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Abstract

Clutter Suppression in Ultrasound: Performance Evaluation of Low-Rank and
Sparse Matrix Decomposition Methods

Naiyuan Zhang

Vessel diseases are often accompanied by abnormalities related to vascular shape

and size. Therefore, a clear visualization of vasculature is of high clinical significance.

Ultrasound Color Flow Imaging (CFI) is one of the prominent techniques for flow

visualization. However, clutter signals originating from slow-moving tissue is one of the main

obstacles to obtain a clear view of the vascular network. Enhancement of the vasculature

by suppressing the clutters is an essential step for many applications of ultrasound CFI.

In this thesis, we focus on a state-of-art algorithm framework called Decomposition into

Low-rank and Sparse Matrices (DLSM) framework for ultrasound clutter suppression.

Currently, ultrasound clutter suppression is often performed by Singular Value

Decomposition (SVD) of the data matrix, which is a branch of eigen-based filtering. This

approach exhibits two well-known limitations. First, the performance of SVD is sensitive

to the proper manual selection of the ranks corresponding to clutter and blood subspaces.

Second, SVD is prone to failure in the presence of large random noise in the data set.

A potential solution to these issues is the use of DLSM framework. SVD, as a means

for singular values, is also one of the widely used algorithms for solving the minimization

problem under the DLSM framework. Many other algorithms under DLSM avoid full SVD

and use approximated SVD or SVD-free ideas which may have better performance with

higher robustness and lower computing time due to the expensive computational cost of full

SVD. In practice, these models separate blood from clutter based on the assumption that

steady clutter represents a low-rank structure and the moving blood component is sparse.
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In this thesis, we exploit the feasibility of exploiting low-rank and sparse decomposition

schemes, originally developed in the field of computer vision, in ultrasound clutter

suppression. Since ultrasound images have different texture and statistical properties

compared to images in computer vision, it is of high importance to evaluate how these

methods translate to ultrasound CFI. We conduct this evaluation study by adapting 106

DLSM algorithms and validating them against simulation, phantom and in vivo rat data

sets.

The advantage of simulation and phantom experiments is that the ground truth vessel

map is known, and the advantage of the in vivo data set is that it enables us to test

algorithms in a realistic setting. Two conventional quality metrics, Signal-to-Noise Ratio

(SNR) and Contrast-to-Noise Ratio (CNR), are used for performance evaluation. In

addition, computation times required by different algorithms for generating the clutter

suppressed images are reported. Our extensive analysis shows that the DLSM framework

can be successfully applied to ultrasound clutter suppression.
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Chapter 1

Introduction

1.1 Angiology and Ultrasound Clutter Suppression

1.1.1 Angiology and Vessel-Related Diseases

Angiology, which concerns vessel-related diseases, is one of the most important branches

of medical science since vascular diseases are very common and cause death to a large

number of people every year [1]. Vascular diseases can primarily be divided into several

categories based on the type of vessel. Arterial diseases include aneurysms, thrombosis,

vasculitides, and vasospastic disorders. Venous diseases include venous thrombosis, chronic

venous insufficiency, and varicose veins. There are also diseases associated with capillaries.

One such example is the capillary hemangioma. Currently, the most accepted classification

of vascular abnormalities is tumors and deformities which were adopted in 1996 by the

International Society for the Study of Vascular Anomalies [2]. Therefore, many major

clinical diseases have been shown to cause vascular growth abnormalities. For example,

many cardiovascular diseases are related to aneurysms or other vascular variations [3, 4];

the growth of many tumors in cancer is also highly dependent on angiogenesis [5, 6].

Similarly, angiogenesis is also an important feature of diabetes-related diseases [7, 8, 9] and

endometriosis [10]. Therefore, blood vessel imaging is indispensable in clinical fields and

medical research [11], including but not limited to diagnosis, treatment planning, surgery,

and follow-up treatment results.
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Some common diseases associated with abnormal blood vessels are listed below:

• Cancer: Cancers are a family of diseases which involve abnormal cell growth. Blood

vessels in tumor are abnormal is now a common agreement [5]. Evidence suggests

that the proliferation of cancer cells can squeeze blood vessels and lead to collapse

and deformation of vessels which impairs the delivery of therapeutic drugs [6].

• Diabetic retinopathy: Diabetic retinopathy is a highly specific neurovascular

complication of both type 1 and type 2 diabetes [7]. Vascular changes such

as microaneurysms, venous beading, intraretinal microvascular abnormalities,

neovascularization, and nonperfused areas can be caused by diabetes in diabetic

retinopathy [12]. These changes affect the morphology of blood vessels and the

flow of red blood cells. The characteristics of the retinal vascular network is

important for diagnosis, treatment, screening, evaluation, and the clinical study of

many diseases [13].

• Rheumatoid arthritis: Rheumatoid arthritis is one of the most common autoimmune

inflammatory arthritis in adults [14]. It has been reported in the literature that

arthritis causes angiogenesis due to lack of nutrients and oxygen. Angiogenesis in the

early stages of inflammation is important for diagnosis and treatment [15].

• Endometriosis: Endometriosis is a chronic endocrine and immunological disease which

affects more than 80 million females [16]. The main pathogenesis of endometriosis

is the excessive endometrial angiogenesis. An important method of diagnosing

endometriosis is to detect extra endometrial angiogenesis [10].

• Psoriasis: Psoriasis is a common chronic inflammatory disease of skin [17]. The vessels

in psoriasis skin are often abnormal. In general, the tip of the capillaries will curl

evenly in size [18]. Angiogenesis is the main symptom of the early stage of psoriasis.

Skin biopsy for abnormal vessel growth can be used for diagnoses and predicting the

spread of psoriatic plaque [19].
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1.1.2 Medical Imaging Methods

Several medical imaging modalities such as Duplex Ultrasound (DUS), Computed

Tomography (CT), Magnetic Resonance Imaging (MRI), and Digital Subtraction

Angiography (DSA) have been employed thus far to ensure a proper visualization of

blood vessels. Among different vascular imaging modalities, ultrasound has become the

primary choice, for it is safe, economical, easy-to-use, and most importantly, real-time [11].

Duplex ultrasound is the combination of Color Flow Imaging (CFI) and grayscale/brightness

mode (B-mode) imaging, whereas the CFI is used to observe the blood flow direction

and velocities, and the B-mode ultrasound is used to visualize two-dimensional anatomy

images simultaneously. By simultaneous processing frequency, phase, and amplitude of the

backscattered ultrasound signal, CFI can rapidly identify the flow direction and velocities

in the region of interest. Moreover, CFI can be used to mark flow abnormalities, including

stenoses and occlusions [20]. The comparison between ultrasound and other vascular

imaging methods is shown in Table 1.1.

Table 1.1: A comparsion of vessel imaging methods. Acquisition time is approximate and
includes pretreatment and acquistion.

Acquisition Time Safty Limitations
MRI 30 min No risk Long imaging time

No vessel wall
Metal Prohibited

CT 5 min Low risk Radiation risk and complication risk.
DSA 120 min Low risk Radiation risk and complication risk

Invasive
DUS 15 min No risk Limit resolution

Prohibited at wound sites
High level user dependent
Obstruction of gas and solid.

• Magnetic Resonance Imaging (MRI): Magnetic Resonance Angiography (MRA) is

an MRI-based vessel visualization technique which is mainly used for imaging the

arteries [21]. MRI takes advantage of powerful magnets for polarizing and exciting

hydrogen nuclei to produce images of the vascular network present in the region

of interest. Contrast agents are injected in the vasculature of the subject in

this method for obtaining a high contrast between vessels and the surrounding

4



tissue [22]. MRI provides various functional parameters like blood volume, perfusion,

and permeability [23]. However, this contrast enhancement makes the technique

invasive. Recent advances in MRI have introduced non-contrast enhanced techniques

where high image contrast is achieved by incorporating stronger magnetic fields [24].

Although MRI has been successful in detecting vascular soft tissue tumors and vascular

malformations [11], this technique is very expensive and takes a long time to execute.

In addition, this is not a very user-friendly method since MRI is not portable and

poses restrictions on using any gear made of metal.

• Computed Tomography (CT): Computed Tomography Angiography (CTA) incorpo-

rates computed tomography for obtaining a super contrast image of the vessels in a

variety of tissue types and organ systems [25]. This technique is especially suitable for

diagnosing arterial abnormalities such as aneurysmal diseases [26, 11]. CTA usually

requires using the contrast agent for obtaining a super resolution vascular map [27, 25].

In the case of contrast agents, a new technology - µCT [28, 29] can provide higher

resolution (1 µm) than ultrasound and MRI [23]. Since contrast agents are not

innocuous, new CTA techniques with less or without contrast agents become a popular

research area. Although innovations in detector arrays and scanning methods have

reduced the use of contrast agents [30], non-contrast CT seems to be more suitable

for the detection of hard substances such as ureteric stones [31] rather than blood

vessels since CT works based on the principle of X-ray. For the same reason, CTA

generally requires higher contrast because of the effects of vascular calcification which

is common in aging, diabetes, and renal insufficiency [32].

• Digital Subtraction Angiography (DSA): DSA is an X-ray based medical imaging

technique used for clearly visualizing blood vessels and coronary artery DSA is one of

the most famous applications [33, 34]. In this technique, contrast agent is introduced

to the vasculature of the subject. The final image is generated by subtracting a

reference pre-contrast image from the post contrast frames. Although this technique

has shown promise in diagnosing arterial stenosis, limb ischemia and pulmonary

embolisms, different cumbersome preparations are required for different diseases and
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there are risks of surgical accidents [11].

• Duplex Ultrasonography (DUS): DUS works as a combination of B-mode ultrasound

and pulsed-wave Doppler (or Color Flow Imaging, CFI) which is sensitive to fast-

moving red blood cells. DUS has become a primary way for vascular disease diagnosis

due to its ability to image nearly all kinds of vasculature [35]. It is a safe and an

economical non-invasive vascular imaging technique. However, the sensitivity and

accuracy achieved by this modality are slightly insufficient for vessels located at tissue

regions which are hard to image [36]. For instance, bone-wrapped blood vessels or

severely calcified blood vessels are not convenient to image with DUS because of the

characteristics of ultrasound wave reflection [11].

1.1.3 Ultrasound Color Flow Imaging and Clutter Suppression

Due to the excellent performance, ultrasound CFI has been increasingly used for the

diagnosis of vessel-related diseases [35]. However, as one of the most promising and widely

applicable methods with low cost and no risk, CFI still has some obvious disadvantages.

Firstly, due to the tissue scattering of the ultrasound beam, the intensity of the blood

backscatter is several orders of magnitude less than that of the tissue backscatter, which

makes it hard to image blood flow clearly [20, 37]. Secondly, more than three pulses are

needed to estimate the velocity because of the stochastic behavior of blood signals and the

impact of tissue clutters [20]. The requirement for multiple pulses limits frame rates and

the number of scan lines. Thirdly, CFI is limited by the insonation angle which is the

angle between the ultrasound beam and the flow direction [38, 39]. Generally, an accurate

measurement requires Doppler angles ranging from 30 to 60 degrees, where smaller angles

will result in lower speeds and greater angles will produce a significant overestimation of

the velocity [38, 39]. Last but not least, blood signals and clutter signals will possess a

significant overlap, that is, when the blood flow rate is very slow (such as in small blood

vessels) or when the tissue movement is obvious. The overlap will be harmful to blood vessel

visualization [40, 41]. Most of these disadvantages are caused by clutter, as a consequence,

clutter suppression is particularly important in ultrasound blood flow imaging. Figure 1.1

6



shows the clutter in two CFI images and illustrates the importance of clutter filtering.

(a) (b)

Figure 1.1: A set of comparison images showing CFI with and without clutter
filters. (a) is CFI raw data in Brightness mode. (b) is the same data after clutter
suppression by SVD. In the upper right window, the raw CFI data contains a lot of
tissue clutter in the background, which is suppressed by SVD in the second image.

The main purpose of clutter filtering is to suppress gross-moving tissue clutter and beam

side lobe leakages [41]. An efficient clutter suppression is a prerequisite for CFI to present

accurate and clear blood flow maps. The most significant effect of clutter reduction is an

increase in the signal-to-noise ratio (SNR) of the blood signal, which enables clearer blood

flow maps and reduces erroneous moving tissue signals. Meanwhile, pure blood flow signals

also help reduce the number of pulses needed to estimate the speed, thereby increasing

the frame rate. In addition, the overlapping frequency spectra of slow blood flow and

fast-moving tissue will no longer hinder the microvascular flow detection or add bias to

high-velocity flow [41, 42].

However, the perfect removal of clutter signals is still impossible for now since clutter

signals are 40 to 100 dB stronger than blood signals and they exhibit similar properties [37].

In early development of CFI clutter filtering, tissue signals and blood signals were

assumed to have completely different frequency characteristics. This assumption holds

that tissue and blood signals exhibit non-overlapping frequency spectra since the tissue is

considered to be nearly stationary whereas red blood cells are rapidly moving [40]. Based on

this assumption, Finite Impulse Response (FIR) and Infinite Impulse Response (IIR) high

pass filters were used to filter clutter signals and enhance the sensitivity of blood flow [37, 40].
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Nowadays, it is recognized that FIR and IIR filters have distinct drawbacks. FIR filters

require a high order to separate blood from clutter, whereas IIR filters take a long time

to settle [40, 43]. Furthermore, both types of high pass filters suffer from the insufficient

number of slow time samples, which leads to inefficient suppression of clutter [41, 44].

