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Abstract. Since the development of the touch screen technology makes
sketches simple to draw and obtain, sketch-based 3D shape retrieval has
received increasing attention in the community of computer vision and
graphics in recent years. The main challenge is the big domain discrep-
ancy between 2D sketches and 3D shapes. Most existing works tried to
simultaneously map sketches and 3D shapes into a joint feature embed-
ding space, which has a low efficiency and high computational cost. In
this paper, we propose a novel semantic similarity metric learning method
based on a teacher-student strategy for sketch-based 3D shape retrieval.
We first extract the pre-learned semantic features of 3D shapes from the
teacher network and then use them to guide the feature learning of 2D
sketches in the student network. The experiment results show that our
method has a better retrieval performance.
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1 Introduction

The virtual 3D shape plays an increasingly important role in our daily lives
due to the rapid development of digitalization techniques, such as visual effects,
medical imaging and 3D printing. How to retrieve a desired 3D shape among a
great number of 3D shapes is a popular research topic in many years [1,2,3,4].
Compared to using texts and 3D shapes as queries, sketches can easily describe
the detailed information of complex 3D shapes, and are also more intuitive and
convenient for humans to use. Therefore, sketch-based 3D shape retrieval has at-
tracted considerable attention in the community of computer vision and graph-
ics [5,6].

The main challenge for sketch-based 3D shape retrieval is the big domain
discrepancies [7]. First, sketches are represented in a 2D space while 3D shapes
are embodied in a 3D space, so their heterogenous data structures make it ex-
tremely difficult to directly retrieve 3D shapes from a query sketch. Second,
sketches are abstract free-hand drawings, which usually consist of several simple
lines and contain very limited information. Conversely, 3D shapes are realistic
geometric objects and have many details of their shape characteristics. Third,
sketches are presented with only one view of 3D shapes, and it is very hard to
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find the best or most similar view of 3D shapes according to query sketches. Fig.
1 gives some examples of sketches and corresponding 3D shapes from the same
class, and shows the large domain gap between them.

Fig. 1. Some examples of sketches and corresponding 3D shapes

In order to tackle the aforementioned challenge of sketch-based 3D shape
retrieval, a variety of research efforts have been dedicated to this task, and their
main purpose is to improve the retrieval accuracy. There are mainly two ways to
achieve the accuracy improvement: 1) learning robust features representations
for both sketches and 3D shapes [8,9,10], and 2) developing effective ranking or
distance metrics between sketches and 3D shapes [7,11,12]. Due to the great suc-
cess of deep convolutional neural networks (CNNs) applied in the image feature
extraction in recent years, all state-of-the-art methods have used deep metric
learning for sketch-based 3D shape retrieval and achieved a better retrieval ac-
curacy compared with traditional methods [13]. However, these studies have two
weaknesses. First, they address the domain discrepancy problem by mapping
sketches and 3D shapes into a joint feature embedding space, where the similar-
ity is measured using a shared loss function. It is difficult to effectively reduce
the domain discrepancy because sketches and 3D shapes cannot be aligned per-
fectly within the same embedding space. Second, they have two different network
structures to extract features of sketches and 3D shapes, respectively, and the
parameters of the two networks are unshared and updated simultaneously during
the training process, which leads to a high computational cost.

In this paper, we propose a novel semantic similarity metric learning to over-
come the above-mentioned disadvantages of recent studies. Note that the aim
of sketch-based 3D shape retrieval is to find 3D shapes belonging to the class
labels of query sketches, so their label spaces are shared and can be used as a
semantic embedding space. In such a semantic space, sketches and 3D shapes
are aligned perfectly [7]. Inspired by the knowledge distillation technique, which
uses a large teacher network to guide a small student network [14], we adopt a
teacher-student strategy to obtain efficient networks for learning semantic simi-
larity between sketches and 3D shapes. It can not only reduce the computational
burden but also make the semantic features alignment easier. In our method, our
proposed metric learning network consists of a teacher network and a student
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network, as shown in Fig. 2. The teacher network is a pre-trained classification
network based on MVCNN [15] to extract the semantic features of 3D shapes
and the student network is a transfer network based on ResNet-50 [16] to learn
the semantic feature of sketches. We train the transfer network by the guide of a
new similarity loss for optimizing the semantic feature distance between sketches
and 3D shapes. The main contributions of our work are listed as follows:

– A metric learning network using the teacher-student strategy is proposed
to conduct sketch-based 3D shape retrieval in a joint semantic embedding
space.

