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Abstract

In recent years, deep neural networks (DNNs) are increasingly investigated in the literature

to be employed in cyber-physical systems (CPSs). DNNs own inherent advantages in

complex pattern identifying and achieve state-of-the-art performances in many important

CPS applications. However, DNN-based systems usually require large datasets for model

training, which introduces new data management issues. Meanwhile, research in the

computer vision domain demonstrated that the DNNs are highly vulnerable to adversarial

examples. Therefore, the security risks of employing DNNs in CPSs applications are of

concern.

In this dissertation, we study the security of employing DNNs in CPSs from both the

data domain and learning domain. For the data domain, we study the data privacy issues

of outsourcing the CPS data to cloud service providers (CSP). We design a space-efficient

searchable symmetric encryption scheme that allows the user to query keywords over the

encrypted CPS data that is stored in the cloud. After that, we study the security risks that

adversarial machine learning (AML) can bring to the CPSs. Based on the attacker properties,

we further separate AML in CPS into the customer domain and control domain. We analyze

the DNN-based energy theft detection in advanced meter infrastructure as an example for

customer domain attacks. The adversarial attacks to control domain CPS applications are

more challenging and stringent. We then propose ConAML, a general AML framework

that enables the attacker to generate adversarial examples under practical constraints. We

evaluate the framework with three CPS applications in transportation systems, power grids,

and water systems.

To mitigate the threat of adversarial attacks, more robust DNNs are required for critical

CPSs. We summarize the defense requirements for CPS applications and evaluate several

iv



typical defense mechanisms. For control domain adversarial attacks, we demonstrate that

defensive methods like adversarial detection are not capable due to the practical attack

requirements. We propose a random padding framework that can significantly increase the

DNN robustness under adversarial attacks. The evaluation results show that our padding

framework can reduce the effectiveness of adversarial examples in both customer domain and

control domain applications.

v



Table of Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Efficient Searchable Symmetric Encryption Scheme . . . . . . . . . . 4

1.2.2 Adversarial Attack and Defense in Cyber-Physical Systems . . . . . . 4

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Space-Efficient SSE for CPSs 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Threat Model and Assumptions . . . . . . . . . . . . . . . . . . . . . 11

2.3.2 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Practical SSE Scheme Design For Cyber-Physical Systems . . . . . . . . . . 14

2.4.1 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.2 Analysis and Comparison . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.3 Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.1 Example Smart Grid Data . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.2 Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

vi



3 Customer Domain Adversarial Attacks: Energy Theft Detection 22

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Formation and Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.1 Adversarial Energy Theft Formation . . . . . . . . . . . . . . . . . . 25

3.3.2 Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.3 State-of-the-art Approaches . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.4 SearchFromFree Framework . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Simulation Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4.1 Dataset Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4.2 Model Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4.3 Metrics and Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4.4 Experimental Result . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Control Domain Adversarial Attacks in CPS: ConAML 39

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 System and Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.1 ML-Assisted CPSs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.2 Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.3 Physical Constraint Mathematical Representation . . . . . . . . . . . 49

4.4 Design of ConAML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4.1 Universal Adversarial Measurements . . . . . . . . . . . . . . . . . . 53

4.4.2 Linear Equality Constraints Analysis . . . . . . . . . . . . . . . . . . 56

4.4.3 Adversarial Example Generation under Linear Equality Constraint . 58

4.4.4 Adversarial Example Generation under Linear Inequality Constraint . 61

4.5 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5.1 Case Study: Incident detection in transportation systems . . . . . . . 65

4.5.2 Case Study: False Data Injection Attack Detection in Power System

State Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

vii



4.5.3 Case Study: Water Treatment System . . . . . . . . . . . . . . . . . 74

4.6 Extension: Non-Linear Constraints . . . . . . . . . . . . . . . . . . . . . . . 78

5 Adversarial Defense in CPS: Random Padding Framework 81

5.1 Defense Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2 State-of-the-art Adversarial Defense Mechanisms . . . . . . . . . . . . . . . . 82

5.3 State-of-the-art: Limitation Analysis . . . . . . . . . . . . . . . . . . . . . . 84

5.4 Random Input Padding Framework . . . . . . . . . . . . . . . . . . . . . . . 85

5.5 Simulation Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.5.1 Customer Domain CPS application: Energy Theft Detection . . . . . 87

5.5.2 Control Domain CPS application: FDIA detection . . . . . . . . . . . 89

6 Conclusions and Future Works 93

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Bibliography 95

Vita 109

viii



List of Tables

2.1 Perfomance Comparison of Various SSE Schemes . . . . . . . . . . . . . . . 19

2.2 Features of AMI Dataset from EIA . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Energy Theft Attack Scenarios [116] . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Model Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Model Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 DeepFool Evaluation Performance . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1 List of Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Study Case Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3 Incident Detection LSTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4 Incident Detection Evaluation Result . . . . . . . . . . . . . . . . . . . . . . 68

4.5 Model Structure - FDIA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.6 Evaluation Result Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.7 SWaT Analog Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.8 Model Structure - Water Treatment . . . . . . . . . . . . . . . . . . . . . . . 79

4.9 Evaluation Result Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

ix



List of Figures

1.1 Data Sources in Smart Grid. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 General SSE Working Model. . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Four Polynomial time functions . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 Vanilla attacker 1 evaluation result. . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Vanilla attacker 2 evaluation result. . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 FGSM Evaluation Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 FGV Evaluation Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.5 White-box SearchFromFree . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.6 Black-box SearchFromFree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1 A CPS example (power grids). . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Machine learning-assisted CPS architecture. . . . . . . . . . . . . . . . . . . 46

4.3 A CPS example (water pipelines). . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4 Iteration illustration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.5 Linear equality constraint illustration. . . . . . . . . . . . . . . . . . . . . . . 59

4.6 Best-Effort Search (linear inequality). . . . . . . . . . . . . . . . . . . . . . . 64

4.7 Speed Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.8 IEEE 39-Bus System [8] [29]. . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.9 Performance of black-box attacks according to λ with step = 40, size = 20. . 75

4.10 Time cost of black-box attacks according to λ with step = 40, size = 20. . . 75

4.11 Performance of black-box attacks according to λ with step = 50, size = 0.06. 79

5.1 Adversarial Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

x



5.2 Adversarial Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3 Input Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.4 Illustration of random inputs padding framework . . . . . . . . . . . . . . . 86