Another clutter removal approach introduces linear regression filters [45, 46, 47]. The

regression filter eliminates clutter signals by taking the least square fitting of signals from

the signal model [40]. Studies suggest that polynomial regression filters and IIR filters

have better performance than FIR filters. In the case of contrast-enhanced ultrasound

vascular imaging, pulse inversion technique has been introduced towards the end of clutter

rejection [48, 49, 50]. In this approach, the linearity property of tissue echo is exploited for

distinguishing tissue from blood [48, 51, 52]. Although these methods significantly improve

the SNR of blood signals, they are not considered in this paper because of their invasiveness.

1.1.4 Eigen-Based Filters for Ultrasound Clutter Suppression

The aforementioned traditional clutter suppression algorithms, such as FIR and IIR, have

at least one of the following issues: 1) long settling time 2) inability to adaptively suppress

the clutter based on data property 3) inadequate temporal sample or resolution. Besides,

two main reasons are resulting in the imperative innovation of ultrasound clutter filtering.

Firstly, new ultrasound technologies like plane wave ultrasound have brought a higher

frame rate and imaging speed. Traditional filters cannot meet the higher clutter filtering

performance requirements, though they do not suffer from the settling time due to the

high frame rate. Secondly, the underlying assumption of traditional filters does not hold

in the presence of significant tissue motion stemming from the sonographer’s sinusoidal

hand movement or the patient’s breathing and heart-beat [53, 54]. In such a scenario,

the frequency bands corresponding to tissue and blood overlap with each other without a

definite boundary between them. Hence, high pass filters fail to separate blood from tissue

when the clutter signal dominates with non-zero Doppler frequency caused by substantial

tissue movements.

To resolve these issues, eigen-based filters [55, 56, 57] have been proposed which

take both spatial and temporal samples into consideration to develop an adaptive clutter
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suppression scheme. The techniques related to these eigen-based filters have been widely

applied in the field of computer science which is mainly used for processing high-dimensional

data. Meanwhile, these techniques are not based on incomplete traditional assumptions.

Matrix decomposition is the principal idea behind these algorithms and it is assumed

that clutter and blood signals lie in different subspaces. Therefore, eigen-based filters are

considered adaptive to gross motions induced by the sonographer or the subject being

examined. Based on different assumptions, research proves that eigen-based filters perform

better than traditional methods [42, 44].

Most of the eigen-based filters for ultrasound clutter suppression are based on Singular

Value Decomposition (SVD) or eigenvalue decomposition and improve upon it [58, 59, 60,

61]. To perform the subspace separation task, slow-time temporal ultrasound frames are

stacked as columns of data matrix, known as the Casorati matrix [62]. The SVD of this

Casorati matrix provides the opportunity to distinguish blood from clutter. It has been

reported in the literature that the most dominant singular values and vectors correspond to

clutter, the next few represent blood and the least significant ones correspond to noise [36].

In these eigen-based approaches, the eigen or singular values representing clutter and noise

are set to zero to find the blood component of the echo signal [36, 63].

Many SVD-based techniques have been proposed which work with conventional line-by-

line scanning [42, 64, 65, 66]. These methods suffer from lacking an adequate number of

temporal samples due to low frame rate associated with focused ultrasound imaging [43].

Recent clutter suppression algorithms [40, 63, 67, 68, 69, 70] have resolved this issue

by incorporating ultrafast plane-wave imaging. However, the blood signal in plane-wave

ultrasound is even weaker than normal ultrasound due to the unfocused wave [71, 72].

The sidelobe in plane-wave imaging is also much higher than that in conventional imaging

due to the same reason. Therefore, plane-wave ultrasound has a higher and more urgent

filtering requirement than traditional CFI. Recent methods have extended SVD-based

clutter suppression to a higher order by analyzing a data tensor instead of a two-dimensional

matrix [63, 69, 73]. Since the first few singular values do not necessarily correspond to the

clutter signal in the presence of a large temporal misalignment among the frames, the

motion correction step has been introduced in SVD-based clutter rejection [74]. Since SVD
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was initially combined with plane-wave imaging in 2015, almost all the clutter suppression

research has been based on plane-wave ultrasound since SVD can reach its full potential on

large data sets [40].

Although SVD based techniques are promising for suppressing clutter optimally, they

have two major drawbacks. First, there is still no uniform and efficient standard for rank

selection which presents boundaries of tissue and blood flow [63]. Proper subspace rank

selection which is done by extensive manual intervention, is crucial for the optimality

of clutter rejection. Recent methods suggest different criteria for selecting the optimal

ranks [75]. In addition, [43] proposes K-means clustering of the decomposed components

as a criterion for selecting singular values and vectors corresponding to clutter and blood.

Though different ideas are proposed for automatic rank selection [76], there is still no

efficient and standard method. An example that briefly explains the problem of SVD

threshold selection is shown in Figure 1.2. The selected rank will affect blood signals. A

large threshold range cannot effectively filter clutter and noise, and a small range will lose

part of the blood signals. The second drawback is that SVD is sensitive to noise. It fails to

obtain the optimal result while processing data with large random noise [77].

(a) Original image (b) b = 2, e = 18 (c) b = 4, e = 16

(d) b = 6, e = 14 (e) b = 8, e = 12

Figure 1.2: A set of pictures showing the threshold selection of SVD. (a) is the
original simulation data in brightness mode. (b), (c), (d), (e) are the processed
images by SVD with different thresholds. Parameters b and e represent the selected
rank of blood and noise signal, respectively. The full rank of the data is 20.
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1.2 Objectives of the Thesis

The aforementioned issues can potentially be resolved by taking the framework called

Decomposition into Low-rank and Sparse Matrices (DLSM) [43] into account. SVD is

one of the calculation methods in DLSM framework and there are also approximate SVD

or SVD-free algorithms. This is a well-established framework in the field of computer

vision due to its robustness to large noise and information corruption [77]. The underlying

assumption of this approach is that steady tissue is a low-rank component and moving blood

exhibits sparsity [71]. It has been noticed that both temporal and spatial information can be

used to separate tissue and blood signals since tissue signals have a higher temporal-spatial

coherence than blood signals (e.g. the blood scatterers are unique and constantly changing).

A convex optimization problem is usually solved to decompose the data matrix into low-

rank clutter and sparse blood components. A recent technique has used this model for the

concurrent removal of clutter and noise [78]. Furthermore, recent work has incorporated

deep learning with low-rank and sparse decomposition for improved clutter suppression

performance [43].

The main purpose of this work is to demonstrate the feasibility of exploiting 106

established low-rank and sparse decomposition algorithms in ultrasound clutter suppression,

and to provide suggestions for most suitable DLSM models, optimization methods, and

algorithms for ultrasound clutter suppression.

1.3 Organization of the Thesis

The thesis is organized as follows. Section 2 briefly introduces the DLSM model including

decomposition types, loss functions, and the relationship with subspace clustering and

tensor decomposition. In section 3, detailed experimental settings and results on simulation,

phantom, and in vivo rat data-sets are included. In sections 4 and 5, the discussion and

conclusion of the experiment and the prospect of the DLSM framework in ultrasound clutter

suppression are shown.
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Chapter 2

Algorithms and Frameworks

2.1 Decomposition into Low-rank and Sparse Matrices

Framework

Low-rank and sparse structures are attractive since they usually represent part of the large

and high-dimensional data which we are most interested in. Noise and data corruption

can be fixed when decomposing matrices into low-rank and sparse components. Methods

like sparse representation and low-rank modeling have achieved great success in computer

vision, natural language processing, system identification, bioinformatics, etc. [79, 80, 81].

So far, many different models, optimization methods, and algorithms are proposed aiming at

solving the low-rank and sparse matrix recovery problems. Meanwhile, many classifications

have been proposed [79, 82, 83, 84] according to linearity, convexity, number of subspaces,

or number of addition matrices.

Decomposition into low-rank and sparse matrices (DLSM) is one of the relatively

detailed and comprehensive frameworks [82] which classifies various models of matrix

decomposition according to the number of constrained component matrices. DLSM

framework provides a suitable framework for signal processing, system identification,

computer vision, machine learning, etc. This decomposition idea is becoming more popular

and widely used in recent years, especially after the robust principal component pursuit

(RPCP) was purposed in papers of Candes et al. [77], and Chandrasekharan et al. in
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2009 [85]. In the beginning, these algorithms are designed to deal with high-dimensional

data which is often regarded as an extremely high-dimensional data matrix. Since many

dimensions are usually independent, it is possible to recover the matrix from corruption or

noise. These ideas are based on the assumption that the uncorrupted information matrix

is highly correlated within the observing time-window and therefore lies in the low-rank

subspace. At the same time, the moving foreground objects, noise, or other special signals

constitute the correlated sparse outliers.

Based on similar assumptions, several algorithms under DLSM framework have been

validated that they can be successfully applied to ultrasound clutter suppression [40, 44,

58, 60, 76, 86]. In medical ultrasound, tissue and blood flow also lie in different subspace.

In terms of temporal information, tissue signals and blood signals have different spectral

features due to the different movement patterns of blood and tissue. As for spatial features,

the blood signal has an extremely lower spatial coherence than tissue signal because

the irregular movement and arrangement of red blood cells produce constantly changing

scatterers, whereas the tissue movement is overall patterned. Therefore, they gain a low

rank and sparsity characteristics, respectively, and lie in different subspaces. Due to the

robust and efficient performance of DLSM frameworks in separating low-rank and sparse

components, it can show great potential in the field of ultrasound clutter suppression.

Overall, DLSM framework is divided into decomposition problems, minimization

problems, loss function and solvers (algorithms used to solve the optimization problems) [84]

as Figure 2.1 shows. The permutations and combinations of models and optimization

methods and solvers lead to various algorithms, which is the origin of the DLSM framework.

DLSM framework and its application in the ultrasound clutter suppression will be briefly

illustrated in the following subsections.

2.2 Preprocessing and Notations

Preprocessing of ultrasound data is necessary for integration into an input matrix or

tensor in a special shape when applying DLSM algorithms. In general, the input of

the DLSM algorithm consists of a sequence of n consecutive ultrasound data (F1 . . . Fn)
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Figure 2.1: The schematic diagram of DLSM framework. DLSM framework
contains 5 branches, which are models (or called math formulations),
decomposition problems, minimization problems, loss functions, solvers (or called
algorithms). Examples are shown beside the branches.

with the original size of F ∈ ℜi1×i2 . For a two-dimensional DLSM algorithm, the

input M (M ∈ ℜm×n, m = i1 × i2) is in matrix form in most cases which consists of

n resized ultrasound data frames (F ∈ ℜm×1) arranged in order. In terms of higher-

order DLSM algorithms, the input is typically an N -order tensor T (T ∈ ℜt1×t2...tn).

T is generally third order and concatenated by original size ultrasound frames, where

T = [F i1×i2
1 , . . . F i1×i2

n ], T ∈ ℜi1×i2×n. Next, the input M (or T ) is decomposed into several

components through the DLSM algorithm as follows:

M =
X∑︂

x=1
Kx (1)

where 0 ≤ X ≤ 3 and K1, K2, K3 typically represent low-rank L, sparse S, and noise

components E, respectively. The specific components Kx and the number of X depend

on the purpose (interested in sparse or low rank components) and the decomposition

formulation.
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2.3 Decomposition Formulations

2.3.1 Implicit decomposition

Implicit decomposition (X = 1): Under the condition that x is equal to 1, matrix M is

approximately equal to a target low-rank matrix L under the constraint condition, because

the information that people interested in mainly lies in the low rank component in most

cases. Sparse matrix S can be obtained from the difference between M and S (e.g. S =

M − L). However, this processing is the opposite in the application of ultrasound clutter

suppression because the blood signal is relatively sparse. The formulation of this problem

is as follows:

min f(M, L) s.t. L (2)

where M ≈ L, f(.) is a loss function used for the minimization term which depends on

specific solvers or algorithms. Models like Principal Component Analysis (PCA), Non-

negative Matrix Factorization (NMF), and Matrix Completion (MC) are in this category.

For the applications targeted to sparse components, implicit decomposition sets the

target matrix K1 as a sparse matrix S. Then low-rank matrix L is the difference between

M and S which can be calculated as L = M − S. Sparse dictionary learning [87], sparse

linear approximation, and compressive sensing [87, 88, 89], etc. are built under the same

idea.

min f(M, S) s.t. S (3)

where M ≈ S, and the difference contains noise and other information. In this case,

implicit decomposition can be used in the compressed sensing and signal recovery similar

to unsupervised clustering [90] and image recognition [91], etc.

Before more robust explicit decomposition method was proposed, the main development

of ultrasound clutter suppression was based on PCA or SVD or eigenvalues, which belong to

implicit decomposition [41, 44, 60, 57, 61, 66]. Although many experiments have proved that

these eigen-based filters greatly improve the performance than traditional IIR and regression

filters, many authors realize that the filtering method based on implicit decomposition is not

robust to accelerated tissue movements and different kinds of noise [44, 57, 61]. Moreover,
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their expensive computational complexity is not suitable for real-time processing.