– A similarity loss function is developed to optimize the semantic feature dis-
tance between sketches and 3D shapes.

– Several experiments are carried out on a large benchmark dataset of sketch-
based 3D shape retrieval and show that our method outperforms other state-
of-the-art methods.

The remaining parts of this paper are organized as follows. The related works
on sketch-based 3D shape retrieval and the teacher-student strategy in metric
learning are briefly reviewed in Sec. 2. Our proposed method is described in Sec.
3 and the experimental results and analysis are presented in Sec. 4, and finally
the conclusion is drawn in Sec. 5.

2 Related works

Our proposed method is related to sketch-based 3D shape retrieval and the
teacher-student strategy in metric learning. In this section, we briefly review the
most related work in the two fields.

2.1 Sketch-based 3D shape retrieval

In the early stage, most sketch-based 3D shape retrieval methods relied on the
hand-draft features for describing sketches and 3D shapes [4,5]. With the rapid
growth of CNNs, learning-based methods have developed in recent years. Wang
et al. [11] used two projection views to characterize 3D shapes and applied a
Siamese network to learn a joint embedding space for sketches and 3D shapes.
Zhu et al. [17] developed pyramid cross-domain neural networks to reduce the
cross-domain discrepancies between sketch and 3D shapes. To address the same
problem, Chen et al. [8] proposed a cross-modality adaptation model using an
importance-aware metric learning method. Unlike these projection-based meth-
ods, Dai et al. [12] presented deep correlated metric learning method to miti-
gate the discrepancy by directly extracting the feature of 3D shapes, and Qi et
al. [7] used the PointNet network to extract 3D shape features and developed
a deep cross-domain semantic embedding model. Chen et al. [13] developed a
deep sketch-shape hashing framework for sketch-based 3D shape retrieval with
a stochastic sampling strategy for 3D shapes and a binary coding strategy for
learning discriminative binary codes. However, most of these retrieval methods
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have two operative networks which cause a high computational cost. Besides,
since they directly mapped features into a joint embedding space, it is difficult
to effectively reduce the domain discrepancy.

2.2 Teacher-student strategy in metric learning

Since Hinton et al. [14] showed that a complex and powerful teacher model
can guide the training of a small student network which can decrease the infer-
ence time and improve its generalization ability, this teacher-student strategy
has received attention in the field of metric learning. Chen et al. [18] proposed
cross sample similarities for knowledge transfer in deep metric learning, and
modified the classical list-wise rank loss to bridge teacher networks and student
networks. Yu et al. [19] presented a network distillation to compute image em-
beddings with small networks and developed two loss functions to communicate
teacher and student networks. For the sketch-based 3D shape retrieval, Dai and
Liang [20] proposed a cross-modal guidance network by using teacher-student
strategy and used pre-learned features of 3D shapes to guide the feature learning
of 2D sketches. However, their method cannot effectively minimize between-class
similarity as well as maximize within-class similarity.

3 Method

3.1 Network Architecture

The network architecture of our proposed sketch-based 3D shape retrieval method
is described in Fig. 2, which consists of a teacher network and a student net-
work. Since sketches are abstract simple lines with limited information and 3D
shapes are realistic geometric objects with more details, we select 3D shapes as
the input of the teacher network and extract the semantic features from them
to guide the training of the student network that takes sketches as input. By
using the similarity loss to measure the cosine distance between sketches and
3D shapes, the features of sketches are optimized and gradually close to the
pre-learned semantic features of 3D shapes during the training process of the
student network.

In the teacher network, we apply the MVCNN [15] architecture, including
CNN1 and CNN2, which are connected by a view-pooling layer, to represent
multi-views of 3D shapes and extract the semantic features. First, we render a
3D shape from 12 different views by placing 12 virtual cameras around it every
30 degrees. Since there is still a big discrepancy between rendered images and
sketches, we adopt the classic canny edge detector [21] to extract the edges of
rendered images which are similar to the sketch lines. After that, the edge images
are passed through CNN1 separately to obtain view based features. Note that
all branches of CNN1 share the same parameters. In order to synthesize the
information from all views into a single, we use element-wise maximum operation
across the views in the view-pooling layer. Finally, these pooled feature maps are
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passed through CNN2 to obtain the shape descriptor. After finishing training
the teacher network, we make all data of 3D shapes pass through the teacher
network and obtain the pre-learned semantic features of 3D shapes.