5.5 Energy theft/adversarial measurements visualization (t-SNE dimensionality

reduction) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.6 Detection recall of padded DNNs . . . . . . . . . . . . . . . . . . . . . . . . 88

5.7 Detection recall of padded DNNs under adversarial attacks . . . . . . . . . . 88

5.8 FDIA adversarial measurements visualization (t-SNE dimensionality reduction) 90

5.9 The autoencoder loss of false measurements and corresponding adversarial

measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.10 Detection accuracy of random inputs padding framework. . . . . . . . . . . . 92

5.11 Detection recall of random inputs padding framework under adversarial attack. 92

xi



Chapter 1

Introduction

1.1 Motivation

In recent years, new computational techniques have been studied to be employed in cyber-

physical systems (CPSs). For example, the legacy power grid is on its way to becoming

smart with diverse data-driven approaches. Smart grid, which introduces advancement in

sensing, monitoring, control, and communication to legacy grids, is considered to be the next

generation power grid that can provide high-quality service to the public [97]. The CPSs

of critical infrastructures in modern society are usually complex and consist of enormous

components. All these subsystems and components can become the sources of the large

volume of miscellaneous data. Some data sources in the smart grid are shown in Fig. 1.1.

Enabled by the vast volume of data, machine learning (ML), especially deep neural

networks (DNN), is increasingly studied in the research literature to be employed in

different CPS applications. The DNN-based approaches have intrinsic advantages in learning

the statistical patterns of the CPS data, which enables them to achieve state-of-the-art

performances in many important applications, such as load forecasting in power systems

[93, 51], energy theft detection of smart meters [116, 78, 49, 52, 119], incident detection

[40, 62, 115, 87, 86, 120], cyberattack detection [83, 111, 44, 47, 10, 81, 105]. In addition,

DNN systems are generally software-based and do not require extra equipment and device

upgrades, which makes them compatible with the current CPS infrastructure.
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Figure 1.1: Data Sources in Smart Grid.
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However, the deep learning techniques usually require large datasets to train DNN

models, which brings new requirements for data management. Recent research suggests

that the system operator outsource data management to third-part clouds for effectiveness

and economic reasons [11]. Since the data may contain sensitive information of the system,

the operator can encrypt the data before uploading them to the cloud. However, encryption

will sacrifice the user’s ability to query keywords over the data which is one of the common

operations in CPS data management. Therefore, an effective searchable encryption scheme

for CPS data is needed.

Meanwhile, as the DNN model parameters are automatically discovered during the

learning process through back-propagation, DNN is considered as a black-box technique

whose resulting computation is difficult to interpret, which brings great risk to employ

the trained models in crucial applications, such as cyberattack detection in CPSs. Recent

research on adversarial machine learning (AML) has demonstrated that well-trained DNN

models are highly vulnerable to adversarial attacks. With the related AML algorithms, the

attacker will be able to generate adversarial examples that deceive the DNN models to output

the wrong results. Meanwhile, the same adversarial perturbations are transferable between

different DNN models even the models are trained with different datasets and have different

structures. Therefore, the potential vulnerabilities that adversarial attacks can bring to

the CPSs need to be studied. However, the majority of AML research is conducted in the

computer vision domain. Due to the inherent properties of the CPS applications, the widely-

used threat model in previous AML research and state-of-the-art AML algorithms may

become impractical, and new AML frameworks that are compatible with CPS applications

are needed.

This dissertation mainly studies the power systems as the example of CPS applications,

we also discuss other CPS applications, such as anomaly detection in water treatment

systems, as different study cases to demonstrate the properties of our proposed approaches.
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1.2 Challenges

1.2.1 Efficient Searchable Symmetric Encryption Scheme

Searchable symmetric encryption (SSE), which allows the user to query keywords over the

cipher-text, draws attention in the cryptography research communities and several state-of-

the-art SSE algorithms were proposed [94, 33, 17, 22]. However, the previous algorithms

were designed for general plaintext encryption and may be inefficient for the CPSs data

that was used as the DNN datasets. There are two properties that make the CPS data

special for SSE. First, the data generated in the CPS applications, such as the smart grid,

is frequently updated and owns a high generation rate. The newly generated data (i.e. new

sensor measurements, new customer profiles) indicates that there are always new keywords

generated, which makes the keyword dictionary-based SSE schemes impractical. In addition,

different from the general plaintext, such as an email, the data generated by different

CPS applications is usually well-regulated and follows specific structures. For example,

the datasets used for DNN model training usually have constant feature numbers and the

data of each feature owns the same data type. This property should be taken advantage of

to design efficient SSE schemes for the CPS application.

1.2.2 Adversarial Attack and Defense in Cyber-Physical Systems

The adversarial attacks targeting DL applications in CPS can be quite different from attacks

in pure cyberspace applications. For example, in the computer vision domain, the adversarial

perturbations added to the legitimate input images should be as small as possible in order to

avoid being noticed by human eyes, which is not applicable for CPS applications. In fact, the

requirements of adversarial attacks in CPSs can also be different for different DL applications

according to the attacker’s resource, attack goals, and practical physical constraints. For

example, DNN-based energy theft detection based on smart meter data has been studied

in recent literature and achieves high detection accuracy [119, 78, 46, 70]. If an energy

thief aims to steal energy by reporting false smart meter measurements to the utilities to

make profit, she/he will need to focus on the total measurements instead of the divergent
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(perturbation) between the real measurements and reported (adversarial) measurements.

Currently, although there is research that studies adversarial attacks in CPSs [19, 65], it

does not consider practical threat models and the specific attack requirements. Meanwhile,

the defense mechanisms to mitigate the adversarial attacks in the CPSs have not been

investigated.

1.3 Outline

The structure of this dissertation can be summarized as follow:

• In chapter 2, based on the properties of CPS data, we design an efficient searchable

encryption scheme for CPS applications and achieves high space-efficiency. We imple-

ment a prototype based on the statistical data of advanced metering infrastructure in

power systems to show the effectiveness of our approach.

• In chapter 3, we study the adversarial attacks in the customer domain of CPS. We

investigate the vulnerability of the DNN-based energy theft detection and demonstrate

that the well-perform DL models for energy theft detection are vulnerable to adversarial

attacks. We design an adversarial measurement generation algorithm that enables the

attacker to report extremely low power consumption measurements to the utilities while

bypassing the DNN energy theft detection. The algorithm is evaluated with three kinds

of neural networks based on a real-world smart meter dataset. The evaluation result

demonstrates that our approach is able to significantly decrease the DNN models’

detection accuracy, even for black-box attackers.

