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A B S T R A C T

This paper addresses cross-domain visual search, where visual queries retrieve category samples from a
different domain. For example, we may want to sketch an airplane and retrieve photographs of airplanes.
Despite considerable progress, the search occurs in a closed setting between two pre-defined domains. In
this paper, we make the step towards an open setting where multiple visual domains are available. This
notably translates into a search between any pair of domains, from a combination of domains or within
multiple domains. We introduce a simple – yet effective – approach. We formulate the search as a mapping
from every visual domain to a common semantic space, where categories are represented by hyperspherical
prototypes. Open cross-domain visual search is then performed by searching in the common semantic space,
regardless of which domains are used as source or target. Domains are combined in the common space to
search from or within multiple domains simultaneously. A separate training of every domain-specific mapping
function enables an efficient scaling to any number of domains without affecting the search performance. We
empirically illustrate our capability to perform open cross-domain visual search in three different scenarios.
Our approach is competitive with respect to existing closed settings, where we obtain state-of-the-art results
on several benchmarks for three sketch-based search tasks.
. Introduction

This paper aims for visual category search across domains. The task
s to retrieve visual examples from a specific category in one domain,
iven a query from another domain. For example, we may want to
etrieve images of an “airplane” from a quickly-drawn sketch. Cross-
omain visual search has made considerable progress, showing the
ossibility to retrieve natural images (Eitz et al., 2010; Sangkloy et al.,
016) or 3D shapes (Li et al., 2013, 2014b,a) from sketches. Different
rom existing works, which emphasize retrieval from a single source
omain to a single target domain, we open the search beyond two
omains. The motivation for a search among many domains is that
n practice, categories come in many forms (Peng et al., 2019; Wilber
t al., 2017; Li et al., 2017). Hence, we may have queries from several
ource domains, or want to search with any possible combination of
ource and target domains. For example, we may now want to combine
sketch and a clipart of an “airplane” to retrieve photograph samples,

r use a clipart of an “airplane” to retrieve 3D shapes. In this paper, we
trive for such an open setting: we visually search for categories from
ny source domain to any target domain, with the ability to search from
nd within multiple domains simultaneously.

Within cross-domain visual search, an important challenge is the
ap between source and target domains (Shen et al., 2018; Yelamarthi
t al., 2018; Dey et al., 2019; Dutta and Akata, 2019; Xie et al., 2017;
hen et al., 2019). Given the inherent difference in representations,
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reducing the domain gap is an intuitive solution. Both Shen et al.
(2018) and Yelamarthi et al. (2018) have highlighted the importance
of domain adaptation losses for cross-domain search, especially when
searching for unseen categories. Yet, relying on domain adaptation
methods makes the search unsuited for an open setting by design, due
to the requirement of pair-wise domain training. As a consequence,
opening the search to many domains creates new challenges as (i) all
domains should to be mapped to a unique embedding space, and (ii)
new domains should be able to be added continuously in an efficient
fashion. We address the challenges of open cross-domain visual search.

Inspired by recent works on prototype-based embedding spaces
(Movshovitz-Attias et al., 2017; Wen et al., 2016; Snell et al., 2017),
we introduce prototype learners for cross-domain visual search in an
open setting. Prototype learning has shown to simplify model training
and improve performance for image retrieval (Movshovitz-Attias et al.,
2017; Wen et al., 2016) and classification (Snell et al., 2017) problems
in a low-shot setting. In this work, we leverage prototype learners
to perform visual search across multiple domains simultaneously. We
define prototypes to unite all domains. Inputs from every domain are
mapped to a common semantic space, where every learner is domain-
specific and is trained separately. During training, the semantic space is
defined by categorical prototypes, corresponding to word embeddings
of category names. Learning then consists of regressing inputs to their
corresponding categorical prototype in this common semantic space,
ttps://doi.org/10.1016/j.cviu.2020.103045
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Fig. 1. Open cross-domain visual search. We search for categories from any number
of source domains to any number of target domains. Mapping examples to a common
semantic space enables any possible combinations of domains when searching for
categories.

as illustrated in Fig. 1. Query representations for search are further
refined with neighbors from other domains through a spherical linear
interpolation operation. Once trained, the proposed formulation allows
us to search among any pair of domains. Since all domains are now
aligned in the common semantic space, this enables a search from
multiple source domains or in multiple target domains. Lastly, new
domains can be added on-the-fly, without retraining previous models.

Empirically, we first demonstrate the ability to perform open cross-
domain visual search, highlighting new applications and search possi-
bilities, i.e. (i) a search between any pair of source and target domains
without hassle; (ii) a search from multiple source domains; and (iii)
a search in multiple target domains. Second, while designed for the
open cross-domain setting, our approach also works in the conven-
tional closed settings, allowing for comparisons to current approaches.
We compare to sketch-based image and 3D shape retrieval, usually
considered separately in the literature. We show the versatility of
our approach to handle them. Across three well-established tasks to-
talling seven benchmarks, we obtain state-of-the-art results, which
highlights the effectiveness of focusing solely on the semantic space for
cross-domain search.

Contributions. Our main contribution is the introduction of open cross-
domain visual search. We open the search to many domains, with the
ability to retrieve categories from and among any number of domains.
To achieve this, we introduce a simple prototype learner for each
domain to learn a common semantic space efficiently. Empirically,
solely relying on semantic prototypes turns into an effective solution
for cross-domain visual search in both newly proposed open settings
and existing closed settings. All code and setups are released to foster
further research in open cross-domain visual search.1

2. Related work

We first cover related work in cross-domain search, where a large
body of works focuses on retrieving natural images or 3D shapes from
sketches. We then review relevant work addressing multiple domains
and on how to learn semantic spaces with prototype learners.