In the student network, we adopt a transfer network CNN3 to learn the
semantic features of sketches. The input sketches are directly passed through
CNN3 to obtain the features. The student network is trained according to the
optimization objective function, i. e., the similarity loss, which is guided by the
pre-learned semantic features of 3D shapes.

Fig. 2. The network architecture of our method.

3.2 Similarity loss

In order to find the desired 3D shape, we always want that the extracted feature
of the sketch is more similar to the same-class 3D shape and more dissimilar
to the different-class 3D shape, i. e., maximizing the within-class similarity and
minimizing the between-class similarity. However, a query sketch usually has
tens or hundreds related 3D shapes with a same class label, and it is difficult
to tell which 3D shape is more similar or dissimilar to the query sketch. Note
that our aim is to find 3D shapes belonging to the class labels of query sketches
rather than find the most similar 3D shapes. Therefore, we focus on extracting
the class features rather than the individual features of 3D shapes. The class
feature is the mean value of the pre-learned features of the 3D shapes in the
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same class. We use cosine similarity to measure the distance between a sketch
and a 3D shape, which is defined as:

s =
fs · fc

‖fs‖2 ‖fc‖2
(1)

where fs is the sketch feature and fc is the class feature of the 3D shape.
In a mini-batch with size N , we have N sketches and N corresponding 3D

shapes. For each sketch i, we calculate its cosine similarity with all 3D shapes
in the mini-batch. We denote the cosine similarity between the sketch and the
same-class 3D shape by sip, i. e., the positive pair, and the cosine similarity

between the sketch and the rest 3D shapes by sin = {s1, s2, . . . , sN−1}, i. e., the
negative pairs. In order to maximize the similarity score of the positive pair and
minimize the similarity score of the negative pair, the similarity loss function is
defined as:

L =
1

N

N∑
i=1

[max(sin)− sip + m]+ (2)

where []+ is a ramp function and m is a margin for a better similarity separation
between positive and negative pairs.

The reason why we choose the maximum similarity score from the group of
sin to represent the negative pair in Eq. 2 is that it can ensure the scores of all
negative pairs are smaller than the positive pair and also increase the difficulty
of learning as the same effect of m. Since it is difficult to optimize the Eq. 2,
we adopt a smooth approximation by using a LogSumExp function to replace
max(sin) and a softplus function to replace []+, and then obtain the smooth
similarity loss function:

Lsmooth =
1

N

N∑
i=1

log

{
1 + exp

[
log

(∑N

n=1,n6=p
exp(rsin)

)
− sip + m

]}
(3)

where r is a scale factor. By training the student network with Lsmooth, the sketch
feature fs is gradually close to the pre-learned class feature fc of the same-class
3D shapes and keeps away from the different-class 3D shapes simultaneously.

4 Experiments

4.1 Datasets

We evaluate our proposed method on a frequently-used benchmark dataset, i. e.,
SHREC’13 [5], for sketch-based 3D shape retrieval. Some examples of sketches
and corresponding 3D shapes in the dataset are shown in Fig. 1. The dataset
is built by collecting large-scale hand-drawn sketches from TU-Berlin sketch
dataset [22] and 3D shapes from Princeton Shape Benchmark [23], which consists
of 90 classes including 7,200 sketches and 1,258 shapes. In each class, there are
a total of 80 sketches, and 50 of which are for the training and the rest are for
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the test. The number of 3D shapes varies in different classes. For example, the
largest class is ‘airplane’, which has 184 3D shapes, and there are 12 classes
containing only 4 3D shapes.

4.2 Implementation details

Our method is implemented on Pytorch with two NVIDIA GeForce GTX 2080
Ti GPUs.

Network structure The structure is illustrated in Fig. 2. The teacher network
adopts the MVCNN [15] architecture and the CNN1 and CNN2 are used the
VGG-11 network [24]. In the student network, CNN3 utilizes the ResNet-50
network [16].

Prepossessing The prepossessing includes the network pre-training and data pro-
cessing. The teacher network is pre-trained on ImageNet [25] with 1k categories,
and then fine-tuned on all edge images of the 3D shapes. The student net-
work is first pre-trained for the classification task based on a part of QuickDraw
dataset [26] with 3.45 million sketches in 345 categories, and then fine-tuned
on the training dataset of sketches according to minimize Eq. 3. For the data
processing, we uniformly resize the sketch images and the edge images of 3D
shapes into a resolution of 224× 224× 1.