• In chapter 4, for the control system domain of CPS, we propose Constrained

Adversarial Machine Learning (ConAML), a general AML framework for CPSs.

We first summarize several practical constraints of AML in CPSs and formulate

the mathematical model of ConAML by incorporating the physical constraints of

the underlying system. We then design a series of AML algorithms that generate

adversarial examples under the corresponding constraints. We evaluate the ConAML

framework with three CPS applications, the incident detection in transportation

5



systems, the false data injection attack (FDIA) detection in power grid state estimation

and the anomaly detection in water treatment systems. The evaluation results show

that the adversarial examples generated by our algorithms can effectively bypass the

DNN-powered attack detection systems.

• In chapter 5, we study the defense mechanisms against adversarial attacks in CPS. We

analyze and evaluate several state-of-the-art adversarial defense mechanisms, such as

adversarial training and adversarial detection, and demonstrate that they have intrinsic

limitations for adversarial prevention in control domain adversarial attacks. We then

design a robust DNN detection framework for FDIA by introducing random input

padding in both the training and inference phases. We evaluate our framework with

energy theft detection and FDIA detection. The results show that our framework

greatly reduces the effectiveness of adversary examples in both customer domain and

control domain applications.

6



Chapter 2

Space-Efficient SSE for CPSs

2.1 Introduction

Many cyber-physical systems (CPSs), such as the power grids, are critical infrastructure

that contains miscellaneous data resources. Due to the divergence in structure, type and

generation rate, how to integrate, store, and manage the data is still one of the active

research fields in the research community. Recently, research on remote cloud-based storage

and management of CPS data is becoming popular [11]. Arenas-Martinez et al. [7] presented

and compared a series of cloud-based architectures to store and process smart meter reading

data. Based on the specific characteristics of smart grid data, Rusitschka et al. [90] proposed

a cloud computing model of ubiquitous data storage and access. In fact, outsourcing the

data storage to the cloud can be an effective solution and has advantages in scalability,

performance, and interoperability.

The cloud frameworks in [7] [90] work well when the CPS data owners own private cloud

servers and or the cloud service is completely trusted. However, due to economic reasons,

the utility company who owns the CPS data may choose to outsource the data storage to

third-party cloud service providers (CSP). In this scenario, the cloud in the models becomes

untrusted, and there is a privacy concern about the CPS data. Technically speaking, since

the data are stored in the CSP’s server, the provider can obtain full access to all the sensitive

data easily. Moreover, it is reasonable to assume that the CSP may be interested in these

data for many reasons. For example, the advanced metering infrastructure (AMI) data in
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the smart grid can contain customers’ personal information, such as hourly measured power

consumption, home location, and payment record. By launching side-channel attacks, such

as Non-intrusive load monitoring [41], it is possible for the CPS to learn the customer’s

habits and customs, which may bring profit to CPS in many ways.

One straightforward approach to prevent storage CPS from accessing sensitive data in the

CPS is encrypting the data before uploading them to the cloud. While encryption provides

confidentiality to the data, it also sacrifices the functionalities of processing the data. One

of the most critical functions of processing data stored in the remote server is searching. For

example, a utility company wants to query the billing statement of a specific customer. If

the documents are encrypted with the concern of privacy, the CPS can no longer provide the

search function to the utility company. In fact, this is a common problem that not only exists

in the CPS field but also in all cloud storage applications that require privacy enhancement.

With the development of privacy-preserving technology, Searchable Symmetric Encryp-

tion (SSE) was proposed to address the above problem. SSE is technology that enables users

to store documents in ciphertext form while keeping the functionality to search keywords in

their documents. In recent years, a series of secure and efficient SSE schemes are proposed

[94, 33, 17, 22, 50, 74, 68, 39, 14, 60]. However, most of them are only focusing on general

circumstances in which user’s documents are collections of random keyword combination,

and can become inefficient or over-protect when directly applying them to CPS applications,

such as smart grid.

There are two characteristics that make CPS data special. Firstly, CPS data are believed

to be frequently updated and have a high generation rate. This also implies there are

always new data/keywords generated, which will lead to an increasing keyword dictionary.

Furthermore, a large portion of CPS data are well regulated and have specific structures.

In practice, CPS data may contain multiple attributes that will be searched as keywords.

For example, although two utility companies may have different implementations of storing

customer billing statements, it is reasonable to assume both implementations should have

keywords such as user identity, electricity price, smart meter reading in each record. This

assumption is also practical for the datasets used for ML applications in the CPS since the

datasets are generally well-regulated and each record in the dataset contains the same number
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of features. The two characteristics make the state-of-the-art SSE schemes inappropriate to

be applied to CPS applications. The typical SSE schemes together with their disadvantages

with the above two characteristics will be discussed in Section 2.2.

The contributions of this chapter are summarised as follow:

• We review and analyze the typical state-of-the-art SSE schemes and show why they

are inappropriate for CPS data.

• According to the characteristics of CPS data, we design a simple, practical SSE

scheme that provides higher space efficiency with tolerant information leakage in real

applications.

• We implement a prototype based on the statistic data of advanced metering infrastruc-

ture (AMI) provided by U.S. Energy Information Administration (EIA) to show the

effectiveness of our scheme. We claim the scheme can also be applied to other types

of data in CPSs, such as metering data, customer billing statement, and PMU/PDC

data in smart grids.

2.1.1 Outlines

The rest of chapter is organized as follow. Section 2.2 gives the introduction of related

work on SSE. Section 2.3 introduces the threat model and notations we use. The detailed

description of our scheme will be presented in Section 2.4. After that, Section 2.5 introduces

the implementation of the prototype and smart grid data we use.

2.2 Related Work

Currently, the fundamental SSE constructions can be classified into three categories, namely

construction without indexes, construction with direct index, and construction with inverted

indexes.

The first practical SSE scheme without index construction was proposed by Song et al.

in 2000 [94]. They considered a document as a list of words with the same length and used

9



a specially designed stream cipher to encrypt the document. However, this scheme requires

the server to traverse each document word by word, which leads to a search complexity linear

to the document size. Furthermore, the SSE scheme without index usually requires specially

developed encryption algorithms, making it unscalable to current CPS communication and

control systems. After that, several high impact index-based SSE schemes were proposed.