Cross-domain image search. Sketch-based image retrieval has been a
topic of vision community interest for a long time (Kato, 1992; Jacobs
et al., 1995). The seminal work of Eitz et al. (2010) established the first
benchmark for its evaluation, which led to the construction of com-
mon descriptors for sketches and images, such as bag-of-features (Eitz
et al., 2010), bag-of-regions (Hu et al., 2011), histogram of oriented
gradients (Hu and Collomosse, 2013), or specialized descriptors for
edges (Saavedra, 2014). With the resurgence of convolutional net-
works, the dominant approach has shifted towards the learning of a

1 Source code is available at https://github.com/twuilliam/open-search.
2

joint semantic space of sketches and images. Qi et al. (2016) learn a
joint embedding with a Siamese network while Bui et al. (2017) rely
on a triplet network. Bui et al. (2018) add a classification head with
a multi-stage training to make features even more discriminative. In
all these works, the semantic spaces model categories implicitly, as
they rely on sample-based methods such as the Siamese (Hadsell et al.,
2006; Chopra et al., 2005) or triplet (Schroff et al., 2015; Weinberger
and Saul, 2009) losses to learn cross-domain visual similarities. In this
paper, we explicitly define semantic representations for every category
in the embedding space. This removes the need for sampling and
mining of cross-domain pairs, resulting in a simpler training procedure.

Sketch-based image retrieval is also considered as a zero-shot learn-
ing problem (Shen et al., 2018; Yelamarthi et al., 2018). In this context,
a common approach is to bridge the domain gap between sketches
and images. Shen et al. (2018) fuse sketch and image representations
with a Kronecker product, while Yelamarthi et al. (2018) introduce
domain confusion with generative models to produce domain-agnostic
features. Dey et al. (2019) combine gradient reversal layers with metric
learning losses to extract the mutual information from both domains.
Dutta and Akata (2019) tie the semantic space with visual features
from both domains by learning to generate them while Dutta and
Biswas (2019) prefer to separate them explicitly. Alternatively, Liu
et al. (2019) preserve the knowledge from a pre-trained model to avoid
features to drift away during training. Hu et al. (2018a) have also
explored how to synthesize classifiers derived from sketches for few-
shot image classification. By focusing on domain adaptation, current
approaches are optimized to map from a single specific source domain
to a single specific target domain. Instead, we consider cross-modal
image search from any number of source domains to any number of
target domains.

Cross-domain 3D shape search. Searching for 3D shapes from a sketch
has been accelerated by the SHREC challenges (Li et al., 2013, 2014b,a).
A common approach is to transform the 3D shape search into an image
search problem by projecting the unaligned 3D shape into multiple
2D views (Su et al., 2015). In this regard, the main methodological
approach is to learn a joint embedding space of sketches and 2D view
renderings of the unaligned 3D shapes. Wang et al. (2015) map both
sketches and shapes in a similar feature space with a Siamese network,
while Tasse and Dodgson (2016) learn to regress to a semantic space
with a ranking loss. Dai et al. (2017) correlate both sketch and 3D shape
representations to bridge the domain gap. Xie et al. (2017) employ the
Wasserstein distance to create a barycentric representation of shapes.
Qi et al. (2018) apply loss functions on the probabilistic label space
rather than the feature space. Chen et al. (2019) propose an advanced
sampling of 2D views for the unaligned shapes. Learning cross-domain
visual similarities with Siamese or triplet losses typically requires a
multi-stage training or negative sampling schemes. A prototype learner
removes this requirement, and enables the addition of new domains
without the need for retraining existing models.

Searching beyond two domains. Using multiple domains has been in-
vestigated in unsupervised domain adaptation (Peng et al., 2017;
Csurka, 2017) and unsupervised domain generalization (Blanchard
et al., 2011), where the task is to classify unlabeled target samples
by learning a classifier on labeled source samples. As such, Peng et al.
(2019) illustrate how challenging classification becomes when multiple
domains are considered. A new challenge then arises as classifiers
have to be designed to benefit from the inherent gap among multiple
domains (Xu et al., 2018; Peng et al., 2019; Zhuo et al., 2019; Dou
et al., 2019; Carlucci et al., 2019). In this paper, we focus on a different
multi-domain task: we consider cross-domain retrieval where category
labels are present for both source and target domains, and where the

main challenge is to learn a common embedding space for all domains.

https://github.com/twuilliam/open-search
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Fig. 2. Cross-domain image search focuses on mapping (a) from one fixed source to one fixed target domain. In this paper, we consider an open domain setting with 𝐾 available
omains. We search (b) from any source to any target domain, (c) from multiple source domains to any target domain, and (d) from any source domain to multiple target domains.
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rototype learners. Learning metric spaces with prototypes for image
etrieval (Sohn, 2016; Wen et al., 2016; Movshovitz-Attias et al., 2017;
hai and Wu, 2019; Liu et al., 2017b; Wang et al., 2018; Deng et al.,
019; Snell et al., 2017) and classification (Mensink et al., 2013; Snell
t al., 2017; Chintala et al., 2017; Mettes et al., 2019) provides a
impler alternative to common contrastive (Hadsell et al., 2006; Chopra
t al., 2005) or triplet (Schroff et al., 2015; Weinberger and Saul, 2009)
oss functions. One line of work learns to regress to moving prototypical
epresentations. Depending on the task, such prototypes can correspond
o center (Wen et al., 2016), proxy (Movshovitz-Attias et al., 2017;
hai and Wu, 2019), or support (Snell et al., 2017; Ren et al., 2018)
epresentations. While the distance measure usually relies on a cosine
r Euclidean distance, a margin has also been introduced in the distance
easure (Liu et al., 2017b; Wang et al., 2018; Deng et al., 2019).
nother line of work regresses to fixed prototypical representations to
void the simultaneous learning of prototypes and model parameters.
xamples of fixed representations include class means (Mensink et al.,
013), one-hot representations (Chintala et al., 2017), or separated
epresentations (Mettes et al., 2019). We build on the latter approach
or open cross-domain visual search. We formulate semantic prototypes
o align examples from many domains simultaneously. Categories are
epresented by fixed semantic prototypes in the embedding space. We
hen define a prototype learner for every domain to map visual inputs
o the common space where open cross-domain search occurs.

. Method

.1. Problem formulation

Fig. 2 illustrates the search scenarios for open cross-domain search.
hile the closed cross-domain setting focuses on one pre-defined source
and one pre-defined target 𝑡, the open cross-domain setting searches

or categories from any source domain 𝑠𝑘 to any target domain 𝑡𝑘.
s multiple domains now become available, this opens the door for
ombining multiple domains at both source and target positions. Thus,
he main difference between the closed setting and the open setting lies
n the ability to leverage multiple domains for categorical cross-domain
isual search.

