1,122 research outputs found

    Quantum inspired algorithms for learning and control of stochastic systems

    Get PDF
    Motivated by the limitations of the current reinforcement learning and optimal control techniques, this dissertation proposes quantum theory inspired algorithms for learning and control of both single-agent and multi-agent stochastic systems. A common problem encountered in traditional reinforcement learning techniques is the exploration-exploitation trade-off. To address the above issue an action selection procedure inspired by a quantum search algorithm called Grover\u27s iteration is developed. This procedure does not require an explicit design parameter to specify the relative frequency of explorative/exploitative actions. The second part of this dissertation extends the powerful adaptive critic design methodology to solve finite horizon stochastic optimal control problems. To numerically solve the stochastic Hamilton Jacobi Bellman equation, which characterizes the optimal expected cost function, large number of trajectory samples are required. The proposed methodology overcomes the above difficulty by using the path integral control formulation to adaptively sample trajectories of importance. The third part of this dissertation presents two quantum inspired coordination models to dynamically assign targets to agents operating in a stochastic environment. The first approach uses a quantum decision theory model that explains irrational action choices in human decision making. The second approach uses a quantum game theory model that exploits the quantum mechanical phenomena \u27entanglement\u27 to increase individual pay-off in multi-player games. The efficiency and scalability of the proposed coordination models are demonstrated through simulations of a large scale multi-agent system --Abstract, page iii

    Is Behavioral Economics Doomed?

    Get PDF
    It is fashionable to criticize economic theory for focusing too much on rationality and ignoring the imperfect and emotional way in which real economic decisions are reached. All of us facing the global economic crisis wonder just how rational economic men and women can be. Behavioral economics—an effort to incorporate psychological ideas into economics—has become all the rage. This book by well-known economist David K. Levine questions the idea that behavioral economics is the answer to economic problems. It explores the successes and failures of contemporary economics both inside and outside the laboratory. It then asks whether popular behavioral theories of psychological biases are solutions to the failures. It not only provides an overview of popular behavioral theories and their history, but also gives the reader the tools for scrutinizing them. Levine’s book is essential reading for students and teachers of economic theory and anyone interested in the psychology of economics

    The Hanabi Challenge: A New Frontier for AI Research

    Full text link
    From the early days of computing, games have been important testbeds for studying how well machines can do sophisticated decision making. In recent years, machine learning has made dramatic advances with artificial agents reaching superhuman performance in challenge domains like Go, Atari, and some variants of poker. As with their predecessors of chess, checkers, and backgammon, these game domains have driven research by providing sophisticated yet well-defined challenges for artificial intelligence practitioners. We continue this tradition by proposing the game of Hanabi as a new challenge domain with novel problems that arise from its combination of purely cooperative gameplay with two to five players and imperfect information. In particular, we argue that Hanabi elevates reasoning about the beliefs and intentions of other agents to the foreground. We believe developing novel techniques for such theory of mind reasoning will not only be crucial for success in Hanabi, but also in broader collaborative efforts, especially those with human partners. To facilitate future research, we introduce the open-source Hanabi Learning Environment, propose an experimental framework for the research community to evaluate algorithmic advances, and assess the performance of current state-of-the-art techniques.Comment: 32 pages, 5 figures, In Press (Artificial Intelligence

    When Humans Aren't Optimal: Robots that Collaborate with Risk-Aware Humans

    Full text link
    In order to collaborate safely and efficiently, robots need to anticipate how their human partners will behave. Some of today's robots model humans as if they were also robots, and assume users are always optimal. Other robots account for human limitations, and relax this assumption so that the human is noisily rational. Both of these models make sense when the human receives deterministic rewards: i.e., gaining either 100or100 or 130 with certainty. But in real world scenarios, rewards are rarely deterministic. Instead, we must make choices subject to risk and uncertainty--and in these settings, humans exhibit a cognitive bias towards suboptimal behavior. For example, when deciding between gaining 100withcertaintyor100 with certainty or 130 only 80% of the time, people tend to make the risk-averse choice--even though it leads to a lower expected gain! In this paper, we adopt a well-known Risk-Aware human model from behavioral economics called Cumulative Prospect Theory and enable robots to leverage this model during human-robot interaction (HRI). In our user studies, we offer supporting evidence that the Risk-Aware model more accurately predicts suboptimal human behavior. We find that this increased modeling accuracy results in safer and more efficient human-robot collaboration. Overall, we extend existing rational human models so that collaborative robots can anticipate and plan around suboptimal human behavior during HRI.Comment: ACM/IEEE International Conference on Human-Robot Interactio