Secure Indexes by Goh [33] built Bloom Filters as the direct index. By adjusting the

parameters of the Bloom Filter, secure indexes can achieve efficient search complexity.

However, one inherent problem of Bloom Filter is that it will bring a false-positive rate, and

this can be unacceptable for critical infrastructure CPSs, such as the smart grid. Another

direct index-based scheme was presented by Chang et al. [17], and they built a large index

table for all documents to enable the efficient search. However, their scheme assumes that

there is a dictionary mapping all keywords to associate identifiers. As discussed in Section

2.1, the number of keywords in CPS data can be large and keep increasing. Therefore, the

scheme in [17] is also not appropriate for CPS applications. One of the most famous inverted

index based SSE schemes were proposed by Curtmola et al. [22]. They presented an indexing

scheme that achieves the highest time-efficient search function by using a uniquely designed

linked list data structure. However, an inverted index construction scheme has an inherent

problem, namely directly updating is difficult. Although a well-designed file management

system can mitigate the problem, inverted indexes are still not efficient for the CPS which

has new data generated all the time. The latest research work on SSE including dynamic

searchable encryption [50, 74, 68, 39], forward secure searchable encryption [14], and fuzzy

keyword searchable encryption [60].

2.3 Background

Besides the theoretical of the SSE scheme, research on applying SSE to solve real-world

problems is also active. In general, the SSE scheme can be used to all systems which include

storage outsourcing. Tong et al. [102] employed a modified SSE scheme of Secure Index [33]

and designed a secure data sharing mechanism for situational awareness in the power grid.

Their approach is also used to protect the privacy of e-health data [103]. The problem of
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health data privacy is drawing more and more attention. Li et al. [57] leveraged a secure

K-nearest neighbor (KNN) and attribute-based encryption to build a dynamic SSE scheme

for e-health data and achieves both forward and backward security. Other applications of

SSE can be found in [13].

2.3.1 Threat Model and Assumptions

Our scheme interacts between two parties. As shown in Fig. 2.1, we refer the party who

owns the data and wants to outsource the storage of data as the client, and the party

who provides the storage service as the server. The client uploads the encrypted data, and

associated search index to the server and sends query afterward. For simplicity, our scheme

only considers the case that there is one keyword contained in the query. We note that a

query that contains boolean operation on multiple keywords can be regarded as the operation

on query results of multiple single keywords, which will be briefly discussed at the end of this

section. After receiving the query contains keyword information from the client, the server

should run the SSE algorithms and return a list of the identifier of documents that contain

the keyword.

Same as most state-of-the-art SSE schemes, in our threat model we also assume that

the third party server is a curious but honest attacker, which means the cloud server should

provide normal cloud service but will try to learn the content of data. More specifically, the

server is not allowed to delete or modify the client’s data or share the data with other parties.

However, different from SSE schemes which assume that the client’s data is a collection of

random keyword combinations, our scheme makes practical assumptions on the client’s data

based on the characteristics of smart grid data.

First, we assume the CPS data to be stored in the cloud should be a collection of

records that have the same data structure and contain the same number of keywords. For

example, the customer billing statement record in advanced metering infrastructure should

have attributes like customer identifier, date, house location, smart meter readings, and

additional notes.
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Figure 2.1: General SSE Working Model.
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Another example can be the PMU data. One of the most widely used standards of PMU

data is IEEE C37.118.2 [1]. The standard gives the format of the application layer data

structure of PMU data that contains several attributes, such as data stream ID number,

time stamp, and measurement data. Moreover, as presented in [102], the data owner can

also design a hierarchical data structure to store the CPS data. Therefore, we believe this

assumption is practical in real CPS applications and is easy to meet. In the rest of the

chapter, we will use record and document interchangeably for simplicity.

Second, we assume the total number of records to be stored in the cloud is much larger

than the number of keywords in each record. In practice, a record may contain up to tens

of attributes, but it is normal for a utility company to maintain millions of customer data

records or billions of measurement data records.

One widely used security requirement of searchable symmetric encryption is IND2-CKA

secure proposed in [33]. In brief, IND2-CKA secure requires that the server cannot learn

anything more of the plaintext message except for the search result. According to IND2-

CKA, the number of keywords in each document should also be kept secret. However, our

scheme allows the number of keywords in each record to be known to the attacker (server).

There are mainly two practical reasons for this privacy sacrifice. First, SSE schemes follow

IND2-CKA secure consider the case that the client stores general documents which contain

keywords with random numbers. As we discussed above, since all CPS data records are

assumed to contain the same number of keywords, it is not reasonable to assume that the

attacker cannot learn the number in the real working scenario, like by social engineering

or just randomly guessing. Second, we will show that our scheme can achieve high space

efficiency by losing the restriction on this privacy leakage issue. This compromise should be

acceptable for a utility company or government department in practice.

Finally, the scheme is only used for constructing a secure search index. How to protect

the privacy of the plaintext data will not be discussed in this chapter. The client can use

popular security schemes like CBC or CTR block cipher to protect the confidentiality and

schemes like HMAC to protect the integrity of data.

13



2.3.2 Notations

We use ∆ = {R1, R2...R2d} to indicate a collection of records. N is defined to be the total

number of possible keywords in a record while n is the number of desired keywords in a

record that the client want to search, where n ≤ N . We use wi,j to denote the jth desired

keyword in record Rj where 1 ≤ i ≤ 2d and 1 ≤ j ≤ n. {0, 1}n is used to present the set of all

n bits numbers. K
R← {0, 1}n means an element K being sampled uniformly from set {0, 1}n.

In addition, we use f : {0, 1}k × {0, 1}r → {0, 1}r to define a pseudo-random function that

maps a r bits number to another r number with a k bits key. A record’s identifier is defined

as id(R). Finally, we use h : {0, 1}∗ → {0, 1}r to denote a hash function that maps random

length bitwise string to an r bits number.

2.4 Practical SSE Scheme Design For Cyber-Physical

Systems

2.4.1 Construction

Secure Indexes presented in [33] gives a framework of trapdoor based searchable symmetric

encryption scheme which was widely used by the follow-up research. In general, an SSE

should consist of four polynomial time algorithms:

• Keygen(s) is run by the client to generate a master private key MK where s is a

security parameter.