Formally, let  denote the set of all domains to be considered.
ather than making an explicit split of a dataset into source and target,
e consider a large combined visual collection  = {(𝐱𝑑𝑛 , 𝑦𝑛)}

𝑁
𝑛=1, where

𝑑
𝑛 ∈ 𝑑 denotes an input example from a visual domain 𝑑 ∈  of
ategory 𝑦𝑛 ∈  . In other words,  is common and shared among all
omains  but is depicted differently from domain 𝑑𝑖 to domain 𝑑𝑗 ,
ith 𝑖 ≠ 𝑗.

Categorical search consists in using a sample query 𝐱𝑑𝑖 from domain
𝑖 to retrieve samples of the same category 𝑦 in the gallery of domain
𝑗 . If 𝑖 ≠ 𝑗, this corresponds to a cross-domain categorical search
s the search occurs across two different domains. A closed setting

only considers || = 2, i.e. with a pre-defined source domain and a
re-defined target domain. We define the open setting as comprising
| > 2. This stimulates novel search configurations. For example, we
ay want to combine two queries (𝐱𝑑𝑖 , 𝐱𝑑𝑗 ) of two different domains
≠ 𝑗 to search in the gallery of a third domain 𝑘. Conversely, given
sample query 𝐱𝑑𝑖 , we can search in the combined gallery of multiple
arget domains. i

3

.2. Proposed approach

We pose open domain visual search as projecting any number of
eterogeneous domains to prototypes on a common and shared hyper-
pherical semantic space. First, we outline how to represent categories
n the semantic embedding space. Second, we propose a mapping
unction for every domain to the common semantic embedding space.
hird, we outline how open cross-domain search occurs.

ategorical prototypes. We leverage the concept of prototypes to repre-
ent categories in a common semantic space. Every category is repre-
ented by a unique real-valued vector, corresponding to a categorical
rototype. Hence, the objective is to align examples, coming from
ifferent domains but with the same category label, to the same cat-
gorical prototype in the semantic space. For every category 𝑦 ∈
 , we denote its prototype on the semantic space as 𝜙(𝑦) ∈ S𝐷−1

or a 𝐷-dimensional hypersphere. Relying on semantic relations en-
bles to search for unseen classes using models trained on seen cat-
gories (Frome et al., 2013; Palatucci et al., 2009). In this work,
e opt for word embeddings, e.g., word2vec (Mikolov et al., 2013)
r GloVe (Pennington et al., 2014), to represent categories, as these
mbeddings adhere to the semantic relation property.

apping domains to categories. For every domain 𝑑 ∈ , we learn a
eparate mapping function 𝑓𝑑 (⋅) ∈ S𝐷−1 to the common and shared
emantic space. Separate mapping functions are not only easy to train,
hey also enable us to incorporate new domains over time. Indeed,
e only have to train the mapping of the new incoming domain
ithout retraining previous mapping functions of existing domains. The
apping function is formulated as a convolutional network followed by

n 𝓁2-normalization on the 𝐷-dimensional network outputs.
We propose the following function to map an example 𝐱𝑑 of domain

to its categorical prototype 𝜙(𝑦) in the common semantic space:

(𝑦|𝐱𝑑 , 𝑑) =
exp

(

−𝑠 ⋅ 𝑐
(

𝑓𝑑 (𝐱𝑑 ), 𝜙(𝑦)
)

)

∑

𝑦′∈ exp
(

−𝑠 ⋅ 𝑐
(

𝑓𝑑 (𝐱𝑑 ), 𝜙(𝑦′)
)

) , (1)

here 𝑠 ∈ R>0 denotes a scaling factor, inversely equivalent to the
emperature (Hinton et al., 2014). Intuitively, the scaling controls how
amples are spread around categorical prototypes. 𝑐(⋅, ⋅) is defined as
he cosine distance:

(𝑓𝑑 (𝐱𝑑 ), 𝜙(𝑦)) = 1 − ⟨𝑓𝑑 (𝐱𝑑 ), 𝜙(𝑦)⟩, (2)

here ⟨⋅, ⋅⟩ is the dot product. As both 𝑓𝑑 (𝐱) and 𝜙(𝑦) lie on the hyper-
phere S𝐷−1, they have a unit norm. Finally, learning every mapping
unction 𝑓𝑑 is done by minimizing the cross-entropy loss over the
raining set:

= − 1
𝑁

𝑁
∑

𝑛=1
log 𝑝(𝑦𝑛|𝐱𝑑𝑛 , 𝑑). (3)

In our approach, the representations of the categorical prototypes
remain unaltered. Hence, we only take the partial derivative with re-
spect to the mapping function parameters. When training the mapping
function 𝑓𝑑 for domain 𝑑, only examples 𝐱𝑑 of domain 𝑑 are used as
nputs.
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Fig. 3. Cross-domain query refinement. (a) Ideally, the neighborhood of the query
(star) is only close to examples from the same category. (b) In reality, variability causes
noise in the semantic space. Hence, the query might also be close to samples from other
categories. (c) We tackle this variability by refining the query representation.

Searching across open domains. In the search evaluation phase, simi-
arity between source and target samples is measured with the cosine
istance in the shared semantic space. Given one or more queries from
ifferent source domains, we first project all queries to the shared
emantic space and average their positions into a single vector. Then,
e compute the distance to all target examples to rank them with

espect to the source query. As all domains map to the same common
emantic space, domains can straightforwardly be combined either to
earch with queries from multiple domains or to search within a gallery
f multiple domains.

.3. Refining queries across domains

With our approach, a source query is close to target examples from
he same category, regardless of the domains of the query and target
xamples. In practice, inherent variability in the hyperspherical seman-
ic space can cause noise in the similarity measures. We then propose
o refine the initial query representation using a nearby example from
he target domain, as illustrated in Fig. 3.

We refine the query representation 𝑝0 by performing a spherical
linear interpolation with a relevant representation 𝑝1. The refined
epresentation 𝑝̂ is:

𝑝̂(𝑝0, 𝑝1|𝜆) =
sin

(

(1 − 𝜆)𝛺
)

sin𝛺
𝑝0 +

sin
(

𝜆𝛺
)

sin𝛺
𝑝1, (4)

here 𝛺 = arccos (𝑝0 ⋅ 𝑝1) and 𝜆 ∈ [0, 1] controls the amount of mixture
n the refinement process. The higher the value of lambda is, the further
way the refined representation is from the original representation 𝑝0.
ntuitively, the refinement performs a weighted signal averaging to
educe the noise present in the initial representation. In retrieval, we
et 𝑝1 as the 1-nearest neighbor of 𝑝0 in the target set. This mixture
oes not require any label and relies on the fact that the recall at one
s usually very high. In classification, 𝑝1 is the word embedding of the
ategory name.