2.3.2 Explicit decomposition

Explicit decomposition (X = 2): Under this condition, M is usually decomposed into a

low-rank matrix K1 = L and a sparse matrix K2 = S (M ≈ L + S). This is called explicit

decomposition because there are two constraints. One is sparse constraint over S and the

other is low-rank constraint over L. Therefore, explicit decomposition is more robust than

implicit decomposition. The formulation of explicit decomposition is as follows:

min f(L) + f(S) s.t. L, S (4)

where M ≈ L + S and f(.) represents loss function. The explicit decomposition includes

Robust Principal Component Analysis (RPCA), Robust Non-Negative Matrix Factorization

(RNMF), Robust Matrix Completion (RMC), Robust Subspace Tracking (RST), etc. [80,

92].

These methods generally work better and are more robust than implicit decomposition

because of the additional constraints [92]. In this way, RPCA has been used as a powerful

tool in MRI, CT, and ultrasound imaging [93, 94, 95]. Many optimization algorithms have

been proposed for cluster suppression in ultrasound imaging using RPCA, RMC [43, 76, 96].

2.3.3 Stable decomposition

Stable decomposition (X = 3): Due to the fact that there are always noise and corruption

caused by special cases in the real world, an additional matrix K3 is added to represent

unexpected components. K3 could represent distortion, shadows, and noise according to

special situations (M ≈ S + L + N). It is more stable than the explicit decomposition since

more detailed information is separated and taken into account. The stable decomposition

can handle more complex situations in the real life such as dynamic videos and maritime

monitoring videos which are corrupted by complicated noise.

min f(S) + f(L) + f(N) s.t. L, S (5)
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Stable decomposition methods include Stable Principal Component Analysis (Stable

PCA) or Stable Non-negative Matrix Factorization (Stable NMF) and Three Term

Decomposition (TTD), etc. These methods can deal with more complex situations. In

terms of US imaging, it is usually assumed that signal M contains clutter signals L

(low-rank), blood signals S (sparse) and noise N . Since ultrasound signals have complex

noises and dynamic clutter signals, this assumption M = S + L + N are more acceptable

when there are meticulous requirements such as microvascular imaging. Although some

literature mentions the stable decomposition of blood (L, S, E respectively represent blood

flow signals, clutter signals, and noise), they do not illustrate whether constraints are added

to noise component. Therefore, the stable decomposition formulation is still a promising

research area for ultrasound clutter suppression.

2.4 Models under DLSM Framework

As of today, many models, also called problem formulations, have been proposed. According

to different math formulations and features, methods are usually classified under families

such as Robust Principal Component Analysis (RPCA), Non-negative Matrix Factorization

(NMF), Matrix Completion (MC), and Subspace Tracking (ST), etc. Different models have

different functions and aims. However, it has been proved that the solutions of many robust

models can be mutually expressed in closed forms [97]. For instance, RPCA via principal

component pursuit [77] can be considered as MC models using l1-norm loss function [84].

In addition, these models can be flexibly generated in any decomposition formulations. For

example, adding constraints on noise components on the basis of RPCA will change it from

explicit decomposition to stable decomposition.

2.4.1 Robust Principal Component Analysis

Principal Component Analysis (PCA) generates a set of linearly uncorrelated variables

which is called principal components, from a set of observations by orthogonal

transformation. Similar mathematical tools include SVD and eigenvalue decomposition.

RPCA is based on the extension of PCA (expansion from implicit decomposition to
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explicit decomposition), which aims to recover low-rank components and reduce the impact

of grossly corrupted data. RPCA can be approached by Principal Component Pursuit

(PCP) [77, 85], Bayesian RPCA [98, 99, 100], and so on. RPCA problem is generally

expressed as follows:

M = L + S (6)

where L is low-rank matrix and S is sparse matrix. According to the nature of L and S,

the most intuitive way to solve the RPCA problem is to minimize the rank of L and the

l0-norm of S:

min
L,S

rank(L) + λ∥S∥l0 s.t. M − L − S = 0 (7)

where λ is a balanced parameter. However, this formulation is NP-hard. Therefore,

optimization problems like PCP are needed.

The convex optimization Principal Component Pursuit (PCP) was first proposed by

Candes et al. [77, 101, 84] to address the RPCA problem. It becomes one of the most

famous methods of face recognition and background modeling in recent years. PCP uses

the following formula to convexly optimize RPCA problem:

min
L,S

∥L∥∗ + λ∥S∥l1 s.t. M − L − S = 0 (8)

where ∥.∥∗ and ∥.∥l1 are the nuclear norm and l1-norm, respectively. Although this method

excels in computer vision, there are still some limitations to sparse components recovery.

Firstly, it requires expensive computational algorithms. Secondly, it is a batch method

which is not suitable for real-time applications, especially for plane-wave ultrasound with

high frame rates. Third, it has very high requirements for low rank and sparse properties,

however, the complex blood flow or noise may make it difficult for ultrasound data to meet

such requirements. To accelerate the algorithms and achieve higher precision, different

solvers have been developed [102, 103, 104]. Solvers for real-time implementations have also

been proposed [105, 106].

The Stable Principal Component Pursuit (SPCP) is a stable expanded form based on

PCP, which mainly aims at reducing the impact of noise. SPCP adds noise term E based
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on PCP and constrains it by Frobenius norm.

2.4.2 Matrix Completion

The main purpose of Matrix Completion (MC) is to recover low-rank observation matrix

of its missing entries. The Netflix movie rating matrix recover problem is one of the most

classic examples. The classic low-rank matrix completion problem can be seen as finding

the lowest rank of the matrix L which matches the matrix M , for all the measured entries

in set Ω. The mathematical formulation of MC problem is as follows:

min
L

rank(L) s.t. Lm,n = Mm,n ∀i, j ∈ Ω (9)

Due to the implicit decomposition of MC is not robust to noise which only affects a

small scale data [107, 108], MC is generally extended to explicit decomposition by adding

restrictions, which is called Robust Matrix Completion (RMC). The common RMC obtains

stronger robustness than MC by adding sparse constraints, and its formulation after convex

optimization is as follows:

min
L,S

∥L∥∗ + λ∥S∥l1 s.t. PΩ(L + S) = PΩ(M) (10)

where PΩ(M) is the projection of the complete data set on the measured entries Ω. Although

the form of decomposition is the same as PCP, the unique constraints of RMC make it

supervised while the PCP is unsupervised learning [84], which is consistent with the purpose

of RMC.

2.4.3 Nonnegative Matrix Factorization

The Nonnegative Matrix Factorization (NMF) is also a widely used matrix factorization

and dimension reduction model under DLSM framework. The main unique feature of

NMF is that low-rank factor matrix is subject to non-negative constraints consistent with

the physically natural features in many fields [109, 110]. The NMF problem is generally
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expressed as follows:

M ≈ WH⊤ (11)

where W ∈ ℜm×k and H ∈ ℜn×k are two nonnegative matrices, and k < min{m, n} due

to the goal of dimension reduction. The most common formulation for the optimization

problem of NMF is as following:

min
W,H

f(W, H) = ∥M − WH⊤∥2
F s.t. W ≥ 0, H ≥ 0 (12)

where ∥.∥2
F is the Frobenius norm. The problem (14) is a non-convex problem and it is

NP-hard to find its global minimum [109, 111]. Consequently, optimization algorithms and

solvers are developed for the local minimum.

2.4.4 Subspace Tracking

The Subspace Tracking (ST) can be regarded as the dynamic RPCA designed to handle

increasing new data or dynamic subspaces. The data at each moment t is processed as the

increments and then discarded. This idea addresses the problem when new observations

come in asynchronously in online streaming environments. It makes subspace tracking more

efficient and less computationally expensive on extremely long data sequences [112]. Since

ST can recover subspaces from incomplete frame vectors, it has the potential to further

improve efficiency by downsampling the input frames [84]. The general formulation for the

ST problem is as follows:

mt =
X∑︂

x=1
kx = lt + st + et, for t = 1, 2, . . . , n; X ∈ 1, 2, 3 (13)

where mt is input frame data at time t, and lt, st, et are low-rank, sparse, and noise

components of mt. The number of k is determined according to different decomposition

forms, and the constraint conditions and approximate approximations on each component

are determined according to different optimization methods.
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2.4.5 Low-Rank Representation

Low-Rank Representation (LRR) can also be called low-rank optimization or low-rank

minimization. Other unclassified models can be regarded as LRR. LRR is a minimization

problem in mathematics. In LRR, the cost function measures the fit between the input

matrix M and the approximation matrix L [84]. The mathematical formulation of LRR

problem is as follows:

min ∥M − M̂∥F s.t. rank(L) ≤ r (14)

where M is the input matrix, M̂ is the approximate matrix, ∥.∥F is the Frobenius norm,

and r is the rank. The basic form of LRR is similar to other models, therefore, most of the

other unclassified models can be regarded as a category in LRR. For instance, RPCA and

NMF can be obtained by similar architectures. Constraints other than rank constraints can

be added for specific applications. LRR can be extended into an explicit or stable form by

adding constraints on the sparse and noise components.

2.5 The Extension to Tensor

In DLSM framework, only some of the single dimensional information is used when images

are pretreated into data matrix M as vectors. This means that some multidimensional

information is not taken into account in the process of decomposition. To improve the

results, the tensor decomposition is proposed.

2.5.1 Tensor DLSM

When it comes to tensor, the most intuitive idea is to change all matrices to tensors directly

since a tensor can be seen as a combination of several matrices. It is very similar to DLSM

framework which subjects to T = L + S + E. The tensor DLSM extends all components to

a tensor form as Figure 2.2.

T = L + S + E (15)

where T , L, S, N represent the data tensor, low-rank tensor, sparse tensor and noise tensor,

respectively. Similar to the matrix DLSM framework, it can be optimized and solved by
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a minimization problem. Some other classic matrix decomposition optimization methods

have also been extended to tensor. The Tensor Robust Principal Component method [113]

has been proposed based on tensor Singular Value Decomposition (t-SVD) [114]. It has been

demonstrated the effectiveness of image denoising. Another robust low-rank tensor recovery

model based on RPCA has also been published for complex multilinear data analysis [115].

Rank Sparsity Tensor Decomposition (RSTD) [116] and some other ideas based on stable

principal component pursuit (PCP) also have been utilized in image processing.

Figure 2.2: The illustration of tensor decomposition

2.5.2 Tensor Decomposition

There are two classical tensor decomposition forms which are CANDECOMP/ PARAFAC

(CP) decomposition and Tucker decomposition [117]. Given a tensor T ∈ ℜt1×t2×···tn , the

CP decomposition and Tucker decomposition can be modeled as follows:

2.5.2.1 Tucker decomposition

T = g ×
N∏︂

i=1
Ui + ε (16)

where g ∈ ℜr1×r2×···rn is the core tensor and r is the rank of factor matrix Ui ∈

ℜti×ri , ε represents the residuals. Figure 2.3 is a schematic representation of the Tucker

decomposition. The Tucker decomposition is usually regarded as a non-convex optimization

problem [84]. Two most famous and widely used solvers for Tucker decomposition are

Tucker-ALS based on alternating least squares [117] and Tucker-ADAL based on alternating

direction augmented Lagrangian [115]. SVD based on Tucker decomposition is generally

called Higher-Order Singular Value Decomposition (HOSVD) [118, 119], which calculates

the singular values of the three expansions U1, U2, U3 of a three dimensional tensor
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under Tucker Decomposition. HOSVD-based ultrasound clutter optimization has been

proposed [73, 120] and proved to be more robust to low sampling rates than SVD.

Figure 2.3: The illustration of Tucker decomposition

2.5.2.2 CP decomposition

T = U1 ◦ U2 · · · ◦ UR + ε (17)

where R is the number of the components, Ui ∈ ℜti×ri , ε represents the residuals, and

U1 ◦ U2 · · · ◦ UR is the CP model [92]. Figure 2.4 is a schematic representation of the

CP decomposition. CP-decomposition is similar in form to Tucker decomposition since

the number of components in the factor matrices is the same [117]. The original CP

problem is NP-hard. Therefore, the Frobenius norm is generally used to relax the low-

rank constraint. Similar to Tucker decomposition, CP decomposition problem can also be

solved by alternating least squares, called CP-ALS. To the best of our knowledge, there is

currently no well-known article applying CP decomposition to ultrasound clutter filtering.

Figure 2.4: The illustration of CANDECOMP/PARAFAC (CP) decomposition
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2.6 Minimization Problems

The decomposition problems generally turn into minimization problems or optimization

problems in its original form or its Lagrangian form [84].

min
Ki

x∑︂
i=1

λifi(Ki) s.t. Ci (18)

where λi are the regularization parameters, fi(.) are the loss functions for low-rank, sparse,

and noise components, Ci are the constraints on Ki. Consistent with the decomposition

problems, the minimization problems can be divided into three categories according to the

number of constraints and loss functions imposed.

