7 research outputs found

    DEEP LEARNING TECHNIQUES FOR DETECTION OF FALSE DATA INJECTION ATTACKS ON ELECTRIC POWER GRID

    Get PDF
    The electric power grid uses a set of measuring and switching devices for its operations and control. The data retrieved from the measuring instruments is assumed to be noisy, therefore a state estimator is used to estimate the correct values of state variables on which the system can take control actions. The modern electric power grid is dependent on communication networks for transferring these measurements, which are susceptible to intrusions from hackers. False data injection attacks (FDIA) are one of the most common attack strategies where an intruder tries to trick the underlying control system of the grid to cause disruptions without getting detected by native anomaly detection measures inbuilt in the state estimator. The native anomaly detection mechanism relies on threshold and residual based measure to flag a set of measurements as anomaly. Therefore, if the attack is devised in such a way that the intrusion can be performed without significantly affecting the residual error of state estimation it can go undetected. We propose a data augmented deep learning based solution to detect such attacks in real time. We propose methods of generating realistic random and targeted attack simulations on standard IEEE architectures and methods of detecting them using deep learning models. We propose recurrent neural network (RNN) based architectures to detect and locate FDIAs and devices compromised in real-time. For detection we propose a supervised and an unsupervised method. Similarly, for location we propose a method to find exact devices compromised which is less practical and then move on to a more feasible and practical solution in supervised and unsupervised conditions. Being an intrusion detection system it is critical to detect all attacks which means false negatives should be penalized heavily, whereas false positives can be accommodated. Therefore, we use recall as our primary performance metric and precision recall curve to find an optimal threshold of probability score. In addition, we demonstrate how our approach is better than a residual error and other previous detection models. We also compare the performance of our models with increasing number of devices being compromised

    DEEP LEARNING TECHNIQUES FOR DETECTION OF FALSE DATA INJECTION ATTACKS ON ELECTRIC POWER GRID

    Get PDF
    The electric power grid uses a set of measuring and switching devices for its operations and control. The data retrieved from the measuring instruments is assumed to be noisy, therefore a state estimator is used to estimate the correct values of state variables on which the system can take control actions. The modern electric power grid is dependent on communication networks for transferring these measurements, which are susceptible to intrusions from hackers. False data injection attacks (FDIA) are one of the most common attack strategies where an intruder tries to trick the underlying control system of the grid to cause disruptions without getting detected by native anomaly detection measures inbuilt in the state estimator. The native anomaly detection mechanism relies on threshold and residual based measure to flag a set of measurements as anomaly. Therefore, if the attack is devised in such a way that the intrusion can be performed without significantly affecting the residual error of state estimation it can go undetected. We propose a data augmented deep learning based solution to detect such attacks in real time. We propose methods of generating realistic random and targeted attack simulations on standard IEEE architectures and methods of detecting them using deep learning models. We propose recurrent neural network (RNN) based architectures to detect and locate FDIAs and devices compromised in real-time. For detection we propose a supervised and an unsupervised method. Similarly, for location we propose a method to find exact devices compromised which is less practical and then move on to a more feasible and practical solution in supervised and unsupervised conditions. Being an intrusion detection system it is critical to detect all attacks which means false negatives should be penalized heavily, whereas false positives can be accommodated. Therefore, we use recall as our primary performance metric and precision recall curve to find an optimal threshold of probability score. In addition, we demonstrate how our approach is better than a residual error and other previous detection models. We also compare the performance of our models with increasing number of devices being compromised

    Artificial Intelligence based Anomaly Detection of Energy Consumption in Buildings: A Review, Current Trends and New Perspectives

    Get PDF
    Enormous amounts of data are being produced everyday by sub-meters and smart sensors installed in residential buildings. If leveraged properly, that data could assist end-users, energy producers and utility companies in detecting anomalous power consumption and understanding the causes of each anomaly. Therefore, anomaly detection could stop a minor problem becoming overwhelming. Moreover, it will aid in better decision-making to reduce wasted energy and promote sustainable and energy efficient behavior. In this regard, this paper is an in-depth review of existing anomaly detection frameworks for building energy consumption based on artificial intelligence. Specifically, an extensive survey is presented, in which a comprehensive taxonomy is introduced to classify existing algorithms based on different modules and parameters adopted, such as machine learning algorithms, feature extraction approaches, anomaly detection levels, computing platforms and application scenarios. To the best of the authors' knowledge, this is the first review article that discusses anomaly detection in building energy consumption. Moving forward, important findings along with domain-specific problems, difficulties and challenges that remain unresolved are thoroughly discussed, including the absence of: (i) precise definitions of anomalous power consumption, (ii) annotated datasets, (iii) unified metrics to assess the performance of existing solutions, (iv) platforms for reproducibility and (v) privacy-preservation. Following, insights about current research trends are discussed to widen the applications and effectiveness of the anomaly detection technology before deriving future directions attracting significant attention. This article serves as a comprehensive reference to understand the current technological progress in anomaly detection of energy consumption based on artificial intelligence.Comment: 11 Figures, 3 Table

    Towards Secure Deep Neural Networks for Cyber-Physical Systems

    Get PDF
    In recent years, deep neural networks (DNNs) are increasingly investigated in the literature to be employed in cyber-physical systems (CPSs). DNNs own inherent advantages in complex pattern identifying and achieve state-of-the-art performances in many important CPS applications. However, DNN-based systems usually require large datasets for model training, which introduces new data management issues. Meanwhile, research in the computer vision domain demonstrated that the DNNs are highly vulnerable to adversarial examples. Therefore, the security risks of employing DNNs in CPSs applications are of concern. In this dissertation, we study the security of employing DNNs in CPSs from both the data domain and learning domain. For the data domain, we study the data privacy issues of outsourcing the CPS data to cloud service providers (CSP). We design a space-efficient searchable symmetric encryption scheme that allows the user to query keywords over the encrypted CPS data that is stored in the cloud. After that, we study the security risks that adversarial machine learning (AML) can bring to the CPSs. Based on the attacker properties, we further separate AML in CPS into the customer domain and control domain. We analyze the DNN-based energy theft detection in advanced meter infrastructure as an example for customer domain attacks. The adversarial attacks to control domain CPS applications are more challenging and stringent. We then propose ConAML, a general AML framework that enables the attacker to generate adversarial examples under practical constraints. We evaluate the framework with three CPS applications in transportation systems, power grids, and water systems. To mitigate the threat of adversarial attacks, more robust DNNs are required for critical CPSs. We summarize the defense requirements for CPS applications and evaluate several typical defense mechanisms. For control domain adversarial attacks, we demonstrate that defensive methods like adversarial detection are not capable due to the practical attack requirements. We propose a random padding framework that can significantly increase the DNN robustness under adversarial attacks. The evaluation results show that our padding framework can reduce the effectiveness of adversarial examples in both customer domain and control domain applications
    corecore