. Open cross-domain visual search

In the first set of experiments, we demonstrate the ability to perform
pen cross-domain visual search in three ways. We note that this is a
ew setting, making direct comparisons to existing works infeasible.
irst, we demonstrate how we can search from any source to any target
omain without hassle. Second, we show the potential and positive
ffect of searching from multiple source domains for any target domain.
hird, we exhibit the possibility of searching in multiple target domains
imultaneously.

etup. We evaluate on the recently introduced DomainNet (Peng et al.,
019), which contains 596,006 images from 345 classes. Images are
athered from six visual domains: clipart, infograph, painting, pencil,
hoto and sketch. We consider retrieval in zero- and many-shot eval-
ations: (i) in the zero-shot evaluation,  is split into 𝑡𝑟𝑎𝑖𝑛 and 𝑡𝑒𝑠𝑡,
ith  ∩  = ∅, i.e., categories to be searched during inference
𝑡𝑟𝑎𝑖𝑛 𝑡𝑒𝑠𝑡 r

4

ave not been seen during training; (ii) the many-shot evaluation uses
he same categories during both training and testing. The zero-shot
valuation randomly splits samples into 300 training and 45 testing
lasses. Following the zero-shot learning good practices in Xian et al.
2018), we have verified the presence of the 345 categories of Do-
ainNet (Peng et al., 2019) in ImageNet (Russakovsky et al., 2015),
here we identify 188 separate categories. From this list of separate

ategories, we randomly sample 45 zero-shot categories with at least 40
amples per class in every domain. The many-shot evaluation follows
he original splits from Peng et al. (2019). We report the mean average
recision (mAP@all).

mplementation details. Throughout the paper and unless stated oth-
rwise, we use SE-ResNet50 (Hu et al., 2018b) pre-trained on Ima-
eNet (Russakovsky et al., 2015) as a backbone, and word2vec trained
n a Google News corpus (Mikolov et al., 2013) as the common
emantic space. We remove the final classifier layer of SE-ResNet50,
nd replace it with a fully-connected layer of size 𝐷 = 300 initialized
ith random weights. The new layer is followed by a linear activation
nd batch normalization (Ioffe and Szegedy, 2015). We optimize the
oss in Eq. (3) with Nesterov momentum (Sutskever et al., 2013) by
etting the coefficient to 0.9. We apply a learning rate of 1e−4 with
osine annealing without warm restarts (Loshchilov and Hutter, 2017)
nd a batch size of 128. We use a scaling factor 𝑠 of 20, and decrease
t to 10 for Sections Sections 5.2 and 5.3. We set 𝜆 = 0.7 when eval-
ating on unseen classes (i.e.zero-shot and few-shot evaluations) and
o 0.4 when evaluating on seen classes (i.e.many-shot evaluation). The
mplementation rests on the Pytorch (Paszke et al., 2019) framework
nd image similarities are computed with the Faiss (Johnson et al.,
017) library. Word embeddings of class names are extracted with the
ensim (Řehůřek and Sojka, 2010) library.

.1. From any source to any target domain

First, we demonstrate how searching from any source to any target
omain in an open setting is trivially enabled by our approach. Fig. 4
hows the result of 72 cross-domain search evaluations; corresponding
o all six cross-domain pairs for both zero- and many-shot evalua-
ions. In our formulation, such an exhaustive evaluation is enabled
y training only six models, one for every domain. For comparison,
domain adaptation approach – the standard in current cross-domain

earch methods – requires a pair-wise training of all available domain
ombinations. Moreover, our formulation allows for an easy integration
f new domains, as only the mapping from a new visual domain to the
hared semantic space needs to be trained. While approaches based on
air-wise training scale with a quadratic complexity to the number of
omains, we scale linearly.

In the zero-shot evaluation with an evaluation on the unseen classes
Fig. 4a), the photograph domain provides the most effective search
hether used as source or target. One reason is the number of available

mages, which is up to four times larger than other domains. On the
ther hand, infographs and sketches are very diverse in terms of scale
nd visual representations, which induces a much more difficult search.

In the many-shot evaluation with an evaluation on all classes (Fig.
b), the photograph domain exhibits a similar behavior. Though, in
his case the search performance for sketches is at the same level as
ther considered domains, such as clipart, painting or pencil. Seeing
ll classes helps the prototype learner to better grasp the variability
n sketches. The infograph domain remains the most challenging. We
onclude from the first demonstration that search from any source to
ny target domain is not only feasible with our approach, it can be
one easily for both zero- and many-shot evaluations since we bypass
he need to align different domains.

We quantitatively compare with the state-of-the-art SAKE (Liu et al.,
019) on zero-shot sketch-based image retrieval. We run SAKE from
he original source code provided by the authors. Table 1 presents the

esults when considering sketches as the source domain and retrieving
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Fig. 4. Demonstration 1 for visual search from any source (columns) to any target (rows) domain in mAP@all. Our approach can perform 36 cross-domain searches for both (a)
zero-shot evaluation, and (b) many-shot evaluation, without any modifications as we bypass the need to align domains.
able 1
isual search from sketches as a source to any target domain comparison with
AKE (Liu et al., 2019) in mAP@all. Our formulation achieves competitive results in
oth zero- and many-shot evaluations.
Target domain zero-shot many-shot

SAKE This paper SAKE This paper

clipart 0.199 0.236 0.268 0.373
infograph 0.080 0.083 0.097 0.131
painting 0.118 0.142 0.203 0.317
pencil 0.181 0.214 0.230 0.328
photo 0.206 0.240 0.358 0.496

Fig. 5. Ablation on cross-domain query refinement on DomainNet, with sketches as a
source. Refining the source representation always improves the retrieval performance.

images in any of the other domains. SAKE has been proposed with a
zero-shot evaluation design from the start, which makes it strong in
this setting. Indeed, results are close, we only observe an improvement
of 0.3% (infograph) up to 3.7% (clipart). When the evaluation focuses
on a large number of categories, we notice higher gains from 3.4%
(infograph) up to 13.8% (photograph) in the many-shot evaluation. Our
embedding space is better partitioned for all categories thanks to the
semantic prototypes. Overall, our formulation provides competitive
performance in both zero- and many-shot evaluations with a simpler
training procedure.