· x = 1 is the case of implicit decomposition: minL λ1f1(L) s.t. C1

where C1 is ∥M − L∥2 = 0 or other forms. For sparse decomposition, the low-

rank components are replaced by sparse components. This problem can be NP-

hard, non-convex, or under specific constraints. Therefore, other formats of the loss

functions are applied to relax the constraints when the problem is NP-hard or non-

convex. For example, the loss function f is rank loss function in original MC model

as minL rank(L) s.t. ∥M − L∥2 = 0.

· x = 2 is the case of explicit decomposition: minL,S λ1f1(L) + λ2f2(S) s.t. C2

where C2 is ∥M −L−S∥2 = 0 or other forms. For example, the f1 and f2 loss functions

are rank and l0 − norm loss functions in original RPCA model as minL,S rank(L) +

λ∥S∥l0 s.t. ∥M − L − S∥2 = 0.

· x = 3 is the case of stable decomposition: minL,S λ1f1(L)+λ2f2(S)+λ3f3(N) s.t. C3

where C3 is ∥M − L − S − E∥2 = 0 or other forms. For example, the f1 and f2 loss

functions are rank and l0 − norm in original RPCA model as minL,S rank(L) +

λ∥S∥l0 s.t. ∥M − L − S∥2 = 0. The stable decomposition is generally adding

constraints on the noise component based on the robust decomposition. The Frobenius

norm loss function (λ∥M − L − S∥2
F = 0) is used in most cases.

Although there are some algorithms that can solve non-convex problems through
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mathematical approximation [121], in general, non-convex problems are difficult to solve

with weak convergence. This is also an important role that minimization problems play.

2.7 Loss Functions

The loss function can be seen as a constraint of the decomposed matrices. In DLSM

framework, loss functions are used on the minimization matrices as norm formats. For

example, in implicit decomposition, explicit decomposition, and stable decomposition, the

functions f(S), f(L), f(E), represent the loss functions or norms on sparse component, low-

rank component, and noise component, respectively. However, in most cases, the original

loss function will be replaced by other forms of the loss function in order to optimize and

solve the problem. The common loss function forms (or norm forms) can be listed as follows:

· l0 norm loss function (∥M∥l0) is the number of non-zero entries.

· l1 norm loss function (∥M∥l1 =
∑︁

i,j |Mi,j |) is the Manhattan distance.

· l2 norm loss function (∥M∥l2 =
√︂∑︁

i,j M2
i,j) is also called the Frobenius norm (lF norm

loss function (∥M∥lF =
√︂∑︁

i,j M2
i,j) ).

· l∞ norm loss function (∥M∥l∞ = maxi,j |Mi,j |) is also called the max norm

((∥M∥max = maxi,j |Mi,j |)).

· l∗ norm loss function (∥M∥l∗) is the sum of singular values.

2.8 Solvers

The models are solved by specific algorithms, which are called solvers in DLSM [84, 92]

framework. Solvers are generally applied to the models after the minimization problem

has been optimized and the loss function has been relaxed. Solvers can be broadly

divided into regularization-based approaches and statistical-based approaches [122]. As

for regularization approaches, the data matrices are regularized by convex surrogates

with different features [84]. Typical regularization approaches include Singular

Value Thresholding (SVT) [123], Accelerated Proximal Gradient (APG) [124], and
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Augmented Lagrange Multiplier (ALM) [104]. In terms of statistical-based approaches,

prior distributions are used to capture low-rank or sparse properties and predict

the joint distribution of the measured entries and unknown variables. Meanwhile,

posterior distributions of the unknown variables can be approximated by Bayesian-based

methods [84].

Although many solvers are proposed to solve the optimization problems under DLSM

framework, most of the mainstream algorithms for ultrasound clutter suppression are based

on SVD. SVD-based clutter suppression algorithms that are proposed and reviewed [41,

42, 44, 60, 64] based on traditional CFI before 2011. In these algorithms, SVD is used

as one of the steps or iterations within many of the algorithms we evaluated. After 2015,

with the rapid development of ultrasound technologies like plane-wave ultrasound, SVD

was combined with ultrafast plane-wave imaging, which can provide a huge amount of

data at a high frame rate, in order to improve the effectiveness of SVD and overcome

the limitation of low frame rate [40, 72, 125, 126]. Due to the excellent performance of

SVD on large data sets, SVD-based clutter suppression algorithms based on the plane-

wave ultrasound has become a popular and mainstream research area. The SVD-based

algorithms have been used in functional ultrasound [127, 128], super resolution ultrasound

localization microscopy [125, 129] and high-sensitivity micro vessel perfusion imaging [40, 72]

due to its excellent performance in the ultrasound clutter suppression and the microvascular

imaging [43].

Due to the obvious disadvantages of SVD, DLSM framework contains many approximate

SVD and non-SVD algorithms for higher efficiency and lower computational cost, which have

the potential for real-time ultrasound clutter suppression.

27



Chapter 3

Experiment

DLSM framework has been successfully utilized to video surveillance, face recognition,

texture modeling, video inpainting, audio separation, and latent semantic indexing,

etc. [130]. However, only a few algorithms under DLSM framework have been applied

to ultrasound clutter suppression. Herein, we apply DLSM algorithms as the clutter filter

for CFI. To that end, we test if DLSM algorithms can be used for clutter suppression and

conduct simulation experiments, phantom experiments, and in vivo experiments. Finally,

we will conclude a list of algorithms that are suitable for ultrasound clutter suppression.

3.1 Experiment Data

Three data sets are used in this experiment which are simulation data, phantom data, and

in vivo rat data. For each data set, raw RF-data, complex envelope data, and B-mode data

formats are used for analysis. The specific parameters and obtaining process of three data

sets and a brief introduction of three data formats are given in the following subsections.

3.1.1 Simulation data

The simulation data includes a set of ultrasound simulation frames as Fig 3.1 shows. The

ultrasound simulation data is generated by the Field II simulation program implemented

in MATLAB [131, 132]. A cube A ∈ ℜ60×60×60 is built to represent the tissue filled with

scatterers given the fact that each voxel is 1 mm3. A vessel through the middle of the
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cube with a radius of 20 mm is generated by scatterers flowing to the right. The max

velocity in the center of the vessel is 15 mm/s. Assuming sound waves travel from the top

to the bottom and focus on the center. Probe frequency and sampling frequency are set

to 7.27 MHz and 40 MHz, respectively. The frame rate is set to 1000 fps and 64 active

elements are used for beamforming.

(a) (b)

Figure 3.1: The illustration of the simulation data. (a) is the simulation cube with
tissue scatterers and blood scatterers. The red blood scatterers are in the middle
and moving to the right. The simulated sound waves focus in the center. (b) is a
series of simulation data frames obtained from simulation experiments.

3.1.2 Phantom data

The phantom was created to simulate a cube of tissue including one blood vessel which

travels across the cube in the middle. Knox unflavored gelatin, water, and sugar-free

Metamucil psyllium fiber supplement were gently heated and mixed to prepare the phantom

gel which represents soft tissue. An intra-venous tube simulating a venous structure model

runs through the gel cube. Probe frequency and sampling frequency are set to 10MHz and

40MHz, respectively. The Alpinion E-Cube R12 ultrasound system is used in ultrasound

data collection with an L3-12H linear array probe. Figure 3.2 briefly illustrates the phantom

experiment.
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Figure 3.2: The illustration of the phantom experiments. (a) is the illustration of
phantom data collection experiment. (b) is the B-mode image of the first frame in
phantom data.

3.1.3 Rat data

The acquisition of the rat data was under the supervision of the Animal Care Facility

of Concordia University. A 27-week-old Sprague-Dawley male rat was anesthetized for

ultrasound scanning. The experiment followed the guidelines of the Canadian Council on

Animal Care and was approved by the Animal Ethics Committee of Concordia University

(#30000259). The probe frequency and the sampling frequency were set to 10MHz and

40MHz, respectively. Similarly, as with phantom data, the Alpinion E-Cube R12 research

ultrasound system with an L3-12H linear array probe was used. The schematic diagram of

the in vivo rat experiment is shown in Figure 3.3.

Figure 3.3: The illustration of the in vivo rat experiments. (a) is the illustration
of the in vivo rat data collection experiment. (b) is a schematic representation of
sparse component of the in vivo rat data.
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3.1.4 Data Formats

Both real and simulated ultrasound data are available in three formats, which are raw

RF data, complex envelope data, and B-mode data. Common ultrasound probes generally

consist of a piezoelectric transducer array that emits and receives signals. The backscatter

signal which is processed by the preamplifier and the time gain compensation is referred

as radio-frequency (RF) signal. The RF signal is then processed by an envelope detector

becomes complex envelope data. Lastly, the complex envelope data is log-compressed into

a grayscale format. And the data is further passed through intensity mapping and post-

processing filtering. The final readable image is commonly called brightness mode (B-mode)

image. RF frames generally have a very large size since the sampling rate of the RF data

is usually extremely high. This high sampling rate is not necessary for envelope data as

it does not have high frequency contents. Therefore, envelope and B-mode images can be

downsampled by a large factor. RF data may also be downsampled by a small factor, but

the Nyquist sampling rate should be considered to avoid aliasing.

3.2 Experiment Methods

In Section 2, DLSM framework is introduced and built as figure 2.1 shows. The

DLSM algorithms are classified in five groups which are implicit decomposition, explicit

decomposition, stable decomposition, tensor decomposition and subspace clustering. In this

experiment, all algorithms are selected from LRSLibrary [92, 82, 84] which provides a group

of low-rank and sparse matrix decomposition algorithms in moving object detection. In

LRSLibrary, these algorithms are further subdivided into Robust PCA (RPCA), Subspace

Tracking (ST), Matrix Completion (MC), Three-Term Decomposition (TTD), Low-Rank

Representation (LRR), Non-negative Matrix Factorization (NMF), Non-negative Tensor

Factorization (NTF), and standard Tensor Decomposition (TD) according to the models.

Due to the flexible conversion between models and their similar mathematical formulations,

in this paper, TTD can be a subcategory in stable PCA under stable decomposition.

Similarly, NTF belongs to the subcategory under the Tensor Decomposition (TD) model.

In the first step, the DLSM algorithms are applied to three formats of simulation data
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to verify the performance of all algorithms compare to sparse component with ground truth

and give a computing time contrast. Then, all algorithms are used on phantom data to

find out if DLSM suits ultrasound data with real ultrasound features. In the third step, rat

data is used for verification and comparison. The acquired data has three formats which

are RF data format, complex envelope data format, and B-mode data format. The results

of different data formats and different data-sets are grouped for comparison in order to find

the optimal conditions of ultrasound clutter suppression.

All experiments are processed by a normal desktop computer with an i7-4770 CPU @

3.40 GHz and 16.0 GB RAM.

3.3 Evaluation Metrics

Two main indicators are used to evaluate the performance of various algorithms, which are

Signal-to-Noise Ratio (SNR) [133] and Contrast-to-Noise Ratio (CNR). The SNR and CNR

are calculated as follows:

SNR = µ1
σ1

, CNR = |µ1 − µ2|√︂
σ2

1 + σ2
2/2

(19)

where µ1 and σ1 are the mean intensity value and the standard deviation of the background

window, µ2 and σ2 are the mean intensity value and the standard deviation of the target

window.
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Chapter 4

Results

The results of 106 DLSM algorithms on three data sets and their three formats are reported

in this section. The results of all algorithms include the SNR, CNR, calculation times, and

images for visual observation. Since all the output images are sparse components of the

same data and are very similar, we classify the results according to their performance and

report the number of algorithms in each category instead of SNR and CNR of all algorithms.

The results of all algorithms are divided into several categories. The results which

fall in the first category are considered to be good results as they give the correct sparse

matrix with a pure blank background which means high robustness to noise and dynamic

background and strong decomposition ability. The cases when the output sparse component

is more than 100 times higher than background pixel values are also regarded as good results.

The results which fall in the second category are considered to be defective. These results

either contain background noise which is supposed to be part of the low-rank components,

or are noisy and algorithms failed to decompose. The results in the third category are not

considered because some algorithms failed to run due to some limitations like non-negative

limitations or real input limitations. Algorithms with this type of results are called restricted

algorithms in this section.

The information that all algorithms, including their model classifications, are from

LRSLibrary [92, 82, 84], and they have all been proved to be successfully applied to moving

object detection on traffic video.
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4.1 Simulation Experiments

The experiments firstly applied simulation data to verify the availability and approximate

performance of all algorithms. Meanwhile, the computation cost and time of these

algorithms on ultrasound clutter suppression are also tested. The first experiment applied

all 106 DLSM algorithms to the RF simulation data. Among 106 algorithms, 11 of them

were out of memory and failed to run. These algorithms cannot deal with the large size of

simulation data because they use the full singular value decomposition or QR decomposition

and require a huge memory to initialize (7.9 GB). Meanwhile, there are 6 algorithms that

require non-negative input and cannot take RF data as input. Consequently, a total of 17

of these two kinds of algorithms are classified as restricted algorithms.