• Trapdoor(MK, w) is run by the client by taking the master key MK and a keyword

w as the input, and outputs the trapdoor Tw of word w.

• BuildIndex(R, MK) is run by the client by taking the master key MK and a record

R as the input, and outputs the index IR for record R.

• SearchIndex(Tw, IR) is run by the server by taking a trapdoor Tw and a document’s

index IR as the input, and outputs 1 if w ∈ R or 0 otherwise.
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In general SSE scheme, the encrypted documents together with the associated indexes

will be kept by the server. When searching, the client generates the trapdoor Tw for word

w and send Tw to the server. For each record R, the server runs the SearchIndex(Tw, IR)

function and determine whether R contains w. The server will finally return to the client

a list of the identifiers of records which contain w. The framework requires that only the

client who holds the private master key MK can generate the trapdoor Tw for each word

w, such that the server cannot learn related information from the index. Our scheme also

follows this framework and is built in the direct index structure.

Our scheme uses a codeword array as the index for a record. For the keyword w, the

Trapdoor function computes the hash value h(w) of w, where h : {0, 1}∗ → {0, 1}r, and

outputs the trapdoor Tw = fMK(h(w)), where f : {0, 1}k × {0, 1}r → {0, 1}r is a pseudo-

random function. To build the index IRi
of record Ri, the BuildIndex function calls

Trapdoor and computes the codewordXi,j = f
′
Twi,j

(h(id(Ri))), where f
′
: {0, 1}r×{0, 1}r →

{0, 1}r is another pseudo-random function. Each codeword Xi,j should be randomly written

into an n element array IRi
, and this step can be done with a pseudo-random generator in

implementation. The detailed design of our scheme can be found in Fig. 3.

As discussed early in this section, we assume the CPS data ∆ to be a collection of records

with each record Ri contains N keywords. Considering the scenario that not all types of

keywords in the data are necessary for searching, and the data owner only wants to query

records by several specific types of keywords. For example, based on the standard IEEE

C37.118.2, the utility company may want to search PMU data records by ID number or

timestamp, and there may be no need to search by synchronization word. Therefore, our

scheme firstly allows the data owner to select the n (n ≤ N) types of keywords she wants to

query based on specific applications.

After determining n types of keywords, the client should run function Keygen to obtain

a k bits master key MK and keep it secret. Subsequently, for each record Ri in ∆, the client

runs the BuildIndex function to obtain the index IRi
of record R. Finally, the index IRi

should be attached to the encrypted record Ri and uploaded to the server.

To search for a keyword w, the client needs to compute the trapdoor Tw = fMK(h(w)) and

sends Tw to the server. After receiving the Tw, the server computes Xi,w = f
′
Tw

(h(id(Ri)))
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• Keygen(k): Uniformly sample the master key MK
R← {0, 1}k

• Trapdoor(MK,w): Given MK and keyword w, generate Tw = fMK(h(w)) of w

• BuildIndex(Ri, MK) : The input is a record Ri and the master key MK

The client:

1 create an n elements array IRi
and initialize all elements to zero

2 create an set U : {x ∈ Z|0 ≤ x ≤ n− 1}
3 for each desired keyword wi,j in Ri do
4 compute Twi,j

= Trapdoor(MK,wi,j)

5 compute Xwi,j
= f

′
Twi,j

(h(id(Ri)))

6 pick λ
R← U , update U = U − {λ}

7 set IRi
[λ] = Xi,j

8 end
9 return (Ri, Ii)

• Search(Tw, IR) : Given Tw and IR return search result.

The server:

1 compute Xw = f
′
Tw

(h(id(R)))
2 if Xw is in list IR then
3 return 1
4 else
5 return 0
6 end

Figure 2.2: Four Polynomial time functions
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for each ciphertext record Ri(1 ≤ i ≤ 2d), and checks whether Xi,w is contained in IRi
. If

so, the server returns id(Ri) to the client.

2.4.2 Analysis and Comparison

As stated at the beginning of Section 2.3, our scheme aims to protect the data privacy such

that the adversary cannot learn any other information about the plaintext record from the

index except for the search result and the number of desired keywords in the record. We

analyze the security of our scheme from two aspects. First, considering a simple scenario

that only one index of a record is given, a polynomial-time attacker can not learn the original

keywords from the index. This is correct because if the attacker can learn the keyword from

the codeword, she will be able to break the pseudo-random function, which is contradictory

to the assumptions. Second, we consider the unlinkability of our scheme, which means the

attacker is not able to learn whether two records have the same keyword w from their indexes

without the trapdoor Tw. This is achieved by introducing the identifier of records to build

the codeword. The same keyword in two records will have different codewords in two indexes.

We refer the reader to [33] for the mathematical proof.

In general, the main methodology of our scheme is increasing the space efficiency of the

SSE scheme with the permission of a few information leakages based on the characteristics

of CPS data. Our scheme was built based on the direct index structure, so it is dynamic

and easy-updating. We use the codeword array as the index of each record, which leads to

a small index size compared with schemes that involve the keyword dictionary. Since the

codewords are randomly inserted, the searching complexity of our scheme becomes O(2d ·n).

However, since the number of desired keywords n is believed to be a very small constant in

practical application, the search algorithm will still be efficient. Our scheme is similar to the

PPSED scheme described in [17]. Both schemes used direct index structure and an array

as the index. However, since there are always new keywords (e.g. timestamps) generated in

CPS data, the index size of the PPSED scheme will become extremely large. Table 2.1 gives

a detailed comparison between our design and the widespread SSE schemes.
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2.4.3 Extension

It is obvious to see that updating the new record and associated index to the server is

straightforward. The client just needs to run the BuildIndex function of the new record to

obtain the index, and appends the (encrypted record, index) pair to the records and indexes

stored in the server.

The plain scheme considers the scenario that only one keyword is searched in a round. In

practice, the client may want to search for records that meet specific keyword requirements.

One simple example can be a government department that wants to query a dataset of utility

companies. A meaningful query can be (State: TN and Establish Year: 1998 or 1999). The

boolean operations on multiple keywords can be easily applied to the codewords matching

process when the server runs Search function.

2.5 Implementation

2.5.1 Example Smart Grid Data

The public dataset we used to test the effectiveness of our scheme is the statistical AMI data

provided by the U.S. Energy Information Administration (EIA) [4]. The AMI data are

derived from EIA-861M form, which stands for “Monthly Electric Power Industry Report.”