Finally, we also assess the importance of the proposed refinement
module of Eq. (4). Fig. 5 illustrates the effect of our cross-domain
prototypical refinement when searching in any target domain from the
sketch domain. We create a mixture between the sketch query (𝜆 = 0)
and its nearest neighbor in the gallery (𝜆 = 1) for retrieval. For both
5

Table 2
Demonstration 2 for visual search from multiple sources to any target domain (absolute
improvement in mAP@all). In our approach, searching from multiple sources is as easy
as using a single source, as we only have to average their positions in the common
semantic space. Searching (a) from multiple diverse domains is preferred when the
source is less informative, while (b) more examples from the same domain are preferred
when the source is more informative.

(a) Improving the less informative sketch representations

Target domain zero-shot many-shot

sk+sk sk+in sk+ph sk+sk sk+in sk+ph

clipart +.057 +.072 +.211 +.097 +.036 +.178
infograph +.018 +.067 +.107 +.031 +.002 +.075
painting +.035 +.080 +.186 +.079 +.029 +.154
pencil +.054 +.060 +.154 +.083 +.043 +.156
photo +.064 +.112 +.328 +.127 +.049 +.185

(b) Improving the more informative photograph representations

Target domain zero-shot many-shot

ph+ph ph+in ph+sk ph+ph ph+in ph+sk

clipart +.𝟎𝟕𝟎 +.012 +.048 +.𝟎𝟕𝟓 +.002 +.067
infograph +.𝟎𝟐𝟗 −.035 +.005 +.𝟎𝟐𝟕 −.062 +.018
painting +.𝟎𝟓𝟐 +.011 +.008 +.𝟎𝟔𝟏 +.004 +.049
pencil +.𝟎𝟓𝟒 +.012 +.037 +.𝟎𝟔𝟔 +.000 +.057
sketch +.041 +.001 +.𝟐𝟎𝟐 +.𝟎𝟕𝟓 −.013 −.030

zero- and many-shot evaluations, refining the representations improves
the performance. We observe a need for a lower mixture for the many-
shot evaluation, as classes are all seen during training compared with
the zero-shot evaluation. Refining the representations helps to bridge
the inherent cross-domain gap.

4.2. From multiple sources to any target domain

Second, we demonstrate the potential to search from multiple
source domains. Due to the generic nature of our approach, we are not
restricted to search from a single source. We show that a multi-source
search benefits the search in any target domain.

For this experiment, we start from the sketch domain as a source
and investigate the effect of including queries from the most effective
source (photographs) and the least effective source (infographs). Table 2a
highlights the positive effect of searching with an additional domain,
rather than a single source domain. When using multiple sources,
we simply average the positions in the common semantic space. For
fairness, we also evaluate search using two sketches. Across all settings,
we find that searching from multiple queries improves relative to using
one single sketch query. In the zero-shot evaluation, including infographs
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Fig. 6. Demonstration 3 for visual search from any source to multiple target domains. Correct results are in green, incorrect results in red. For abstract categories such as ‘‘sun’’,
abstract domains such as clipart or pencil drawings tend to be retrieved first. When sketches are more ambiguous such as ‘‘calculator’’, some retrieved results are incorrect but
resemble the shape. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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and photographs improves upon sketch-based search only. In the many-
shot evaluation, including infographs improves upon search by one
sketch, but not by two sketches, which is not surprising given the low
scores for infographs individually. Photographs with sketches obtain the
highest scores, regardless of the target domain or the evaluation setting.

We also consider a more challenging multi-source search scenario
where we search from the most informative source (photograph) and
one of the least informative sources (infograph or sketch). Table 2b
confirms the positive effect of searching with an additional domain.
Adding infographs only improves the results marginally. Performance
can even decrease when searching within one of the least informative
domains, because the combination creates a destructive noise that
moves the initial representation to a wrong direction. Adding sketches
can benefit searching within sketches when the uncertainty is high, as
in a zero-shot evaluation, but slightly decreases the score when the
uncertainty is low, as in a many-shot evaluation. In the other target
domains, sketches are much more effective than infographs when added
to photographs. Though, the improvement is lower than searching from
two photographs. When searching from an informative source domain,
combining it with itself improves more than a combination with a less
informative domain for both zero- and many-shot evaluations.

This demonstration shows the potential of searching from multiple
sources. It is better to diversify the search by using multiple diverse
domains when the source is less informative while more queries from
the same domain are preferred when the source is more informative.
Similar to the first demonstration, this evaluation is a trivial extension
to our approach, as we only have to average positions in the shared
semantic space, regardless of the domain the examples come from.

4.3. From any source to multiple target domains

Third, we demonstrate our ability to search in multiple domains
simultaneously. This setting has potential applications for example in
untargeted portfolio browsing, where a user may want to explore all
possible visual expressions of a category. Exploring in multiple domains
also highlights whether certain categories have a preference towards
specific domains, which offers an insight on how to best depict those
categories. Note that this setting can also be easily extended to include
also multiple domains as a source. For the sake of clarity, we use
sketch as the source domain and search in the other five domains in
a many-shot evaluation.

Fig. 6 provides qualitative results for eight sketches from different
categories. We first observe that the results come from multiple target
domains, without being explicitly told to do so. We do not need to
align results from different target domains, since we measure distance
in the common semantic space. For categories such as “sun”, we have a
bias towards retrieving abstract depictions, such as pencil drawings and
 d

6

Fig. 7. Intent-aware evaluation for visual search from sketches to the other five target
domains. Correct retrieved images in the top-ranked results more likely come from the
photograph than the infograph domain.

cliparts, as the “sun” is a category with a clear abstract representation.
“Castle” on the other hand has a bias towards both distinct cliparts,
as well as photographs and paintings. In both cases, all top results
are relevant. For categories with more ambiguous sketches, such as
“river” or “calculator”, retrieved examples resemble the shape of the
provided sketch, but do not match the category. Overall, we conclude
that searching in multiple domains is not only trivial in our approach,
but is also an indicator of the presence of preferential domains for
depicting categories.