In terms of the remaining 89 algorithms, only 19 of them are able to output relatively

pure sparse components that match the ground truth without any processes of RF

simulation data. To be precise, only 3 algorithms (abbreviation: LRR-ROSL, RPCA-IALM,

RPCA-IALM-BLWS) give a truly pure background as zero matrices (all entries in sparse

matrices except the ones presenting simulated vessel are 0). The other 16 results highlight

simulated vessel with a non-zero background. Since the value of the background pixels is

1000 ∼ 10000 times less than the value of sparse component, we consider it to be a pure

result without low-rank components. The possible reason is the particular small values of

RF simulation data and low dynamic range. In general, these results with the CNR values

above 1.6 are classified as good results in Table 4.1. The results of the other 44 algorithms

are very noisy with the CNR values less than 1.1. As for these algorithms, the sparse parts

in simulation data are not clearly determined and the clutter is not well suppressed. The

remaining 24 algorithms give blank output due to low dynamic range and other reasons.

Almost all the DLSM algorithms give an SNR of about 0.759, so SNR is not reported in

detail here.

Due to the extremely small data values and dynamic ranges, a large number of algorithms

are invalidated. Therefore, in the second step, the order of magnitude and dynamic range

of RF simulation data are expanded to re-examine the performance of all algorithms.

After processing RF data, 56 algorithms show good results. Among these algorithms, 16
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Table 4.1: The 19 algorithms with the CNR values above 1.6. The algorithms with *
give pure background. The remaining algorithms are arranged in alphabetical order of
abbreviations.

Group Abbreviation Time CNR Group Abbreviation Time CNR
RPCA IALM* 0.590 1.681 MC IALM-MC 6.537 1.680
RPCA IALM-BLWS* 2.278 1.680 TTD MAMR 1.861 1.740
LRR ROSL* 0.359 1.688 NMF PNMF 13.556 1.733
RPCA DECOLOR 3.013 1.602 RPCA PRMF 1.280 1.687
RPCA EALM 9.068 1.677 RPCA RegL1-ALM 3.634 1.686
RPCA flip-SPCP-max-QN 71.933 1.688 MC RPCA-GD 4.747 1.627
RPCA flip-SPCP-sum-SPG 214.900 1.688 RPCA SSGoDec 0.034 1.736
RPCA GoDec 0.072 1.736 TD Tucker-ADAL 6.131 1.736
RPCA GreGoDec 0.199 1.736 TD Tucker-ALS 0.101 1.736
TD HoSVD 4.461 1.736

of them give correct sparse components with a zero-valued background, others give sparse

components 1000 ∼ 10000 times greater than background pixel values. The results of the

remaining 33 algorithms are noisy. These algorithms either do not correctly isolate sparse

components or contain inseparable background noise with similar values. Most good results

have a CNR greater than 1.3, while noisy results generally have a CNR less than 1. Similarly,

almost all the DLSM algorithms with good results give an SNR of about 0.759. There are

a few good results with a CNR less than 1. The algorithms with such results only highlight

the sparsest parts which reduce the mean intensity values of the target window. However,

these results are considered to be good because the unhighlighted sparse components still

have higher intensities than backgrounds. The results after increasing dynamic range are

listed in the Table 4.2. Examples of different kinds of results in simulation experiments are

shown in Figure 4.1.

The complex envelope simulation data is obtained by Hilbert transform on the basis of

RF data. For this reason, the complex envelope data does not have the problem of miniature

pixels values and low dynamic range. However, the SNR and CNR of the complex envelope

simulation data are lower than the SNR and CNR of RF simulation data. Except for

the 11 algorithms that are limited by frame size, 24 of the remaining algorithms show

good results. In addition, 13 algorithms are affected by complex numbers generated by

the Hilbert transform and thus failed to run. The results of other algorithms are noisy.

After enlarging the dynamic range of the complex envelope simulation data, 8 algorithms
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Table 4.2: The 16 algorithms with pure background after increasing the dynamic range.
The algorithms with * give pure background on original data. The remaining algorithms
are arranged in alphabetical order of abbreviations.

Group Abbreviation Time CNR Group Abbreviation Time CNR
RPCA IALM* 0.604 1.681 RPCA FPCP 0.102 1.392
RPCA IALM-BLWS* 1.647 1.680 RPCA FW-T 0.647 0.611
LRR ROSL* 0.408 1.688 TD HoRPCA-S-NCX 116.95 1.689
RPCA APG 4.155 1.667 RPCA Lag-SPCP-QN 0.517 0.377
RPCA APG-PARTIAL 3.559 1.661 RPCA Lag-SPCP-SPG 0.955 0.354
RPCA AS-RPCA 1.890 1.682 TD OSTD 0.663 0.479
NMF DRMF 2.580 1.640 RPCA PCP 27.078 1.677
RPCA DUAL 100.79 1.682 RPCA SVT 453.33 1.682

(a) (b) (c)

Figure 4.1: The output result images of simulation data. (a) is the output of
the sparse component obtained by the IALM algorithm on the original simulated
RF data. It is a typical good result representing the correct decomposition and
pure sparse components. (b) is the output of the sparse component obtained by the
ADM algorithm on the original simulated RF data. It is a typical noisy result with
background noise as sparse components. (c) is the output of the sparse component
obtained by the OSTD algorithm on the processed simulated RF data with larger
dynamic range. The algorithms with a CNR less than 1 in Table 4.2 give such
results with pure background because they only show the most sparse parts.

which failed on original simulation data give good results on the preprocessed data. These

algorithms are sensitive to the changes of dynamic ranges. The results on complex envelope

simulation data are shown in Table 4.3. Obviously, the CNR in the results of complex

envelope simulation data is far less than the CNR on the RF data.

The third step of the simulation experiment is using B-mode data. As for the results of B-

mode simulation data, 40 DLSM algorithms have successfully detected the simulate vessel on

original B-mode simulation data. Meanwhile, 12 algorithms are affected by high peak values

in the background and keep static peaks into sparse components. These algorithms give

pure sparse matrices after suppressing peak values. After enlarging the dynamic range of the
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Table 4.3: The algorithms with good results on complex envelope simulation data. The
results on original data are listed in the left column and the results on processed data are
listed in the right column. The algorithms with * give pure background. The algorithms
are arranged in alphabetical order of abbreviations.

Group Abbreviation Time CNR Group Abbreviation Time CNR
TTD 3WD 5.061 0.079
RPCA ALM 19.66 0.049

NMF Deep-Semi-NMF 0.169 0.049 NMF Deep-Semi-NMF 0.221 0.049
LRR EALM 10.09 1.723 LRR EALM 0.580 0.049
NMF ENMF 42.92 0.049 NMF ENMF 45.05 0.049
RPCA flip-SPCP-max-QN 358 0.151 RPCA flip-SPCP-max-QN 294 0.151
RPCA flip-SPCP-sum-SPG 403 0.151 RPCA flip-SPCP-sum-SPG 630 0.151
RPCA FPCP* 0.138 0.154 RPCA FPCP 0.181 0.049
RPCA GoDec 0.116 0.049 RPCA GoDec 0.127 0.049
RPCA GreGoDec 0.396 0.049 RPCA GreGoDec 0.430 0.092
TD HoRPCA-S-NCX* 201 0.059 TD HoRPCA-S-NCX* 210 0.059
TD HoSVD 3.083 0.049 TD HoSVD 3.074 0.049

LRR IALM 3.999 0.049
MC IALM-MC 10.41 0.051 MC IALM-MC 10.78 0.051
NMF iNMF 1.675 0.040 NMF iNMF 1.916 0.040

RPCA Lag-SPCP-QN* 77.20 0.176
RPCA Lag-SPCP-SPG* 92.93 0.186

MC LMaFit 0.512 0.071 MC LMaFit 0.547 0.071
NMF NeNMF 0.141 0.049 NMF NeNMF 0.158 0.049
NMF nmfLS2 0.512 0.049 NMF nmfLS2 0.563 0.049
NMF NMF-MU 3.206 0.049 NMF NMF-MU 3.379 0.049
NMF NMF-PG 0.431 0.049 NMF NMF-PG 164 0.032
RPCA noncvxRPCA 1.044 0.048 RPCA noncvxRPCA 0.193 0.089
NMF PNMF 24.82 0.048 NMF PNMF 25.37 0.048

RPCA R2PCP* 2.251 0.058
LRR ROSL* 1.018 0.058 LRR ROSL* 1.039 0.058
NMF Semi-NMF 0.210 0.030 NMF Semi-NMF 2.305 0.029
RPCA SSGoDec 3.772 0.049 RPCA SSGoDec 3.729 0.051

RPCA TFOCS-EC 26.94 0.132
RPCA TFOCS-IC 26.16 0.094

TD Tucker-ADAL 10.29 0.049 TD Tucker-ADAL 458 0.039
TD Tucker-ALS 0.217 0.049 TD Tucker-ALS 0.216 0.049
RPCA VBRPCA 4.031 0.046 RPCA VBRPCA 6.471 0.069

original B-mode data, another 10 algorithms successfully detect correct sparse components.

Therefore, 62 algorithms can successfully separate the correct sparse components. The other

algorithms which give very noisy results may need parameter adjustment and threshold

process. The results of simulation experiment on B-mode data are reported in Table 4.4.
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Table 4.4: The algorithms with good results on B-mode simulation data. The algorithms
with ◦ are affected by the high peak values and get good results after suppressing peaks. The
algorithms with • only get good results after increasing the dynamic range. The algorithms
with * give pure background.

Group Abbreviation Time CNR Group Abbreviation Time CNR
TTD 3WD◦ 2.027 1.486 RPCA Lag-SPCP-QN* 2.809 0.494
LRR ADM 0.563 3.401 RPCA Lag-SPCP-SPG* 8.961 0.456
RPCA ALM• 18.74 1.827 MC LMaFit 0.424 1.889
RPCA APG◦* 4.229 1.855 MC LRGeomCG 0.811 1.885
RPCA APG-PARTIAL◦* 3.696 1.860 RPCA LSADM◦ 1.454 1.847
RPCA AS-RPCA 2.180 1.803 TTD MAMR 1.642 1.781
RPCA DECOLOR 3.450 1.717 NMF ManhNMF 1.422 1.903
NMF Deep-Semi-NMF 0.195 1.903 RPCA MoG-RPCA 1.710 1.934
NMF DRMF◦* 2.461 1.842 NMF NeNMF 0.073 1.903
RPCA DUAL◦* 89.41 1.824 NMF NMF-ALS 1.848 1.903
LRR EALM• 0.321 1.903 NMF NMF-ALS-OBS 1.987 1.903
RPCA EALM◦ 4.324 1.840 NMF nmfLS2 0.206 1.903
NMF ENMF 9.056 1.903 NMF NMF-MU 1.643 1.903
LRR FastLADMAP 0.769 1.903 NMF NMF-PG 32.46 1.899
RPCA flip-SPCP-max-QN 102.0 1.835 RPCA noncvxRPCA 0.100 1.903
RPCA flip-SPCP-sum-SPG 230.0 1.835 RPCA NSA1• 0.255 1.902
MC FPC 34.87 1.442 TD OSTD•* 0.764 1.451
RPCA FPCP* 0.150 1.875 RPCA PCP◦* 9.978 1.842
RPCA FW-T◦* 0.722 0.370 NMF PNMF 13.42 1.903
RPCA GA• 0.028 1.904 RPCA PRMF 1.336 1.857
RPCA GoDec 0.096 1.903 RPCA R2PCP•* 1.269 2.024
RPCA GreGoDec 0.282 1.903 RPCA RegL1-ALM 3.918 1.833
TD HoRPCA-S-NCX 112.0 1.836 TTD RMAMR• 5.369 1.561
TD HoSVD 4.493 1.903 LRR ROSL* 0.369 1.830
LRR IALM 1.880 1.903 MC RPCA-GD◦ 4.946 1.891
RPCA IALM◦* 0.701 1.840 NMF Semi-NMF 0.134 1.331
RPCA IALM-BLWS◦* 1.800 1.843 RPCA SSGoDec 1.206 1.903
MC IALM-MC 5.729 1.848 RPCA TFOCS-EC• 6.388 1.903
NMF iNMF 1.148 1.770 TD Tucker-ADAL 74.71 1.903
RPCA L1F• 1.022 0.817 TD Tucker-ALS 0.118 1.903
LRR LADMAP 0.446 1.903 RPCA VBRPCA 0.306 0.343

4.2 Phantom Experiments

The next set of experimental data used for testing is phantom data. The phantom data is

used to test whether DLSM framework is suitable for ultrasound clutter suppression with

real ultrasound noise and other ultrasound features. The phantom data also consists of

three formats, which are RF phantom data, complex envelope phantom data, and B-mode

phantom data. Except for 11 inapplicable algorithms due to size limitation, the other 95
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algorithms have a huge difference in computing time ranging from less than 0.1 second to

more than 500 seconds.

(a) (b) (c)

Figure 4.2: The three typical output results of phantom experiments. (a) is a
typical good result showing the pure sparse components without noise. This image
is obtained by ALM algorithm on original phantom data. (b) is a typical output
affected by bright edge structures. This image is obtained by APG algorithm on
original phantom data. Because the pixel values of bright edges are 1000 times
larger than the pixel values in the rest of the image, the flow sparse component in
the middle of the tube cannot be observed. (c) is a typical noisy result showing
the sparse components with indivisible noise. This image is obtained by RSTD
algorithm on original phantom data.