    Generalized asset integrity games

    Get PDF
    Generalized assets represent a class of multi-scale adaptive state-transition systems with domain-oblivious performance criteria. The governance of such assets must proceed without exact specifications, objectives, or constraints. Decision making must rapidly scale in the presence of uncertainty, complexity, and intelligent adversaries. This thesis formulates an architecture for generalized asset planning. Assets are modelled as dynamical graph structures which admit topological performance indicators, such as dependability, resilience, and efficiency. These metrics are used to construct robust model configurations. A normalized compression distance (NCD) is computed between a given active/live asset model and a reference configuration to produce an integrity score. The utility derived from the asset is monotonically proportional to this integrity score, which represents the proximity to ideal conditions. The present work considers the situation between an asset manager and an intelligent adversary, who act within a stochastic environment to control the integrity state of the asset. A generalized asset integrity game engine (GAIGE) is developed, which implements anytime algorithms to solve a stochastically perturbed two-player zero-sum game. The resulting planning strategies seek to stabilize deviations from minimax trajectories of the integrity score. Results demonstrate the performance and scalability of the GAIGE. This approach represents a first-step towards domain-oblivious architectures for complex asset governance and anytime planning

    Intrinsic fluctuations of reinforcement learning promote cooperation

    Get PDF
    In this work, we ask for and answer what makes classical reinforcement learning cooperative. Cooperating in social dilemma situations is vital for animals, humans, and machines. While evolutionary theory revealed a range of mechanisms promoting cooperation, the conditions under which agents learn to cooperate are contested. Here, we demonstrate which and how individual elements of the multi-agent learning setting lead to cooperation. Specifically, we consider the widely used temporal-difference reinforcement learning algorithm with epsilon-greedy exploration in the classic environment of an iterated Prisoner's dilemma with one-period memory. Each of the two learning agents learns a strategy that conditions the following action choices on both agents' action choices of the last round. We find that next to a high caring for future rewards, a low exploration rate, and a small learning rate, it is primarily intrinsic stochastic fluctuations of the reinforcement learning process which double the final rate of cooperation to up to 80\%. Thus, inherent noise is not a necessary evil of the iterative learning process. It is a critical asset for the learning of cooperation. However, we also point out the trade-off between a high likelihood of cooperative behavior and achieving this in a reasonable amount of time. Our findings are relevant for purposefully designing cooperative algorithms and regulating undesired collusive effects.Comment: 9 pages, 4 figure

    Towards Safe Artificial General Intelligence

    Get PDF
    The field of artificial intelligence has recently experienced a number of breakthroughs thanks to progress in deep learning and reinforcement learning. Computer algorithms now outperform humans at Go, Jeopardy, image classification, and lip reading, and are becoming very competent at driving cars and interpreting natural language. The rapid development has led many to conjecture that artificial intelligence with greater-than-human ability on a wide range of tasks may not be far. This in turn raises concerns whether we know how to control such systems, in case we were to successfully build them. Indeed, if humanity would find itself in conflict with a system of much greater intelligence than itself, then human society would likely lose. One way to make sure we avoid such a conflict is to ensure that any future AI system with potentially greater-than-human-intelligence has goals that are aligned with the goals of the rest of humanity. For example, it should not wish to kill humans or steal their resources. The main focus of this thesis will therefore be goal alignment, i.e. how to design artificially intelligent agents with goals coinciding with the goals of their designers. Focus will mainly be directed towards variants of reinforcement learning, as reinforcement learning currently seems to be the most promising path towards powerful artificial intelligence. We identify and categorize goal misalignment problems in reinforcement learning agents as designed today, and give examples of how these agents may cause catastrophes in the future. We also suggest a number of reasonably modest modifications that can be used to avoid or mitigate each identified misalignment problem. Finally, we also study various choices of decision algorithms, and conditions for when a powerful reinforcement learning system will permit us to shut it down. The central conclusion is that while reinforcement learning systems as designed today are inherently unsafe to scale to human levels of intelligence, there are ways to potentially address many of these issues without straying too far from the currently so successful reinforcement learning paradigm. Much work remains in turning the high-level proposals suggested in this thesis into practical algorithms, however
    • …
    corecore