5 research outputs found

    Semantic Similarity Metric Learning for Sketch-Based 3D Shape Retrieval

    Get PDF
    Since the development of the touch screen technology makes sketches simple to draw and obtain, sketch-based 3D shape retrieval has received increasing attention in the community of computer vision and graphics in recent years. The main challenge is the big domain discrepancy between 2D sketches and 3D shapes. Most existing works tried to simultaneously map sketches and 3D shapes into a joint feature embedding space, which has a low efficiency and high computational cost. In this paper, we propose a novel semantic similarity metric learning method based on a teacher-student strategy for sketch-based 3D shape retrieval. We first extract the pre-learned semantic features of 3D shapes from the teacher network and then use them to guide the feature learning of 2D sketches in the student network. The experiment results show that our method has a better retrieval performance

    Open Cross-Domain Visual Search

    Get PDF
    This paper addresses cross-domain visual search, where visual queries retrieve category samples from a different domain. For example, we may want to sketch an airplane and retrieve photographs of airplanes. Despite considerable progress, the search occurs in a closed setting between two pre-defined domains. In this paper, we make the step towards an open setting where multiple visual domains are available. This notably translates into a search between any pair of domains, from a combination of domains or within multiple domains. We introduce a simple -- yet effective -- approach. We formulate the search as a mapping from every visual domain to a common semantic space, where categories are represented by hyperspherical prototypes. Open cross-domain visual search is then performed by searching in the common semantic space, regardless of which domains are used as source or target. Domains are combined in the common space to search from or within multiple domains simultaneously. A separate training of every domain-specific mapping function enables an efficient scaling to any number of domains without affecting the search performance. We empirically illustrate our capability to perform open cross-domain visual search in three different scenarios. Our approach is competitive with respect to existing closed settings, where we obtain state-of-the-art results on several benchmarks for three sketch-based search tasks.Comment: Accepted at Computer Vision and Image Understanding (CVIU

    Reviving Mozart with Intelligence Duplication

    Get PDF
    Deep learning has been applied to many problems that are too complex to solve through an algorithm. Most of these problems have not required the specific expertise of a certain individual or group; most applied networks learn information that is shared across humans intuitively. Deep learning has encountered very few problems that would require the expertise of a certain individual or group to solve, and there has yet to be a defined class of networks capable of achieving this. Such networks could duplicate the intelligence of a person relative to a specific task, such as their writing style or music composition style. For this thesis research, we propose to investigate Artificial Intelligence in a new direction: Intelligence Duplication (ID). ID encapsulates neural networks that are capable of solving problems that require the intelligence of a specific person or collective group. This concept can be illustrated by learning the way a composer positions their musical segments -as in the Deep Composer neural network. This will allow the network to generate similar songs to the aforementioned artist. One notable issue that arises with this is the limited amount of training data that can occur in some cases. For instance, it would be nearly impossible to duplicate the intelligence of a lesser known artist or an artist who did not live long enough to produce many works. Generating many artificial segments in the artist\u27s style will overcome these limitations. In recent years, Generative Adversarial Networks (GANs) have shown great promise in many similarly related tasks. Generating artificial segments will give the network greater leverage in assembling works similar to the artist, as there will be an increased overlap in data points within the hashed embedding. Additional review indicates that current Deep Segment Hash Learning (DSHL) network variations have potential to optimize this process. As there are less nodes in the input and output layers, DSHL networks do not need to compute nearly as much information as traditional networks. We indicate that a synthesis of both DSHL and GAN networks will provide the framework necessary for future ID research. The contributions of this work will inspire a new wave of AI research that can be applied to many other ID problems
    corecore