As for RF phantom data, the order of magnitude of all pixels is firstly adjusted into

the range of 10±3. However, the structured peak pixels that are caused by bright structure

generated at the rebound reflection interface still affect many algorithms. 36 algorithms

clearly show the simulated vessel with a pure background with an average CNR of 3.5.

Meanwhile, 43 algorithms only highlight bright edges as the sparse components with an

average CNR of 0.4. The structured peak pixels of RF phantom data can compromise the

calculation of some algorithms when these bright edges have a pixel value 103 times larger

than the remaining pixel values. Therefore, the peak values are processed logarithmically

to achieve the gray balance and reduce the dynamic range. After logarithmic processing, 22

additional algorithms are able to display sparse components correctly excluding bright and

static edges. Among them, 19 algorithms are previously affected by peaks, and 3 algorithms

are defective on the original data. The results of remaining algorithms are still noisy, and

parameter adjustment should be applied to these algorithms for better performance. The

results of RF phantom experiments are shown in Table 4.5.

The complex envelope phantom data is then used for experiments. The number of

good results of the complex envelope phantom data is less than the number of good results

of RF phantom data. 26 algorithms successfully detected the simulated vessel and 33
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Table 4.5: The algorithms with good results in RF phantom experiments. The algorithms
with ◦ are the 3 new algorithms work on processed data, which are defective on original data.
The algorithms with • are sensitive to structured peak pixels and work after logarithmic
processing.

Group Abbreviation Time CNR Group Abbreviation Time CNR
TTD 3WD• 1.826 2.393 RPCA Lag-SPCP-SPG 31.118 2.626
TTD ADMM• 4.009 2.478 MC LMaFit 0.260 2.651
RPCA ALM 5.456 2.672 MC LRGeomCG 0.817 2.640
RPCA APG• 5.585 2.747 RPCA LSADM• 1.443 2.747
RPCA APG-PARTIAL• 4.690 2.747 TTD MAMR 2.263 2.681
RPCA AS-RPCA 2.697 2.732 RPCA MoG-RPCA 9.156 2.777
RPCA DECOLOR 10.266 4.895 NMF nmfLS2 0.219 2.672
NMF Deep-Semi-NMF 0.150 2.672 RPCA NSA1• 1.549 2.746
NMF DRMF• 2.723 2.754 RPCA NSA2• 1.656 2.746
RPCA DUAL• 215 2.746 MC OptSpace• 7.020 2.526
LRR EALM 0.351 2.672 MC OR1MP• 0.089 2.627
RPCA EALM• 37.360 2.744 TD OSTD• 70.747 1.799
RPCA flip-SPCP-max-QN• 119 2.768 RPCA PCP• 26.791 2.745
RPCA flip-SPCP-sum-SPG• 431 2.768 NMF PNMF 16.963 2.684
RPCA FPCP 0.108 2.672 RPCA PRMF 1.573 2.623
RPCA FW-T◦ 0.591 2.578 RPCA R2PCP 2.241 2.703
RPCA GA 0.031 3.652 RPCA RegL1-ALM 4.745 2.774
RPCA GM 0.155 2.775 TTD RMAMR 9.728 2.545
RPCA GoDec 0.097 2.674 LRR ROSL 0.421 2.715
ST GRASTA◦ 1.394 1.207 MC RPCA-GD 6.215 2.622
RPCA GreGoDec 0.237 2.821 TD RSTD◦ 91.200 1.636
TD HoRPCA-S-NCX 70.134 2.777 MC ScGrassMC 4.093 2.567
TD HoSVD 0.497 2.672 NMF Semi-NMF 1.267 2.295
RPCA IALM 0.796 2.748 RPCA SSGoDec 1.496 2.736
LRR IALM• 2.003 2.672 MC SVP• 3.235 2.471
RPCA IALM-BLWS• 2.474 2.748 RPCA TFOCS-EC 9.815 2.188
MC IALM-MC 7.764 2.419 RPCA TFOCS-IC 9.568 2.197
RPCA L1F 2.680 0.837 TD Tucker-ADAL 267 2.617
RPCA Lag-SPCP-QN 15.766 2.684 TD Tucker-ALS 0.123 2.672

algorithms only showed bright edges, which is an intra-venous (IV) tube representing

the vessel wall. The CNR of all results are less than 0.4. After suppressing the edge

brightness logarithmically, 11 of these algorithms that have been affected by edges can

separate pure sparse components. It shows that the extremely high bright structures can

affect the sensitivity to sparse components in many algorithms. However, there are still

some algorithms that give noisy results. At the same time, 19 algorithms cannot take

complex numbers as input. The results on complex envelope phantom data are shown in

Table 4.6.
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Table 4.6: The algorithms with good results on complex envelope phantom data. The
algorithms with ◦ are the 3 new algorithms work on processed data, which are defective on
original data. The algorithms with • are sensitive to structured peak pixels and work after
logarithmic processing. Two algorithms with * get good results on original envelope data
but are defective on processed data.

Group Abbreviation Time CNR Group Abbreviation Time CNR
TTD 3WD• 4.947 0.032 RPCA Lag-SPCP-SPG 38.770 0.118
RPCA ALM• 86.748 0.070 MC LMaFit 0.441 0.063
RPCA APG• 14.096 0.064 MC MC-NMF 1.733 0.056
RPCA APG-PARTIAL• 19.703 0.064 NMF NeNMF 0.179 0.070
NTF bcuNTD 23.042 0.065 NMF nmfLS2 0.787 0.070
NMF Deep-Semi-NMF 0.275 0.070 NMF NMF-MU 4.429 0.070
NMF DRMF• 2.467 0.251 RPCA noncvxRPCA◦ 0.239 0.070
LRR EALM• 113.071 0.070 RPCA NSA1• 3.560 0.065
NMF ENMF 56.960 0.070 RPCA NSA2• 3.704 0.064
RPCA flip-SPCP-max-QN 194.004 0.110 RPCA PCP• 29.737 0.064
RPCA flip-SPCP-sum-SPG 774.004 0.110 NMF PNMF 32.414 0.072
RPCA FPCP 0.156 0.069 RPCA R2PCP◦ 1.410 0.071
RPCA GoDec 0.164 0.071 LRR ROSL 1.077 0.070
RPCA GreGoDec 0.603 0.070 NMF Semi-NMF 0.184 0.078
MC GROUSE* 2.090 0.123 RPCA SSGoDec 4.876 0.071
TD HoRPCA-S-NCX 174.635 0.064 RPCA TFOCS-EC• 29.885 0.052
TD HoSVD 2.527 0.070 TD Tucker-ADAL 654.740 0.010
LRR IALM• 6.495 0.070 TD Tucker-ALS 0.269 0.070
MC IALM-MC 15.723 0.055 RPCA VBRPCA◦ 20.913 0.077
RPCA Lag-SPCP-QN 27.778 0.079 NMF NMF-PG* 34.973 0.063

The last format of data to be applied is B-mode data. As for B-mode phantom data,

49 algorithms successfully give good results with a CNR higher than 2. However, the

results of four of these algorithms contain bright edges which are considered to be low-

rank components. The results of 35 algorithms only show the edges. Among them, a few

sensitive algorithms can also partly detect sparse partition with obvious motion. However,

only several bright pixels with motion can be detected. After reducing the dynamic range,

no algorithm is affected by edges and 75 algorithms give sparse components with pure

background. Examples of good results and noisy results in phantom experiments are shown

in Fig 4.2. The results of B-mode phantom data are shown in Table 4.7.
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Table 4.7: The algorithms with good results on B-mode phantom data. The algorithms with
◦ are the 3 new algorithms work on processed data, which are defective on original data.
The algorithms with • are sensitive to structured peak pixels and work after logarithmic
processing. Three algorithms with ** get good results on original envelope data but are
defective on processed data. The algorithms with * give pure backgrounds.

Group Abbreviation Time CNR Group Abbreviation Time CNR
RPCA LSADM• 1.455 3.582 MC RPCA-GD• 6.118 3.165
RPCA L1F 2.595 1.038 MC ScGrassMC 4.123 1.338
RPCA DECOLOR 7.015 2.847 LRR EALM• 10.899 3.681
RPCA RegL1-ALM 4.352 3.700 LRR IALM• 2.469 3.681
RPCA GA◦ 0.032 3.680 LRR ADM** 0.668 0.024
RPCA GM◦ 0.153 3.713 LRR LADMAP 0.363 3.681
RPCA MoG-RPCA 4.691 3.359 LRR FastLADMAP 0.802 3.681
RPCA noncvxRPCA• 0.110 3.681 LRR ROSL 0.421 3.712
RPCA NSA1• 1.407 3.602 TTD 3WD• 1.942 2.964
RPCA NSA2• 1.537 3.568 TTD MAMR 2.784 3.154
RPCA flip-SPCP-sum-SPG 276 3.695 TTD RMAMR 6.776 2.289
RPCA flip-SPCP-max-QN 138 3.695 TTD ADMM◦* 3.627 0.794
RPCA Lag-SPCP-SPG* 5.010 1.598 NMF NMF-MU 2.143 3.681
RPCA Lag-SPCP-QN* 7.219 0.685 NMF NMF-PG 8.774 3.565
RPCA FW-T* 0.715 3.073 NMF NMF-ALS 2.406 3.681
RPCA BRPCA-MD• 283 3.724 NMF NMF-ALS-OBS 2.710 3.681
RPCA BRPCA-MD-NSS• 291 3.511 NMF PNMF 16.815 3.681
RPCA VBRPCA 4.627 3.692 NMF ManhNMF 2.292 3.662
RPCA PRMF 1.522 3.522 NMF NeNMF 0.066 3.681
RPCA TFOCS-EC• 9.131 3.349 NMF LNMF** 0.204 0.279
RPCA GoDec 0.095 3.681 NMF ENMF 13.546 3.681
RPCA SSGoDec 1.459 3.679 NMF nmfLS2 0.320 3.681
RPCA GreGoDec 0.229 3.681 NMF Semi-NMF 0.154 2.604
ST GRASTA 1.321 1.156 NMF Deep-Semi-NMF 0.156 3.681
MC FPC 49.672 2.454 NMF iNMF 1.482 3.650
MC GROUSE** 1.580 0.068 NMF DRMF•* 2.461 3.497
MC IALM-MC 6.992 3.690 TD HoSVD 0.532 3.681
MC LMaFit 0.314 3.300 TD HoRPCA-S-NCX 89.622 3.693
MC LRGeomCG 0.757 3.723 TD Tucker-ADAL 258 3.573
MC MC-NMF◦ 0.585 3.423 TD Tucker-ALS 0.130 3.681
MC OR1MP◦ 0.096 3.365

4.3 In Vivo Experiments

In the third step, rat data are used to test the performance of these algorithms on real

ultrasound data with small vessels-like tissues. The RF rat data, complex envelope rat data

and B-mode rat data are used to be compared.

In terms of RF rat data, 82 algorithms give very good and similar results, 7 algorithms

show noisy and meaningless results. The other 17 algorithms are restricted due to the
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(a) (b) (c)

Figure 4.3: The examples of the results of rat experiments. (a) is the B-mode
image of rat data for comparison. (b) is obtained by ALM algorithm on original
rat data. The dynamic background and noise are filtered out relatively well. (b)
is obtained by APG algorithm on original rat data. Large areas of dynamic tissue
are classified as sparse components. Since there is no ground truth for in vivo rat
data, the results are described using relatively good and relatively noisy.

size limitation or non-negative limitation. The complex envelope rat data remains to share

similar results with RF rat data. As for B-mode rat data, 92 algorithms successfully detected

vessel-like tissues and only 3 algorithms failed to show any part of the sparse components.

Examples of good results and noisy results in in vivo rat experiments are shown in Figure 4.3.

Since most algorithms give results with similar SNR and CNR, the evaluation of results

combines subjective observations and numerical analysis. Due to the unknown in vivo

structure, we lack ground truth for the accuracy of the assessment results. Only algorithms

with pure backgrounds are shown in Table 4.8 due to similar results and limited space.

Table 4.8: The algorithms with pure backgrounds on in vivo data.

Group Abbreviation CNR
RF in vivo data
TTD ADMM 0.306
Envelope in vivo data
RPCA Lag-SPCP-SPG 0.258
RPCA R2PCP 0.153
NMF DRMF 0.510
B-mode in vivo data
RPCA R2PCP 0.416
RPCA Lag-SPCP-QN 0.519
RPCA Lag-SPCP-SPG 0.502
TTD ADMM 0.453
TD RSTD 0.449
TD OSTD 0.521
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Chapter 5

Discussion

A total of 106 algorithms were tested in this paper. Analyzing the results obtained from

simulation, phantom and in vivo experiments, we found that 11 algorithms require huge

memory (7.9 GB for frame size 250×125, 20 frames) due to the singular value decomposition

or QR decomposition process. Since typical ultrasound frames are large in size, the left

unitary matrix in full singular value decomposition demands an excessive amount of memory,

e.g. ADM. There are two possible solutions to this problem. First, the approximate SVD

can be calculated and stored in every iteration instead of full SVD [76, 134]. Second, small

overlapping patches from the ultrasound frames can be considered to formulate the data

matrix which will substantially reduce the size of the Casorati matrix and eventually the

memory footprint. Another advantage of using this windowing technique is that it can

automatically equalize uneven noise distribution by normalizing the power locally [72]. The

11 algorithms with size limitation are listed in Table 5.1.