The report collects sales of electricity and revenue each month from a statistically chosen

sample of electric utilities in the United States. EIA started to collect monthly green pricing,

net metering, and advanced metering data since 2011. We choose the CSV file of advanced

metering data of the year 2016 as the dataset for our implementation.

As shown in Table 2.2, the CSV contains 31 columns, including year, month, utility

name, state, residential AMI, and so on. In our experiment, we select all features except

Year from Utility Characteristics and all features from AMI related categories as our desired

types of keywords. The CSV file contains 4819 records in total, and the data types include

string and unsigned integer.
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Table 2.1: Perfomance Comparison of Various SSE Schemes

scheme Encryption index FP update Complexity Size
final scheme [94] special no no easy O(2d ·N) none

Z-IDX [33] general direct yes easy O(2d) O(2d · n)
PPSED [17] general direct no easy O(2d) O((2d)2)
SSE-1 [22] general inverted no hard O(1) O(2d · n)
our scheme general direct no easy O(2d · n) O(2d · n)

2dis the number of records, N is the keywords number in a record.
n is the number of desired keywords in a record, where 2d � n.
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2.5.2 Prototype

For simplicity, we use Python 2.7 as the programming language for the prototype. We

claim that a low-level language like C can be used in practice with the consideration of

speed. We build the encryption scheme with the help of Pycrypto [2], which is a widely used

cryptography library for python. Generally, the ciphers and hash functions in Pycrypto are

written in C and provide Python API. We use Advanced Encryption Standard (AES) block

cipher with 128 bits key as the pseudo-random function and the MD5 as the hash function

described in our scheme. We note that MD5 has been severely compromised and is no longer

secure for integrity protection. However, the MD5 in our prototype is only used to generate

a unique identifier for record and keyword, similar to the building dictionary process in other

schemes.

Since the original ciphertext usually contains unprintable characters that will destroy

CSV format, we store the ciphertext as the hexadecimal string to maintain a clear CSV

format for demonstration. However, the hexadecimal string will lead to a larger index size.

Therefore, we suggest that an efficient file-index management system is needed for real-world

applications.

The source code is tested on a Mac OS X machine with a 1.6 GHz Intel Core i5 processor

and 8GB memory. Our experiment result shows that 4819 indexes can be searched in around

0.15 seconds. The source code of the prototype is available on Github [3].
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Table 2.2: Features of AMI Dataset from EIA

category feature
Utility Year, Month, Utility Number,

Characteristics Utility Name, State, Data Status
Number AMR - Automated

Metering Reading
Number AMI - Advanced Residential, Commercial,
Metering Infrastructure Industrial, Transportation, Total
Non AMR/AMI Meters
Total Number of Meters

Energy Saved - AMI (MWh)
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Chapter 3

Customer Domain Adversarial

Attacks: Energy Theft Detection

In this chapter, we study the adversarial attack in DNN-based energy theft detection as an

example of the customer domain of cyber-physical systems.

3.1 Introduction

Energy theft causes high financial losses to electric utility companies around the world

[31]. In recent years, two-way data communications between the customers and utilities are

enabled by the development of the advanced metering infrastructure (AMI). Smart meters

that provide fine-grained power consumption data of customers are expected to mitigate

energy theft. However, the smart meters are shown to be vulnerable to physical penetration

[9] and there are even video tutorials online on smart meter hacking [95]. To date, the energy

theft problem is still serious and the corresponding detection approaches are needed.

Currently, the energy theft detection approaches proposed in the literature can be

categorized into sensor-based and user profile-based detection. The sensor-based methods

requires extra equipment to be deployed in AMI while the user profile-based detection

exploits the abnormal variations in customer’s power usage patterns. In recent years, machine

learning (ML) techniques, especially deep learning (DL), are studied in the literature to

detect energy theft [118, 46, 116, 31, 78, 49, 85, 119, 42, 52]. The ML-based approaches
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take advantage of the massive fine-grained power consumption data of smart meters and can

achieve state-of-the-art performance. Meanwhile, they are usually pure software systems and

are compatible with the legacy power system infrastructures.

However, recent studies in the computer vision (CV) domain have shown that the well-

trained DL models are highly vulnerable to adversarial examples [96, 35, 89, 77? ]. By adding

a well-crafted perturbation to the legitimate input, adversarial attackers can deceive the DL

models to output wrong prediction results. The same perturbation is transferable between

different DL models that own different structures and are trained with different datasets.

Adversarial attacks are also demonstrated to be effective in power system applications [19,

20, 59]. As DL becomes a popular technique in energy theft detection, the potential risks of

adversarial attacks need to be investigated, which is the focus of this paper.

Although sophisticated adversarial machine learning (AML) algorithms have been

proposed in the CV domain, they can not be applied for energy theft directly due to different

requirements for the examples. For instance, the adversarial perturbations in the CV domain

are required to be small so that the adversarial image will be hardly perceptible to human

eyes. Since such constraints do not apply to an energy thief, the performances of the AML

algorithms in energy theft need to be evaluated. To increase the stolen profit, the energy

thief should focus on the size of the adversarial example (power consumption measurements

reported to the utilities) instead of the perturbation. The adversarial attack that maximizes

the attacker’s profit should be formulated to evaluate the reliability of the DL detection

models.

In this chapter, we investigate the vulnerabilities of DL-based energy theft detection

through AML, including single-step attacks and iterative (multiple-step) attacks. We design

SearchFromFree, a framework to increase the attacker’s profit. The main contributions of

this chapter can be summarized as follows:

• We study the vulnerabilities of DL-based energy theft detection and summarize the

properties of adversarial attacks in energy theft detection by proposing a general threat

model.
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• We propose a random adversarial measurement initialization approach to maximize the

attacker’s stolen profit. It is compatible with different state-of-the-art AML algorithms

and can generate valid adversarial examples with low energy costs. Meanwhile, we

design an iterative adversarial measurement generation algorithm that employs a step-

size search scheme to increase the performance of black-box attacks.

• The evaluations are implemented with three types of neural networks that are trained

with a real-world smart meter dataset. The result shows that our framework can

generate small adversarial measurements that can successfully bypass the detection.

