7,021 research outputs found

    A Logic-based Approach for Recognizing Textual Entailment Supported by Ontological Background Knowledge

    Full text link
    We present the architecture and the evaluation of a new system for recognizing textual entailment (RTE). In RTE we want to identify automatically the type of a logical relation between two input texts. In particular, we are interested in proving the existence of an entailment between them. We conceive our system as a modular environment allowing for a high-coverage syntactic and semantic text analysis combined with logical inference. For the syntactic and semantic analysis we combine a deep semantic analysis with a shallow one supported by statistical models in order to increase the quality and the accuracy of results. For RTE we use logical inference of first-order employing model-theoretic techniques and automated reasoning tools. The inference is supported with problem-relevant background knowledge extracted automatically and on demand from external sources like, e.g., WordNet, YAGO, and OpenCyc, or other, more experimental sources with, e.g., manually defined presupposition resolutions, or with axiomatized general and common sense knowledge. The results show that fine-grained and consistent knowledge coming from diverse sources is a necessary condition determining the correctness and traceability of results.Comment: 25 pages, 10 figure

    A comparative evaluation of deep and shallow approaches to the automatic detection of common grammatical errors

    Get PDF
    This paper compares a deep and a shallow processing approach to the problem of classifying a sentence as grammatically wellformed or ill-formed. The deep processing approach uses the XLE LFG parser and English grammar: two versions are presented, one which uses the XLE directly to perform the classification, and another one which uses a decision tree trained on features consisting of the XLEā€™s output statistics. The shallow processing approach predicts grammaticality based on n-gram frequency statistics: we present two versions, one which uses frequency thresholds and one which uses a decision tree trained on the frequencies of the rarest n-grams in the input sentence. We find that the use of a decision tree improves on the basic approach only for the deep parser-based approach. We also show that combining both the shallow and deep decision tree features is effective. Our evaluation is carried out using a large test set of grammatical and ungrammatical sentences. The ungrammatical test set is generated automatically by inserting grammatical errors into well-formed BNC sentences

    Dependency relations as source context in phrase-based SMT

    Get PDF
    The Phrase-Based Statistical Machine Translation (PB-SMT) model has recently begun to include source context modeling, under the assumption that the proper lexical choice of an ambiguous word can be determined from the context in which it appears. Various types of lexical and syntactic features such as words, parts-of-speech, and supertags have been explored as effective source context in SMT. In this paper, we show that position-independent syntactic dependency relations of the head of a source phrase can be modeled as useful source context to improve target phrase selection and thereby improve overall performance of PB-SMT. On a Dutchā€”English translation task, by combining dependency relations and syntactic contextual features (part-of-speech), we achieved a 1.0 BLEU (Papineni et al., 2002) point improvement (3.1% relative) over the baseline

    Assessing the contribution of shallow and deep knowledge sources for word sense disambiguation

    No full text
    Corpus-based techniques have proved to be very beneficial in the development of efficient and accurate approaches to word sense disambiguation (WSD) despite the fact that they generally represent relatively shallow knowledge. It has always been thought, however, that WSD could also benefit from deeper knowledge sources. We describe a novel approach to WSD using inductive logic programming to learn theories from first-order logic representations that allows corpus-based evidence to be combined with any kind of background knowledge. This approach has been shown to be effective over several disambiguation tasks using a combination of deep and shallow knowledge sources. Is it important to understand the contribution of the various knowledge sources used in such a system. This paper investigates the contribution of nine knowledge sources to the performance of the disambiguation models produced for the SemEval-2007 English lexical sample task. The outcome of this analysis will assist future work on WSD in concentrating on the most useful knowledge sources

    Machine translation evaluation resources and methods: a survey

    Get PDF
    We introduce the Machine Translation (MT) evaluation survey that contains both manual and automatic evaluation methods. The traditional human evaluation criteria mainly include the intelligibility, fidelity, fluency, adequacy, comprehension, and informativeness. The advanced human assessments include task-oriented measures, post-editing, segment ranking, and extended criteriea, etc. We classify the automatic evaluation methods into two categories, including lexical similarity scenario and linguistic features application. The lexical similarity methods contain edit distance, precision, recall, F-measure, and word order. The linguistic features can be divided into syntactic features and semantic features respectively. The syntactic features include part of speech tag, phrase types and sentence structures, and the semantic features include named entity, synonyms, textual entailment, paraphrase, semantic roles, and language models. The deep learning models for evaluation are very newly proposed. Subsequently, we also introduce the evaluation methods for MT evaluation including different correlation scores, and the recent quality estimation (QE) tasks for MT. This paper differs from the existing works\cite {GALEprogram2009, EuroMatrixProject2007} from several aspects, by introducing some recent development of MT evaluation measures, the different classifications from manual to automatic evaluation measures, the introduction of recent QE tasks of MT, and the concise construction of the content

    All mixed up? Finding the optimal feature set for general readability prediction and its application to English and Dutch

    Get PDF
    Readability research has a long and rich tradition, but there has been too little focus on general readability prediction without targeting a specific audience or text genre. Moreover, though NLP-inspired research has focused on adding more complex readability features there is still no consensus on which features contribute most to the prediction. In this article, we investigate in close detail the feasibility of constructing a readability prediction system for English and Dutch generic text using supervised machine learning. Based on readability assessments by both experts and a crowd, we implement different types of text characteristics ranging from easy-to-compute superficial text characteristics to features requiring a deep linguistic processing, resulting in ten different feature groups. Both a regression and classification setup are investigated reflecting the two possible readability prediction tasks: scoring individual texts or comparing two texts. We show that going beyond correlation calculations for readability optimization using a wrapper-based genetic algorithm optimization approach is a promising task which provides considerable insights in which feature combinations contribute to the overall readability prediction. Since we also have gold standard information available for those features requiring deep processing we are able to investigate the true upper bound of our Dutch system. Interestingly, we will observe that the performance of our fully-automatic readability prediction pipeline is on par with the pipeline using golden deep syntactic and semantic information

    A comparison of parsing technologies for the biomedical domain

    Get PDF
    This paper reports on a number of experiments which are designed to investigate the extent to which current nlp resources are able to syntactically and semantically analyse biomedical text. We address two tasks: parsing a real corpus with a hand-built widecoverage grammar, producing both syntactic analyses and logical forms; and automatically computing the interpretation of compound nouns where the head is a nominalisation (e.g., hospital arrival means an arrival at hospital, while patient arrival means an arrival of a patient). For the former task we demonstrate that exible and yet constrained `preprocessing ' techniques are crucial to success: these enable us to use part-of-speech tags to overcome inadequate lexical coverage, and to `package up' complex technical expressions prior to parsing so that they are blocked from creating misleading amounts of syntactic complexity. We argue that the xml-processing paradigm is ideally suited for automatically preparing the corpus for parsing. For the latter task, we compute interpretations of the compounds by exploiting surface cues and meaning paraphrases, which in turn are extracted from the parsed corpus. This provides an empirical setting in which we can compare the utility of a comparatively deep parser vs. a shallow one, exploring the trade-o between resolving attachment ambiguities on the one hand and generating errors in the parses on the other. We demonstrate that a model of the meaning of compound nominalisations is achievable with the aid of current broad-coverage parsers
    • ā€¦
    corecore