Table 5.1: The 11 algorithms with size limatation

Group Abbreviation Algorithm Name
RPCA IALM-LMSVDS IALM with LMSVDS
RPCA ADM Alternating Direction Method
ST GOSUS Grassmannian Online Subspace Updates with Structured-sparsity
ST pROST Robust PCA and subspace tracking from incomplete observations using L0-surrogates
ST ReProCS Provable Dynamic Robust PCA or Robust Subspace Tracking
ST MEDRoP Memory Efficient Dynamic Robust PCA
MC PG-RMC Nearly Optimal Robust matrix Completion
MC MC-logdet Top-N Recommender System via Matrix Completion
MC OP-RPCA Robust PCA via Outlier Pursuit
MC SVT A singular value thresholding algorithm for matrix completion
TD t-SVD Tensor SVD in Fourrier Domain
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Moreover, there are 6 algorithms that require non-negative input. Since ultrasound RF

data usually contains both positive and negative values, these algorithms are not suitable

for working with RF data for clutter suppression. 20 algorithms giving good results on RF

simulation data are tested with the absolute value of RF data to confirm the impact of non-

negative requirements on ultrasound clutter suppression. Although all of these 53 algorithms

are still capable of showing show high contrast vessel structures, the SNR obtained with

absolute value RF data (0.81) is slightly greater than the original SNR (0.76) showing a

significant increase of background noise in sparse components. At the same time, the CNR

obtained with absolute value RF data (1.69) is slightly lower than the original CNR (1.73),

which proves that non-negative requirement has only limited effect on the accuracy of the

DLSM decomposition. The 6 algorithms with size limitations are listed in Table 5.2.

Table 5.2: The algorithms with non-negative requirement

Group Abbreviation Algorithm Name
MC MC-NMF Nonnegative Matrix Completion
NMF NMF-MU NMF solved by Multiplicative Updates
NMF NMF-ALS-OBS NMF solved by Alternating Least Squares with Optimal Brain Surgeon
NMF LNMF Spatially Localized NMF
NMF iNMF Incremental Subspace Learning via NMF
TD CP-APR PARAFAC/CP decomposition solved by Alternating Poisson Regression

Another type of restricted algorithms is affected by complex inputs. From the

experiment results, it is obvious that complex envelope data is not suitable for ultrasound

clutter suppression since it takes longer calculation time and gives poor performance. Also,

13 algorithms are affected by complex value and cannot separate low-rank and sparse

components well. Among them, 13 algorithms cannot take complex numbers as input,

and some algorithms are stuck in a longer loop that requires more than 300 seconds.

Algorithms which failed due to complex numbers are listed below in Table 5.3. In addition,

the extremely small CNR obtained from the envelope data is only one-hundredth of the

ones obtained from other data sets which indicates that envelope data is not suitable as an

input form of ultrasound clutter suppression.

Among the remaining algorithms, 17 algorithms are easily affected by outliers. These

algorithms cannot denoise the peak values when the dynamic range is roughly greater than

11.5 bits, which is the natural logarithm of difference between maximum and minimum.
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Table 5.3: The 13 algorithms that cannot take complex numbers as input

Group Abbreviation Algorithm Name
RPCA DECOLOR Contiguous Outliers in the Low-Rank Representation
RPCA MoG-RPCA Mixture of Gaussians RPCA
RPCA FW-T SPCP solved by Frank-Wolfe method
MC LRGeomCG Low-rank matrix completion by Riemannian optimization
MC RPCA-GD Robust PCA via Gradient Descent
LRR ADM Alternating Direction Method
LRR LADMAP Linearized ADM with Adaptive Penalty
LRR FastLADMAP Fast LADMAP
TTD MAMR Motion-Assisted Matrix Restoration
TTD RMAMR Robust Motion-Assisted Matrix Restoration
TD HoRPCA-IALM HoRPCA solved by IALM
TD HoRPCA-S HoRPCA with Singleton model solved by ADAL
TD RSTD Rank Sparsity Tensor Decomposition

These 17 algorithms have performed well on pre-processed data and showed good results in

simulation experiments and phantom experiments. However, they are not robust to outliers.

In the simulation experiments, these algorithms divided the background peak pixels into

sparse components, resulting in a noisy background. Similarly, they are not robust to

large shaped structured outliers and divide bright static edges into sparse components in

phantom experiments. These 17 algorithms that are susceptible to outliers are listed in

Table 5.4. Since complex envelope data is not suitable for ultrasound clutter suppression,

the performance of the algorithms on complex envelope data has not been considered.

In addition, a pure background (0 dB) is of great significance for vascular image

segmentation and process and analysis of other medical images [67, 135]. However, this

is a difficult goal due to the probe jitter, dynamic backgrounds, noise, shadows, and many

other reasons. Therefore, only a few results have pure background on simulation data and

phantom data. Furthermore, no result has pure background on in vivo rat data because of

the complex tissue motions and the harsh conditions. Some algorithms have a strong ability

dealing with these challenges and give pure backgrounds on simulation data and phantom

data. These algorithms are listed in Table 5.5.

Overall, in terms of calculation time, DLSM algorithms take the longest time to run

complex envelope data in comparison with RF data and B-mode data. Due to its large

amount of calculations, complex envelope data takes twice as long as RF data does to
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Table 5.4: The algorithms not robust to the outliers

Group Abbreviation Algorithm Name
RPCA PCP Principal Component Pursuit
RPCA IALM-BLWS IALM with BLWS
RPCA APG-PARTIAL Partial Accelerated Proximal Gradient
RPCA APG Accelerated Proximal Gradient
RPCA DUAL Dual RPCA
RPCA LSADM LSADM
RPCA GA Grassmann Average
RPCA GM Grassmann Median
RPCA NSA1 Non-Smooth Augmented Lagrangian v1
RPCA NSA1 Non-Smooth Augmented Lagrangian v2
RPCA FW-T SPCP solved by Frank-Wolfe method
RPCA TFOCS-EC TFOCS with equality constraints
LRR EALM Exact ALM
LRR IALM Inexact ALM
TTD 3WD 3-Way-Decomposition
NMF DRMF Direct Robust Matrix Factorization
TD OSTD Online Stochastic Tensor Decomposition

Table 5.5: The algorithms with the potential to give a pure background.

Group Abbreviation Algorithm Name
RPCA PCP Principal Component Pursuit
RPCA FPCP Fast PCP
RPCA R2PCP Riemannian Robust Principal Component Pursuit
RPCA IALM Inexact ALM
RPCA IALM-BLWS IALM with BLWS
RPCA APG-PARTIAL Partial Accelerated Proximal Gradient
RPCA APG Accelerated Proximal Gradient
RPCA DUAL Dual RPCA
RPCA Lag-SPCP-SPG Lagrangian SPCP solved by Spectral Projected Gradient
RPCA Lag-SPCP-QN Lagrangian SPCP solved by Quasi-Newton
RPCA FW-T SPCP solved by Frank-Wolfe method
LRR ROSL Robust Orthonormal Subspace Learning
NMF DRMF Direct Robust Matrix Factorization
TD HoRPCA-S-NCX HoRPCA with Singleton model solved by ADAL (non-convex)
TD OSTD Online Stochastic Tensor Decomposition

run. This confirms again that complex envelope data is not suitable for ultrasound clutter

suppression. Meanwhile, RF data requires slightly less computation time than B-mode

data. This may be caused by the extra information RF data contains. Meanwhile, we can

find that DLSM algorithms use a slightly longer time on preprocessed data than on original

data. However, the algorithms separate sparse components more accurately. Table 5.6 lists
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the average time taken by the fastest 20 algorithms on different data-sets and different data

formats.

Table 5.6: The average time taken by the fastest 20 algorithm

RF data Complex envelope data B-mode data
original simulation data 0.19 s 0.67 s 0.28 s
original phantom data 0.31 s 0.58 s 0.30 s
original rat data 0.31 s 0.50 s 0.29 s
preprocessed simulation data 1.05 s 1.21 s 0.30 s
preprocessed phantom data 0.69 s 2.18 s 0.33 s
preprocessed rat data 0.77 s 1.81 s 0.61 s

The experimental results prove that ultrasound data is very different from ordinary

video surveillance frames. All DLSM algorithms can be successfully applied to surveillance

images. However, some of them are not suitable for ultrasound data. There are quite a few

algorithms that are not suitable for ultrasound RF data and complex envelope data, which

may due to the complexity of the RF data and the complex space of complex envelope data.

The simulation experiments prove that some algorithms are still not robust to ultrasound

clutter and are not sensitive to the data with overall small pixel values (< 10−3). As for these

algorithms, the low-rank components of the results often contain inseparable background

flicker, noise, and tiny motion. These algorithms have been listed in Table 5.4. Meanwhile,

the phantom experiment results prove that some DLSM algorithms are not robust and stable

with a high dynamic range greater than 10 bits. For ultrasound data, an area with small

values often exists in a uniform tissue. Edges that are much brighter than other tissues

are also common due to the strong reflections at the interface. The CNR after preprocess

the ultrasound data is generally higher than the CNR of raw data. The result of the data

that removed the peak is also significantly better than the results of raw data. Therefore,

it is necessary to preprocess the ultrasound image when applying the DLSM algorithm.

Moreover, parameter adjustment or other math improvements is necessary when applying

some DLSM algorithms on ultrasound data in order to get the best filtering performance.

On the other hand, in terms of ultrasound data formats, experiments show that B-

mode ultrasound data can make more algorithms successful for vascular detection. The

B-mode ultrasound data may lose information. However, the outliers that may affect DLSM
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algorithms may also be weakened by Hilbert transform an absolute process. This might be

the reason why more DLSM algorithms work for B-mode data. Although B-mode data has

more good results than RF data, RF data requires slightly less average calculation time and

is more suitable for real-time requirements. The algorithms in table 5.7 are relatively stable

in all three data-sets. These algorithms all require less than 1 second for computation while

giving the correct sparse components. Experiments show that they may be more suitable

for ultrasound clutter suppression.

Table 5.7: The algorithms require less than 1 second calculation time

Group Abbreviation Algorithm Name
LRR ADM Alternating Direction Method
LRR LADMAP Linearized ADM with Adaptive Penalty
LRR FastLADMAP Fast LADMAP
LRR ROSL Robust Orthonormal Subspace Learning
MC GROUSE Grassmannian Rank-One Update Subspace Estimation
MC LMaFit Low-Rank Matrix Fitting
MC LRGeomCG Low-rank matrix completion by Riemannian optimization
NMF nmfLS2 Non-negative Matrix Factorization with sparse matrix
NMF Semi-NMF Semi Non-negative Matrix Factorization
NMF Deep-Semi-NMF Deep Semi Non-negative Matrix Factorization
RPCA FPCP Fast PCP
RPCA L1F L1 Filtering
RPCA noncvxRPCA Robust PCA via Nonconvex Rank Approximation
RPCA VBRPCA Variational Bayesian RPCA
RPCA GoDec Go Decomposition
RPCA GreGoDec Greedy Semi-Soft GoDec Algotithm
TD Tucker-ADAL Tucker Decomposition solved by ADAL
TD Tucker-ALS Tucker Decomposition solved by ALS

Finally, 22 algorithms which are most robust to noise with the best performance in all

the experiments are listed in Table 5.8. These algorithms may have a strong ability for

ultrasound clutter suppression.

In this paper, we adapted different techniques originally proposed for natural images in

the field of computer vision for ultrasound color flow imaging. As ultrasound images have

unique characteristics due to the physics of sound propagation, these images have the so

called “speckle noise”. We believe that the results of this paper can be generalized to other

imaging modalities that are affected by diffraction, such as optical coherence tomography

(OCT).
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Table 5.8: The robustest algorithms with the best performance

Group Abbreviation Algorithm Name
RPCA FPCP Fast PCP
RPCA L1F L1 Filtering
RPCA DECOLOR Contiguous Outliers in the Low-Rank Representation
RPCA RegL1-ALM Low-Rank Matrix Approximation under Robust L1-Norm
RPCA MoG-RPCA Mixture of Gaussians RPCA
RPCA Lag-SPCP-SPG Lagrangian SPCP solved by Spectral Projected Gradient
RPCA Lag-SPCP-QN Lagrangian SPCP solved by Quasi-Newton
RPCA PRMF Probabilistic Robust Matrix Factorization
RPCA GoDec Go Decomposition
RPCA SSGoDec Semi-Soft GoDec
RPCA GreGoDec Greedy Semi-Soft GoDec Algotithm
MC IALM-MC Inexact ALM for Matrix Completion
MC LMaFit Low-Rank Matrix Fitting
MC LRGeomCG Low-rank matrix completion by Riemannian optimization
LRR ROSL Robust Orthonormal Subspace Learning
TTD MAMR Motion-Assisted Matrix Restoration
NMF PNMF Probabilistic Non-negative Matrix Factorization
NMF nmfLS2 Non-negative Matrix Factorization with sparse matrix
NMF Semi-NMF Semi Non-negative Matrix Factorization
NMF Deep-Semi-NMF Deep Semi Non-negative Matrix Factorization
TD HoSVD Higher-order Singular Value Decomposition
TD HoRPCA-S-NCX HoRPCA with Singleton model solved by ADAL (non-convex)
TD Tucker-ADAL Tucker Decomposition solved by ADAL
TD Tucker-ALS Tucker Decomposition solved by ALS
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

The applications of matrix and tensor decomposition are becoming more and more

widespread due to the rapid increasing dimensionality of the data. SVD as an important

matrix factorization method opens a whole new research area in ultrasonic clutter

suppression and vascular imaging analysis. Since the appearance of ultrafast ultrasound or

plane wave ultrasound, the combination of eigen-based filtering and Doppler ultrasound has

been transformed into a combination of SVD-based filtering and ultrafast ultrasound. For

example, the power Doppler images obtained from SVD and are processed by morphological

filtering, and Hessian-based vessel enhancement techniques [67, 68, 136, 135]. Thus, this

thesis extends the study of ultrasound clutter suppression from a limited SVD-based idea

to all DLSM algorithms, including approximately SVD and SVD-free ideas. This thesis

tests the performance of mathematical DLSM techniques to ultrasound angiography and

provides new ideas for ultrasound clutter suppression in addition to SVD and plane wave

ultrasound.

