse, an Fj-score of 0.92 was reached. Separation of
sparse and low-rank matrices is also studied for sparse signal
separation [118]-[120]. Also, deep learning could be utilized
to speed up the recovery of sparse sources [19].

It remains to be investigated, whether a gradual rather
than a hard threshold can improve BSS filtering by avoiding
block artifacts, as mentioned in [16]. Furthermore, although
most authors use a cutoff value and some observe artifacts
caused by partial removal of a complementary subset of
components [34], the inclusion of only consecutive singular
components is not strictly required. As shown in Fig. 3(1),
a single component could represent an artifact, whereas the
surrounding components carry the desired signal. This is,
however, dependent on the application and should be studied
in more detail.

VI. CONCLUSION

BSS filtering is increasingly applied to US acquisitions and
exhibits great potential for effective noise and clutter suppres-
sion. However, as BSS as well as subspace selection has to be
tailored to an application, the choice and dedicated design of
such a filter are of vital importance. Here, we have determined
the best domain knowledge-based adaptive approaches for
BSS filtering in several US applications.
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