Parameters settings In the teacher network, the learning rate and batch size
are 5 × 10−5 and 8, respectively, and the number of training epochs is set to
20. In the student network, the learning rate and batch size are 1 × 10−4 and
48, respectively, and the number of training epochs is 10. Moreover, the margin
m and the scale factor r are set to be 0.15 and 64, respectively. The Adam is
employed as an optimizer for both networks and the weight decay is set to 0.

4.3 Experimental results

We show some retrieval results on the SHREC’13 dataset in Fig. 3. The query
sketches are listed on the left including the class of chair, bicycle, piano, table,
palm tree and sea turtle, and their retrieved top 8 3D shapes are listed on the
right according to the ranking of similarity scores. As shown in Fig. 3, our method
is effective in retrieving the corresponding 3D shapes of the query sketches. The
reasons for generating incorrect results are the limited number of 3D shapes (e.
g., the classes of bicycle and sea turtle only contain 7 and 6 3D shapes in the
dataset) and the high similarity score of similar shapes from different classes (e.
g., the couch and bench shapes get high similarity scores according to the query
sketch of piano).

In order to demonstrate the effectiveness of our proposed method, we com-
pare our method with several state-of-the-art methods, including SBR-VC [5],
Siamese [11], Shape2Vec [10], DCML [12], LWBR [9], DCA [8], SEM [7] and
DSSH [13]. In addition, we adopt the widely-used evaluation metrics for the
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Fig. 3. Some examples of retrieval results. The left column is the query sketches and the
right columns are the top 8 retrieved 3D shapes, and the wrong results are highlighted
by red dashed squares.

sketch-based 3D shape retrieval, including the nearest neighbor (NN), first tier
(FT), second tier (ST), E-measure (E), discounted cumulated gain (DCG) and
mean average precision (mAP) [4]. Table 1 shows the quantitative comparison of
our method with the state-of-the-art methods on the SHREC’13 dataset. Except
for the DSSH, it is clear to see that our method achieves the best performance
than the state-of-the-art methods for all the evaluation metrics. Compared to
the latest method DSSH, our method performs better or equally in the NN, E
and DCG metrics.

We also visually compared our method with DSSH to show our advantages.
As shown in Fig. 4, for the hand and horse sketch examples, our retrieved 3D
shapes are more accurate than DSSH. First, the retrieved 3D shapes with mis-
matched details have a low-ranking in our method. For example, an unextended
hand is ranked last in our method but ranked second in DSSH, and a horse with
a lifted leg is ranked fourth in our method but ranked second in DSSH. Second,
our wrong results are similar to the right results. For example, the wrong shapes
of DSSH are guitars which are extraordinarily different to the horse, whereas
our retrieved dogs are similar to the horse. Therefore, compared with DSSH, our
method is more suitable for measuring feature distance between sketches and 3D
shapes.
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Table 1. The comparison of our method and the state-of-the-art methods on the
SHREC’13 dataset.

Method NN FT ST E DCG mAP

Siamese [11] 0.405 0.403 0.548 0.287 0.607 0.469
Shape2Vec [10] 0.620 0.628 0.684 0.354 0.741 0.650

DCML [12] 0.650 0.634 0.719 0.348 0.766 0.674
LWBR [9] 0.712 0.725 0.785 0.369 0.814 0.752
DCA [8] 0.783 0.796 0.829 0.376 0.856 0.813
SEM [7] 0.823 0.828 0.860 0.403 0.884 0.843

DSSH [13] 0.831 0.844 0.886 0.411 0.893 0.858
Ours 0.836 0.833 0.883 0.411 0.896 0.853

Fig. 4. The comparison of our method and DSSH [13] in two retrieval examples. The
blue and gray colors denote the retrieval results of our method and DSSH, respectively,
and the wrong results and mismatched details are highlighted by red dashed squares
and circles, respectively.

5 Conclusion

In this paper, we propose a novel semantic similarity metric learning method for
sketch-based 3D shape retrieval, and use a teacher-student strategy to obtain ef-
ficient networks for learning semantic similarity between sketches and 3D shapes.
We first adopt the pre-trained classification network as the teacher network to
extract the semantic features of 3D shapes, and then train the student network
by using the pre-learned features of 3D shapes with a similarity loss function and
finally learn the semantic features of sketches. As a result, our method effectively
maximizes the within-class similarity and minimizes the between-class similarity.
The experiments show that our method performs better than the state-of-the-art
methods.
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