3.2 Related Work

The support vector machine (SVM) was employed by Nagi et al. to detect abnormal

power usage behaviors based on the historian consumption data in 2009 [79]. Depuru et

al. extended their approach and included more features, such as the type of consumer and

geographic location [24]. Jokar et al. generated a synthetic attack dataset and trained

a multi-class SVM classifier for each customer to detect malicious power consumption [49].

SVM is also combined with other techniques, such as a fuzzy inference system [80] or decision

tree [48] to detect energy theft. In 2017, Zheng et al. employed deep convolutional neural

networks (CNN) to detect energy theft based on a real-world dataset and achieved a high

detection rate [119]. [78] trained a deep recurrent neural network (RNN) and randomly

searched for model parameters. In 2020, Ismail et al. studied energy theft in the distributed

generation domain and proposed a hybrid neural network detection model [46]. Other DL-

based energy theft detection approaches can be found in [42, 52].

In 2013, Szegedy et al. proposed the adversarial attacks to deep neural networks in

the CV domain [96]. After that, various AML algorithms were proposed, such as the Fast

Gradient Sign Method (FGSM) by Goodfellow et al. [35], Fast Gradient Value (FGV) by

Rozsa et al. [89], and DeepFool by Moosavi-Dezfooli et al. [77]. Recently, adversarial attacks

on power system ML applications are also investigated. Chen et al. showed that both the

classification and regression applications in the power system are vulnerable to adversarial

attacks [19]. They then launched adversarial attacks to study the vulnerabilities of load
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forecasting [20]. In 2019, Liu et al. showed that the DL-based AC state estimation can

be compromised by adversarial attacks [65]. [59] studied the DL-based false data injection

attack detection in DC state estimation and demonstrated that the attacker can compromise

both the DL detection and residual-based detection with physical constraints. Marulli et

al. studied the data poisoning attacks to ML models in energy theft detection using the

generative adversarial network (GAN) [71] but they did not consider the evasion attacks and

the attacker’s profit.

3.3 Formation and Design

3.3.1 Adversarial Energy Theft Formation

To launch energy theft, the attacker is assumed to be able to compromise his/her smart meter

and freely modify the power consumption measurements that are reported to the utilities.

In general, the DL-based energy theft detection in AMI can be considered as a binary

classification problem. Given the power consumption measurements M , the utility company

utilizes a DL classifier fθ : M → Y trained by a dataset {M,Y } to map the measurements M

to their labels Y (Normal or Theft). The adversarial attack in energy theft detection should

be a false-negative attack that deceives the DL classifier fθ to categorize the adversarial

measurement vectors A as normal. Meanwhile, A needs to be small so that the energy thief

can obtain a high profit. Without loss of generality, the adversarial attack in energy theft

can be represented as an optimization problem:

min ‖a‖1 (3.1a)

s.t. fθ(a)→ Normal (3.1b)

ai ≥ 0 (3.1c)
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where a represents an adversarial measurement vector, ‖a‖1 =
∑
‖ai‖ is the L1-Norm of

a. The constraint (3.1c) requires that all the power consumption measurement ai in a must

be non-negative to be feasible.

3.3.2 Threat Model

We propose a practical threat model for the adversarial attacks in energy theft detection, as

described below:

• The attacker can freely modify the meter’s power consumption measurements reported

to the utilities. In practice, this can be implemented through physical penetration to

the smart meter.

• If a DL model was trained by the utilities, it will usually be deployed on a separate

server that owns isolated access networks. We consider a black-box adversarial attack

that the energy thief cannot access to the utilities’ DL model fθ and training dataset

{M,Y }.

• The attacker can obtain an alternative dataset {M ′, Y ′}, such as a historian or public

dataset, to train his/her model f ′θ′ to generate adversarial measurements. The principle

behinds the black-box attack is the transferability of adversarial examples.

• The attacker needs to generate non-negative adversarial measurements to be practical,

as shown in 3.1c.

In section 3.4, we will also evaluate the performance of white-box attacks that allow the

attacker to fully access the DL model fθ, such as insider attackers. Such evaluations can

study the reliability of the detection system under the worst-case scenario and the upper

bound performance of the adversarial attacks.

3.3.3 State-of-the-art Approaches

Since the constraint (3.1b) defined by the neural network is highly-nonlinear, formation (3.1)

is difficult to solve directly by existing optimization approaches. Generally, the existing AML
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algorithms maximize the adversarial attack performance by increasing the prediction loss of

the DL model through gradient-based optimization. We release the related constraints, such

as the box-constraint, in the CV applications to fit the energy theft attack requirements.

In general, the AML algorithms can be categorized into single-step attacks and iterative

(multiple-step) attacks. The single-step attacks usually have better transferability but

are relatively easy to defend, while the iterative attacks are more powerful but are less

transferable [54]. In this paper, we study three state-of-the-art AML algorithms, FGSM

[35], FGV [89] and DeepFool [77], as shown below:

Fast Gradient Sign Method (FGSM)

The FGSM method proposed in [35] is a single-step attack method. Given a, FGSM updates

the vector according to equation (3.2), where ε is a constant, L is a loss function, and Ya is

the label (theft) of a. With the sign function, the perturbation vector size is controlled by

ε.

a = a+ ε · sign(∇aL(fθ(a), Ya)) (3.2)

Fast Gradient Value (FGV)

The FGV method proposed in [89] is also a single-step algorithm and is similar to FGSM.

However, FGV employs the original gradient values instead of the sign value, as shown in

equation (3.3).

a = a+ ε · ∇aL(fθ(a), Ya) (3.3)

DeepFool

The DeepFool algorithm proposed in [77] is an iterative algorithm that aims to minimize the

perturbation size. Assuming the neural networks utilize Softmax as the activation function

in the last layer, DeepFool keeps executing equation (3.4) until a can be classified as Normal

by fθ.
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a = a− fθ(a)

‖∇afθ(a)‖2
2

∇afθ(a) (3.4)

3.3.4 SearchFromFree Framework

Random Initialization

The state-of-the-art AML algorithms are originally designed for CV applications where the

main constraint is the magnitude of the adversarial perturbation. However, as demonstrated

in equation (3.1), the purpose of the attacker is to minimize the adversarial power

consumption measurements reported to the utility to reduce his/her cost.