We also quantitatively measure the retrieval performance when
searching from sketches to the other five target domains simultane-
ously. When computing the mAP@100, we obtain a score of 0.565.
Though, this measure does not take into account the differences and
diversity among domains, as it considers all of them as similar. As such,
we report the intent-aware mAP (Agrawal et al., 2009). Extending the
mAP to an intent-aware formulation provides an estimate of the result
diversity by: (i) computing the mAP per domain, and (ii) summing them
with a weighting that corresponds to the occurrences of every category
within each domain. Fig. 7 shows the per domain and intent-aware
mAP@100. The photograph-mAP@100 is the highest score, which in-
icates correct photographs are in the top-ranked results compared
ith other target domains. The infograph-mAP@100 obtains the lowest

core, which means that there are very few correct infographs in the
op-ranked results. When the differences among domains are taken
nto consideration, the intent-aware mAP@100 results in 0.224. In a
earch within multiple domains, the informativeness of each domain
nfluences the top-ranked results.

. Closed cross-domain visual search

Our approach is geared towards open cross-domain visual search, as
emonstrated in the previous section. To get insight in the effectiveness
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Table 3
Comparison 1 to zero-shot sketch-based image retrieval on TU-Berlin Extended and Sketchy Extended. Aligning solely the
semantics improves cross-domain image retrieval.
(a) Real-valued representations

TU-Berlin extended Sketchy extended

mAP@all prec@100 mAP@all prec@100

EMS (Lu et al., 2018) 0.259 0.369 n/a n/a
CAAE (Yelamarthi et al., 2018) n/a n/a 0.196 0.284
ADS (Dey et al., 2019) 0.110 n/a 0.369 n/a
SEM-PCYC (Dutta and Akata, 2019) 0.297 0.426 0.349 0.463
SG (Dutta and Biswas, 2019) 0.254 0.355 0.376 0.484
SAKE (Liu et al., 2019) 0.475 0.599 0.547 0.692
This paper 0.517 0.557 0.649 0.708

(b) Binary representations

TU-Berlin extended Sketchy extended

mAP@all prec@100 mAP@all prec@100

EMS (Lu et al., 2018) 0.165 0.252 n/a n/a
ZSIH (Shen et al., 2018) 0.220 0.291 0.254 0.340
SEM-PCYC (Dutta and Akata, 2019) 0.293 0.392 0.344 0.399
SAKE (Liu et al., 2019) 0.359 0.481 0.364 0.487
This paper 0.404 0.517 0.466 0.618

(c) Generalized setting

TU-Berlin extended Sketchy extended

mAP@all prec@100 mAP@all prec@100

ZSIH (Shen et al., 2018) 0.142 0.218 0.219 0.296
SEM-PCYC (Dutta and Akata, 2019) 0.192 0.298 0.307 0.364
SG (Dutta and Biswas, 2019) 0.149 0.226 0.331 0.381
This paper 0.211 0.224 0.397 0.421
of our approach for cross-domain visual search in general, we also
perform an extensive comparative evaluation on standard cross-domain
settings, which search between two domains. In total, we compare
on three of the most popular cross-domain search tasks, namely zero-
shot sketch-based image retrieval (Sangkloy et al., 2016; Shen et al.,
2018), few-shot sketch-based image classification (Hu et al., 2018a),
and many-shot sketch-based 3D shape retrieval (Li et al., 2013, 2014b).
For our approach, we simply train one mapping function for the source
domain, and one for the target domain using the examples provided
during training. Below, we present each comparison separately.

5.1. Zero-shot sketch-based image retrieval

Setup. Zero-shot sketch-based image retrieval focuses on retrieving
natural images (target domain) from a sketch query (source domain).
We evaluate on two datasets. TU-Berlin Extended (Eitz et al., 2012;
hang et al., 2016) contains 20,000 sketches and 204,070 images from
50 classes. Following Shen et al. (2018), we select 220 classes for
raining and 30 classes for testing. Sketchy Extended (Sangkloy et al.,

2016; Liu et al., 2017a) contains 75,481 sketches and 73,002 images
from 125 classes. Similarly, following Shen et al. (2018), we select
100 classes for training and 25 classes for testing. For fair comparison
with Liu et al. (2019), we select the same unseen classes for both
datasets. Following recent works (Shen et al., 2018; Dutta and Akata,
2019; Liu et al., 2019), we report the mAP@all and the precision at
100 (prec@100) scores.

Results. Table 3a compares to six state-of-the-art baselines on both
datasets. Baselines mostly focus on bridging the domain gap between
sketches and natural images with domain adaptation losses (Ganin
et al., 2016; Gonzalez-Garcia et al., 2018). On Sketchy Extended, our
approach outperforms other baselines. On TU-Berlin Extended, we
obtain the highest mAP@all score, while the recently introduced SAKE
by Liu et al. (2019) obtains a higher prec@100 score. SAKE is better
at grouping images from the same category together thanks to the
preservation module that produces tightly distributed representations.
Our method is better at retrieving relevant images in the first ranks as
the refinement module reduces the noise in the query representations.
7

Following previous work in zero-shot sketch-based image retrieval
(Lu et al., 2018; Shen et al., 2018; Dutta and Akata, 2019; Liu et al.,
2019), we also report the retrieval performance on binary representa-
tions. As previously proposed in Dutta and Akata (2019) and Liu et al.
(2019), real-valued representations are projected to a low-dimensional
space and quantized with iterative quantization (Gong et al., 2012).
We compute the transformation on the training set and apply it on
both sketch and image testing sets. Note that we first refine the rep-
resentations, then apply iterative quantization. Table 3b compares
the proposed formulation with binary representations of 64 dimen-
sions. Compared with real-valued representations in Table 3a, we
notice a higher drop in the mAP@all score than the prec@100 score.
Compared with other baselines, our semantic space based on word
embeddings better preserves the information when compressed to a
low-dimensional space.