The performance of 106 established low-rank and sparse decomposition algorithms for

clutter filtering has been tested in this work. Our results show that few robust matrix

decomposition techniques are suitable for solving the limitations of SVD-based ultrasound

clutter suppression methods such as sensitivity to large noise. In addition, several matrix

decomposition techniques show the potential for real-time implementation on commercial
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ultrasound machines due to their low computational complexity. Furthermore, some

preprocessing is necessary when applying this framework to ultrasound data. Finally,

some of the algorithms studied in this work can automatically estimate the optimal power

Doppler images without requiring extensive manual tuning, which may pave the way for

easier commercial and clinical translation of ultrasound clutter suppression.

6.2 Future Work

Based on the findings of this thesis, many technical and clinical extensions can be carried out

in order to improve the quality of ultrasound vessel imaging and the quantitative research

in angiology in the future states od this work. The scopes for technical advancement are

listed as follows:

• Mathematical proof: We have proved through simulation, phantom, and in vivo

experiments that some algorithms have extremely good performance for ultrasound

clutter suppression while some perform poorly. However, we have not identified the

mathematical proof for such behaviours. The specific mathematical proofs should be

found out so that the future algorithm development has a clearer direction.

• Experiment: Although we experimented with three data sets and three data formats,

the experiment can be improved in design and details. More quantitative experiments

could be done include changing the size of blood vessels, blood flow rate, etc.

• Speed measurement: This paper proves that the DLSM algorithm framework is

suitable for ultrasonic clutter filtering. They can be used as filters with traditional

Doppler ultrasound, and can also replace Doppler ultrasound combined with ultrafast

ultrasound. However, the quantitative measurement of blood flow velocity remains a

challenge. Measuring blood flow velocity with DLSM is an important research area

in the future.

• Other measures: More evaluation indicators will help with accurate reporting and

discussion, for example, the true positives (TP), true negatives (TN), false positives

(FP) and false negatives (FN) as additional measure. Therefore, the ground truth of
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the data sets is very important. In future work, more comprehensive evaluations and

the ground truth of in vivo data will be very important.

• Ultrafast ultrasound: Since the invention of ultrafast ultrasound or plane wave

ultrasound, the combination of eigen-based filtering and Doppler ultrasound has

been transformed into a combination of SVD-based filtering and ultrafast ultrasound.

Ultrafast ultrasound data at different frame rates may challenge the SNR performance

and real-time performance of some DLSM algorithms.

• Deep learning has shown great potential in segmentation of ultrasound images [137,

138], fast ultrasound image acquistion [139] and ultrasound elastography [140, 141].

Deep learning has been recently proposed for ultrasound clutter suppression [142].

It would be interesting to compare techniques based on deep learning and DLSM

algorithms.

Due to the increase in data dimensions and the complexity of tissues and blood vessels

in the body, a large number of more comprehensive comparison experiments and clinical

experiments are indispensable. This thesis provides an extensive review of the eigen-based

filters in ultrasound clutter filtering, and it is also the first step in DLSM framework for

ultrasonic clutter filtering. Therefore, the future work is demanding but has potential,

including mathematical proofs, experimental improvements, and application extensions.
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Appendix A

DLSM Algorithms

Abbreviation Algorithm name Authors

RPCA

RPCA Robust Principal Component Analysis De la Torre and

Black [143]

PCP Principal Component Pursuit Candes et al. [77]

FPCP Fast PCP Rodriguez and

Wohlberg [144]

R2PCP Riemannian Robust Principal Component Pursuit Hintermüller and Wu

[130]

AS-RPCA Active Subspace: Towards Scalable Low-Rank Learning Liu and Yan [145]

ALM Augmented Lagrange Multiplier Tang and Nehorai

[106]

EALM Exact ALM Lin et al. [104]

IALM Inexact ALM Lin et al. [104]

IALM-LMSVDS IALM with LMSVDS Liu et al. [146]

IALM-BLWS IALM with BLWS Lin and Wei [147]

APG-PARTIAL Partial Accelerated Proximal Gradient Lin et al. [104]

APG Accelerated Proximal Gradient Lin et al. [104]

DUAL Dual RPCA Lin et al. [104]

SVT Singular Value Thresholding Cai et al. [148]

ADM Alternating Direction Method Yuan and Yang [149]

LSADM LSADM Goldfarb et al. [150]

L1F L1 Filtering Liu et al. [102]

DECOLOR Contiguous Outliers in the Low-Rank Representation Zhou et al. [151]
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RegL1-ALM Low-Rank Matrix Approximation under Robust L1-

Norm

Zheng et al. [152]

GA Grassmann Average Hauberg et al. [153]

GM Grassmann Median Hauberg et al. [153]

TGA Trimmed Grassmann Average Hauberg et al. [153]

STOC-RPCA Online Robust PCA via Stochastic Optimization Feng et al. [154]

MoG-RPCA Mixture of Gaussians RPCA Zhao et al. [100]

noncvxRPCA Robust PCA via Nonconvex Rank Approximation Kang et al. [155]

NSA1 Non-Smooth Augmented Lagrangian v1 Aybat et al. [156]

NSA2 Non-Smooth Augmented Lagrangian v2 Aybat et al. [156]

PSPG Partially Smooth Proximal Gradient Aybat et al. [157]

flip-SPCP-sum-

SPG

Flip-Flop version of Stable PCP-sum solved by Spectral

Projected Gradient

Aravkin et al. [158]

flip-SPCP-max-

QN

Flip-Flop version of Stable PCP-max solved by Quasi-

Newton

Aravkin et al. [158]

Lag-SPCP-SPG Lagrangian SPCP solved by Spectral Projected Gradient Aravkin et al. [158]

Lag-SPCP-QN Lagrangian SPCP solved by Quasi-Newton Aravkin et al. [158]

FW-T SPCP solved by Frank-Wolfe method Mu et al. [159]

BRPCA-MD Bayesian Robust PCA with Markov Dependency Ding et al. [98]

BRPCA-MD-

NSS

BRPCA-MD with Non-Stationary Noise Ding et al. [98]

VBRPCA Variational Bayesian RPCA Babacan et al. [99]

PRMF Probabilistic Robust Matrix Factorization Wang et al. [160]

OPRMF Online PRMF Wang et al. [160]

MBRMF Markov BRMF Wang and Yeung

[161]

TFOCS-EC TFOCS with equality constraints Becker et al. [162]

TFOCS-IC TFOCS with inequality constraints Becker et al. [162]

GoDec Go Decomposition Zhou and Tao [163]

SSGoDec Semi-Soft GoDec Zhou and Tao [163]

GreGoDec Greedy Semi-Soft GoDec Algotithm Zhou and Tao [164]

ST

GRASTA Grassmannian Robust Adaptive Subspace Tracking

Algorithm

He et al. [165]

GOSUS Grassmannian Online Subspace Updates with

Structured-sparsity

Xu et al. [166]

78



pROST Robust PCA and subspace tracking from incomplete

observations using L0-surrogates

Hage and Kleinsteu-

ber [167]

ReProCS Provable Dynamic Robust PCA or Robust Subspace

Tracking

Narayanamurthy and

Vaswani [168]

MEDRoP Memory Efficient Dynamic Robust PCA Narayanamurthy and

Vaswani [169]

MC

PG-RMC Nearly Optimal Robust matrix Completion Cherapanamjeri et

al. [170]

FPC Fixed point and Bregman iterative methods for matrix

rank minimization

Ma et al. [171]

GROUSE Grassmannian Rank-One Update Subspace Estimation Balzano et al. [172]

IALM-MC Inexact ALM for Matrix Completion Lin et al. [104]

LMaFit Low-Rank Matrix Fitting Wen et al. [173]

LRGeomCG Low-rank matrix completion by Riemannian optimiza-

tion

Bart Vandereycken,

2013 [174]

MC-logdet Top-N Recommender System via Matrix Completion Kang et al. [175]

MC-NMF Nonnegative Matrix Completion Xu et al. [176]

OP-RPCA Robust PCA via Outlier Pursuit Xu et al. [108]

OptSpace Matrix Completion from Noisy Entries Keshavan et al. [177]

OR1MP Orthogonal rank-one matrix pursuit for low rank matrix

completion

Wang et al. [178]

RPCA-GD Robust PCA via Gradient Descent Yi et al. [179]

ScGrassMC Scaled Gradients on Grassmann Manifolds for Matrix

Completion

Ngo and Saad [180]

SVP Guaranteed Rank Minimization via Singular Value

Projection

Meka et al. [181]

SVT A singular value thresholding algorithm for matrix

completion

Cai et al. [123]

LRR

EALM Exact ALM Lin et al. [104]

IALM Inexact ALM Lin et al. [104]

ADM Alternating Direction Method Lin et al. [182]

LADMAP Linearized ADM with Adaptive Penalty Lin et al. [182]

FastLADMAP Fast LADMAP Lin et al. [182]

ROSL Robust Orthonormal Subspace Learning Shu et al. [183]
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TTD

3WD 3-Way-Decomposition Oreifej et al. [184]

MAMR Motion-Assisted Matrix Restoration Ye et al. [185]

RMAMR Robust Motion-Assisted Matrix Restoration Ye et al. [185]

ADMM Alternating Direction Method of Multipliers Parikh and Boyd

[186]

NMF

NMF-MU NMF solved by Multiplicative Updates unknown

NMF-PG NMF solved by Projected Gradient unknown

NMF-ALS NMF solved by Alternating Least Squares unknown

NMF-ALS-OBS NMF solved by Alternating Least Squares with Optimal

Brain Surgeon

unknown

PNMF Probabilistic Non-negative Matrix Factorization un-

known

ManhNMF Manhattan NMF Guan et al. [187]

NeNMF NMF via Nesterov’s Optimal Gradient Method Guan et al. [187]

LNMF Spatially Localized NMF Li et al. [188]

ENMF Exact NMF Gillis and Glineur

[189]

nmfLS2 Non-negative Matrix Factorization with sparse matrix Ji and Eisenstein

[190]

Semi-NMF Semi Non-negative Matrix Factorization unknown

Deep-Semi-NMF Deep Semi Non-negative Matrix Factorization Trigeorgis et al. [191]

iNMF Incremental Subspace Learning via NMF Bucak and Gunsel

[192]

DRMF Direct Robust Matrix Factorization Xiong et al. [193]

NTF

betaNTF Simple beta-NTF implementation Antoine Liutkus []

bcuNTD Non-negative Tucker Decomposition by block-coordinate

update

Xu and Yin [194]

bcuNCP Non-negative CP Decomposition by block-coordinate

update

Xu and Yin [194]

NTD-MU Non-negative Tucker Decomposition solved by Multi-

plicative Updates

Zhou et al. [195]

NTD-APG Non-negative Tucker Decomposition solved by Acceler-

ated Proximal Gradient

Zhou et al. [195]
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NTD-HALS Non-negative Tucker Decomposition solved by Hierarchi-

cal ALS

Zhou et al. [195]

TD

HoSVD Higher-order Singular Value Decomposition (Tucker

Decomposition)

unknown

HoRPCA-IALM HoRPCA solved by IALM Goldfarb and Qin

[115]

HoRPCA-S HoRPCA with Singleton model solved by ADAL Goldfarb and Qin

[115]

HoRPCA-S-NCX HoRPCA with Singleton model solved by ADAL (non-

convex)

Goldfarb and Qin

[115]

Tucker-ADAL Tucker Decomposition solved by ADAL Goldfarb and Qin

[115]

Tucker-ALS Tucker Decomposition solved by ALS unknown

CP-ALS PARAFAC/CP decomposition solved by ALS unknown

CP-APR PARAFAC/CP decomposition solved by Alternating

Poisson Regression

Chi et al. [196]

CP2 PARAFAC2 decomposition solved by ALS Bro et al. [197]

RSTD Rank Sparsity Tensor Decomposition Yin Li [116]

t-SVD Tensor SVD in Fourrier Domain Zhang et al. 2013

[198]

OSTD Online Stochastic Tensor Decomposition Sobral et al. [199]
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