2,158 research outputs found

    Pain Analysis using Adaptive Hierarchical Spatiotemporal Dynamic Imaging

    Full text link
    Automatic pain intensity estimation plays a pivotal role in healthcare and medical fields. While many methods have been developed to gauge human pain using behavioral or physiological indicators, facial expressions have emerged as a prominent tool for this purpose. Nevertheless, the dependence on labeled data for these techniques often renders them expensive and time-consuming. To tackle this, we introduce the Adaptive Hierarchical Spatio-temporal Dynamic Image (AHDI) technique. AHDI encodes spatiotemporal changes in facial videos into a singular RGB image, permitting the application of simpler 2D deep models for video representation. Within this framework, we employ a residual network to derive generalized facial representations. These representations are optimized for two tasks: estimating pain intensity and differentiating between genuine and simulated pain expressions. For the former, a regression model is trained using the extracted representations, while for the latter, a binary classifier identifies genuine versus feigned pain displays. Testing our method on two widely-used pain datasets, we observed encouraging results for both tasks. On the UNBC database, we achieved an MSE of 0.27 outperforming the SOTA which had an MSE of 0.40. On the BioVid dataset, our model achieved an accuracy of 89.76%, which is an improvement of 5.37% over the SOTA accuracy. Most notably, for distinguishing genuine from simulated pain, our accuracy stands at 94.03%, marking a substantial improvement of 8.98%. Our methodology not only minimizes the need for extensive labeled data but also augments the precision of pain evaluations, facilitating superior pain management

    Discriminatively Trained Latent Ordinal Model for Video Classification

    Full text link
    We study the problem of video classification for facial analysis and human action recognition. We propose a novel weakly supervised learning method that models the video as a sequence of automatically mined, discriminative sub-events (eg. onset and offset phase for "smile", running and jumping for "highjump"). The proposed model is inspired by the recent works on Multiple Instance Learning and latent SVM/HCRF -- it extends such frameworks to model the ordinal aspect in the videos, approximately. We obtain consistent improvements over relevant competitive baselines on four challenging and publicly available video based facial analysis datasets for prediction of expression, clinical pain and intent in dyadic conversations and on three challenging human action datasets. We also validate the method with qualitative results and show that they largely support the intuitions behind the method.Comment: Paper accepted in IEEE TPAMI. arXiv admin note: substantial text overlap with arXiv:1604.0150
    • …
    corecore