As recently introduced by Dutta and Akata (2019), we also evaluate
on a generalized setting in Table 3c, where the gallery set also includes
images from seen classes. Following their protocol, we reserve 20% of
the samples from the seen classes for evaluation and use VGG16 (Si-
monyan and Zisserman, 2014) in this experiment for fair comparison.
On Sketchy Extended, our approach also outperforms other baselines.
On TU-Berlin Extended, we obtain the highest mAP@all score, while
SEM-PCYC by Dutta and Akata (2019) obtains a higher prec@100
score. Similar to the zero-shot evaluation, our method is better at
ranking images than grouping them together. Overall, focusing solely
on semantic alignment outperforms alternatives on domain adaption
or knowledge preservation across three different settings derived from
two datasets.

To understand the effect of the distance scaling hyper-parameter
defined in Eq. (1), we vary its value on both datasets in Fig. 8. We ob-
serve the same behavior on both datasets. When 𝑠 = 1 as in a common
softmax function, it yields the lowest results. A higher scaling helps
to narrow the probability distribution, resulting in a better retrieval
performance. There is a tipping point around 𝑠 = 20, after which
performance decreases. Calibrating the softmax with a high distance
scaling factor improves the retrieval performance.
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Table 4
Comparison 2 to few-shot sketch-based image classification on a subsampled Sketchy
Extended (multi-class accuracy). Our metric learning approach outperforms model
regression approaches.

w2v Sketch Image

one-shot five-shot one-shot five-shot

M2M (Hu et al., 2018a) n/a n/a 79.93 n/a 93.55
F2M (Hu et al., 2018a) 35.90 68.16 83.01 84.12 93.89
This paper 80.39 82.19 85.13 90.63 94.63

Qualitative analysis. To understand which sketches trigger the per-
ormance of natural image retrieval, we provide several qualitative
ketch queries with their top retrieved images in Fig. 9. Our approach
orks well for typical sketches of categories. For example, the “cup”
r “parrot” sketches exhibit a typical definition of their respective
ategories. In return, the search is very effective despite the variation in
mage appearance and viewpoints. Results degrade when sketches are
mbiguous or in non-canonical views. For example, the “tree” sketch
an easily be confused with the smoke ring of a “volcano” or the shape
f a “windmill”. Typical shape drawings of sketches matter for zero-shot
mage retrieval.

.2. Few-shot sketch-based image classification

etup. Few-shot sketch-based image classification focuses on classify-
ng natural images from one or a few labeled sketches. The few-shot
ategories have not been observed during training. Different from the
ero-shot retrieval scenario, the few-shot classification evaluation has
ccess to the labels of the unseen classes in the evaluation phase. For
xample, this comes through the form of sketches or word embeddings.
e report results on the Sketchy Extended dataset (Sangkloy et al.,

2016; Liu et al., 2017a). For fair comparison with Hu et al. (2018a),
we subsample the Sketchy Extended to match the size of their private
split. We select the same 115 classes for training and 10 classes for
testing. We also rely on VGG19 (Simonyan and Zisserman, 2014) as a
backbone. We evaluate the performance with the multi-class accuracy.
Classification is done by measuring the distance to the class prototypes.
Following Hu et al. (2018a), we evaluate on three different modes
by setting the prototypes of the unseen classes to: (i) word vectors
(w2v), (ii) one or five sketch representations, and (iii) one or five image
representations. The latter is considered as an upper-bound of this
cross-domain task. Following Hu et al. (2018a), the model is trained
once and we report the average classification accuracy over 500 runs
with different sets of sketches or images in the few-shot evaluation.

Results. Table 4 compares our formulation to two baselines introduced
by Hu et al. (2018a). M2M regresses weights for natural image classi-
fication from the weights of the sketch classifier while F2M regresses
weights from sketch representations. For the first evaluation mode, we
obtain an accuracy of 76.73%, compared to 35.90%, which reiterates
the importance of a semantic alignment for categorical cross-domain
search. In the few-shot evaluation, the biggest relative improvement is
achieved in the one-shot evaluation. It is also interesting to compare
the w2v and one-shot sketch evaluation modes. As the one-shot sketch
exhibits a higher score, it means that sketch representations capture
visual details that cannot be described with word representations only.
Our approach is also effective for cross-domain classification, especially
with low shots.

Qualitative analysis. To understand how to best employ our approach
for few-shot sketch-based image classification, we provide the most
and least effective sketches for image classification in Fig. 10. Since
categories are condensed to a single prototypical sketch, our approach
desires sketches with details and in canonical configurations. Results
are degraded when such assertions are not met. For example, Fig. 10a
shows a well sketched “cat” in one of the canonical positions while
8

Fig. 10b exhibits a “cat” without any whiskers and in a strange view
as we only see the face. Another important assertions is the sketch
separability. For example, the “airplane” sketch in Fig. 10b could be
confused with a “knife”. Appearance, viewpoint and separability matter
when relying on sketches for few-shot image classification.

Fig. 8. Scaling hyper-parameter ablation. We evaluate the scaling of the softmax
function. 𝑠 = 20 yields the best results for both datasets, especially for the mAP@all
score.

5.3. Many-shot sketch-based 3D shape retrieval

Setup. Sketch-based 3D shape retrieval focuses on retrieving 3D shape
models from a sketch query, where both training and testing sam-
ples share the same set of classes. We evaluate on three datasets.
SHREC13 (Li et al., 2013) is constructed from the TU-Berlin (Eitz
et al., 2012) and Princeton Shape Benchmark (Shilane et al., 2004)
datasets, resulting in 7200 sketches and 1258 3D shapes from 90
classes. The training set contains 50 sketches per class, the testing set
30. SHREC14 (Li et al., 2014b) contains more 3D shapes and more
classes, resulting in 13,680 sketches and 8987 3D shapes from 171
classes. The training and testing splits of sketches follow the same
protocol as SHREC13. We also report on Part-SHREC14 (Qi et al., 2018),
which contains 3840 sketches and 7238 3D shapes from 48 classes. The
sketch splits also follow the same protocol, while the 3D shapes are now
split into 5812 for training and 1426 for testing to avoid overlap.

Following previous works (Chen and Fang, 2018; Xie et al., 2017;
Su et al., 2015), we generate 2D projections for all 3D shape models
using the Phong reflection model (Phong, 1975). Similarly, we render
12 different views by placing a virtual camera evenly spaced around
the unaligned 3D shape model with an elevation of 30 degrees. We
only aggregate the multiple views during testing to reduce complexity.
We report six retrieval metrics (Li et al., 2014a). The nearest neighbor
(NN) denotes precision@1. The first tier (FT) is the recall@𝐾, where 𝐾
is the number of 3D shape models in the gallery set of the same class as
the query. The second tier (ST) is the recall@2𝐾. The E-measure (E) is
the harmonic mean between the precision@32 and the recall@32. The
discounted cumulated gain (DCG) and mAP are also reported.

Results. Table 5 shows the results on all three benchmarks and six
metrics. We compare to seven state-of-the-art baselines, which mostly
focus on learning a joint feature space of sketches and 3D shapes with
metric learning (Hadsell et al., 2006; Chopra et al., 2005; Schroff et al.,
2015). Across all three benchmarks, we observe the same trend, where
we obtain the highest scores for five out of the six baselines. Only
for the precision@1 metric (NN) do the recent approaches of Chen
et al. (2019) and Qi et al. (2018) obtain higher scores on all three
benchmarks. A first reason for this behavior is that both approaches
directly optimize for the nearest neighbor metric. Qi et al. (2018)
search in the label space while Chen et al. (2019) perform a learned
hashing. A second reason comes from their usage of more complex
3D shape representations. Qi et al. (2018) work with point clouds
while Chen et al. (2019) sample 2D views from various viewpoints.
Our approach, while simple in nature, provides competitive results
compared with the current state-of-the-art in many-shot sketch-based

3D shape retrieval.
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Fig. 9. Qualitative analysis of zero-shot sketch-based image retrieval. We show eight sketches of Sketchy Extended, with correct retrievals in green, incorrect in red. For typical
ketches (e.g., ‘‘cup’’), the closest images are from the same category. For ambiguous sketches (e.g., ‘‘tree’’) or non-canonical views (e.g., ‘‘butterfly’’), our approach struggles. (For
nterpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 10. Qualitative analysis of few-shot sketch-based image classification on a subsampled Sketchy Extended. (a) Since our approach condenses examples of category to a single
prototype in the shared space, we obtain high scores when source sketches are detailed and in canonical views (e.g., ‘‘deer’’ or ‘‘couch’’). (b) The accuracy decreases when sketches
re drawn badly (e.g., ‘‘airplane’’), or in non-canonical views (e.g., ‘‘car’’ or ‘‘cat’’).
Table 5
Comparison 3 to many-shot sketch-based 3D shape retrieval on SHREC13, SHREC14, and Part-SHREC14. Having a metric
space revolving around semantic prototypes benefits five out of six metrics.
(a) SHREC13

NN FT ST E DCG mAP

Siamese (Wang et al., 2015) 0.405 0.403 0.548 0.287 0.607 0.469
Shape2Vec (Tasse and Dodgson, 2016) 0.620 0.628 0.684 0.354 0.741 0.650
DCML (Dai et al., 2017) 0.650 0.634 0.719 0.348 0.766 0.674
LWBR (Xie et al., 2017) 0.712 0.725 0.785 0.369 0.814 0.752
DCA (Chen and Fang, 2018) 0.783 0.796 0.829 0.376 0.856 0.813
SEM (Qi et al., 2018) 0.823 0.828 0.860 0.403 0.884 0.843
DSSH (Chen et al., 2019) 0.831 0.844 0.886 0.411 0.893 0.858
This paper 0.825 0.848 0.899 0.472 0.907 0.865

(b) SHREC14

NN FT ST E DCG mAP

Siamese (Wang et al., 2015) 0.239 0.212 0.316 0.140 0.496 0.228
Shape2Vec (Tasse and Dodgson, 2016) 0.714 0.697 0.748 0.360 0.811 0.720
DCML (Dai et al., 2017) 0.272 0.275 0.345 0.171 0.498 0.286
LWBR (Xie et al., 2017) 0.403 0.378 0.455 0.236 0.581 0.401
DCA (Chen and Fang, 2018) 0.770 0.789 0.823 0.398 0.859 0.803
SEM (Qi et al., 2018) 0.804 0.749 0.813 0.395 0.870 0.780
DSSH (Chen et al., 2019) 0.796 0.813 0.851 0.412 0.881 0.826
This paper 0.789 0.814 0.854 0.561 0.886 0.830

(c) Part-SHREC14

NN FT ST E DCG mAP

Siamese (Wang et al., 2015) 0.118 0.076 0.132 0.073 0.400 0.067
SEM (Qi et al., 2018) 0.840 0.634 0.745 0.526 0.848 0.676
DSSH (Chen et al., 2019) 0.838 0.777 0.848 0.624 0.888 0.806
This paper 0.816 0.799 0.891 0.685 0.910 0.831
Qualitative analysis. To gain insight in our approach for retrieving
D shapes from sketches, we provide qualitative examples in Fig. 11.
otations of unaligned shapes can be handled. For example, 3D shapes
f “laptop” or “piano” are retrieved despite the large differences in
otation angles. Yet, confusion remains with visually similar categories.
9

This happens when the search needs to differentiate among fine-grained
categories. For example, differences are subtle between “sedan cars”
and “sports cars”, or between “violin” and “cello”. Although errors can
appear with semantically similar categories, our method can retrieve
highly variable 3D shapes from sketches.
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Fig. 11. Qualitative analysis of many-shot sketch-based 3D shape retrieval on Part-SHREC14. Incorrect results are shown in blue. Our approach handles the unaligned shapes by
rojecting all views to the same semantic prototype in the shared space. An open problem remains the confusion with categories that are close both in semantics and in appearance
e.g., ‘‘violin’’ vs. ‘‘cello’’). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
. Conclusion

In this paper, we open visual search beyond two domains to scale
o any number of domains. This translates into a search between any
air of source and target domains, a search from a combination of
ultiple sources, or a search within a combination of multiple targets.
his creates new challenges as all domains should map to the same
mbedding space, while new domains should be able to be incorporated
fficiently. To achieve open cross-domain visual search, we propose a
imple approach based on domain-specific prototype learners to align
he semantics of multiple visual domains in a common space. Learning

mapping to a common space enables a visual search among any
umber of source or target domains. The addition of new domains
onsists in the training of a new prototype learner, without the need
o retrain previous models. Empirical demonstrations on novel open
ross-domain visual search tasks present how to search across multiple
omains. State-of-the-art results on existing closed cross-domain visual
earch tasks show the effectiveness of our approach.
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