Different from CV applications where the input images are given and static, the energy

thief can freely modify the smart meter’s measurements. Since the AML algorithms can

constrain the adversarial perturbation to be small, it is intuitive that the crafted adversarial

measurements will be small if the initial measurements for the DL model are small. In

practice, the minimum power consumption should be zero, which indicates a free electricity

bill to the energy thief. However, a constant zero measurement vector will result in constant

adversarial measurements, which is obviously abnormal to the utilities. We propose a scheme

that randomly initializes adversarial measurements according to a Gaussian distribution

a ∼ N (0, σ2) with the mean value set to zero (µ = 0) and the standard deviation σ set to a

small value. We set all the non-negative values in a to zero to meet constraint (3.1c). This

initialization approach is compatible with different AML algorithms.

Step-size Searching Scheme

The iterative attacks usually have worse transferability. For example, the multiple-step

DeepFool attack executes an iteration process and return the adversarial example as soon as it

is misclassified by the given model. Empirically, the example is unique to the given model and

may have low transferability. In energy theft detection, the adversarial measurements from

the attacker are always smaller than normal measurements. Statistically, for a trained model,

larger adversarial measurement vectors will have a higher probability to bypass the detection.

Since the attacker’s model f ′θ may share a similar manifold with fθ, we design a step-size
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iterative scheme to search adversarial measurements that share the best transferability to

increase the performance of black-box iterative attacks.

Enabled by the random initialization approach, our step-size scheme can be represented

by Algorithm 1.

Algorithm 1: SearchFromFree Iteration Algorithm

1 Input: f ′θ′ , step, size, σ
2 Output: a
3 function ssf-Iter(f ′θ′ , step, size, σ)
4 initialize a ∼ N(0, σ2)
5 a = clip(a, min=0)
6 initialize stepNum = 0
7 while stepNum ≤ step− 1 do
8 calculate gradient G = ∇aL(f ′θ′(a), Ya)
9 r = G · size/max(abs(G))

10 update a = a+ r
11 a = clip(a, min=0)
12 stepNum+ +

13 end
14 return a

15 end

The ssf-Iter function in Algorithm 1 has four inputs, including the local ML model f ′θ′

and three positive constant parameters. The constant step limits the maximum number of

iteration while size defines the maximum modification of a in each iteration. As shown by

Line 4, we empirically initialize a according to a Gaussian distribution with the standard

deviation value equals to σ and mean value equals to zero. The iteration process gradually

increases ‖a‖1 to have a higher probability to bypass the detection. Therefore, a small initial

a will finally lead to a smaller ‖a‖1 and the attacker can make more profit. The perturbation

r generated from the loss gradient may cause negative measurement values in a. We set all

the negative values to zero to generate a feasible adversarial measurement vector a, as shown

by Line 5 and 11.
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3.4 Simulation Evaluation

3.4.1 Dataset Structure

We employ the smart meter data published by the Irish Social Science Data Archive (ISSDA)

[6] as it is widely used as a benchmark for energy theft detection in related literature [118, 116,

78, 49, 85, 52]. The dataset contains the smart meter energy consumption measurement data

of over 5000 customers in the Irish during 2009 and 2010. We assume all the measurement

data in the dataset is normal since the customers agreed to install the smart meters and

participated in the research project. There are missing and illegal measurements in the raw

dataset and we pre-process the dataset by filtering out the incomplete measurements. We

regulate the time-series measurement data into daily reading vectors and obtain the dataset

Ddaily. Since the power consumption measurements are recorded every 30 minutes, each

daily reading measurement vector will contain 48 power consumption measurements.

To solve the shortage of real-world energy theft datasets, we employ the false measure-

ment data generation approach proposed in [116] to simulate the energy theft measurements,

which is a benchmark method used in previous literature [118, 31, 78, 49, 85]. [116] presents

six energy theft scenarios, as shown in Table 3.1. The attack h1 multiples the original

reading with a constant while h2 with a random constant vector generated from a uniform

distribution. The h3 considers that the energy thief reports zero consumption during a

specific period. The h4 scenario happens when an attacker constantly reports the mean

consumption. h5 is similar to h2 but multiplying the random constant vector with the mean

value instead of the real measurements. Finally, h6 reverses the records of a day so that the

small consumption will be reported during the periods in which the electricity price is lower.

A synthetic dataset is generated based Ddaily. We randomly sample 180,000 daily records

from Ddaily and modify half records in the sampled dataset according to the attack scenarios

described in Table 3.1. We label all normal records as 0 and polluted records as 1 with One-

hot encoding. We finally obtain the defender dataset Ddefender : {M180,000×48, Y180,000×1}. We

simulate the dataset Dattacker for the attacker in the same way.
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Table 3.1: Energy Theft Attack Scenarios [116]

Attack Scenario

h1(mt) = αmt, α ∼ Uniform(0.1, 0.8)
h2(mt) = βtmt, βt ∼ Uniform(0.1, 0.8)

h3(mt) =

{
0 ∀t ∈ [ti, tf ]
mt ∀t /∈ [ti, tf ]

h4(mt) = E(m)
h5(mt) = βtE(m)
h6(mt) = m48−t
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3.4.2 Model Training

The evaluation experiments are conducted based on three types of deep neural networks

(DNN), feed-forward neural network (FNN), CNN, and RNN. We train three DL models for

the defender (utilities) and three separate models for the attacker with Ddefender and Dattacker

respectively. For each model, 20% records in Ddefender or Dattacker are randomly sampled for

testing the rest 80% for training. We manually tuned the parameters of the model training

and the performances of corresponding models are shown in Table 3.2. Overall, the RNNs

achieve the best classification performance since they have an intrinsic advantage in learning

the pattern of time-series data. The structures of the neural networks are shown in Table

3.3. All the DNNs are implemented with the TensorFlow and Keras library. The training

process is conducted on a Windows 10 PC with an Intel Core i7 CPU, 16 GB memory, and

an NVIDIA GeForce GTX 1070 graphic card to accelerate the training process. The models

are optimized with a Rmsprop optimizer.

3.4.3 Metrics and Baselines

Metrics

We set two metrics to evaluate the performance of adversarial attacks. Since all the test

records are false measurements (generated by our random initialization scheme), the first

metric is the detection recall (TP/(TP + FN)) of the defender’s models under adversarial

attacks.

We set two metrics to evaluate the performance of adversarial attacks. Since all the test

records are false measurements (generated by our random initialization scheme), the first

metric is the detection recall (TP/(TP + FN)) of the defender’s models under adversarial

attacks. Meanwhile, it is straightforward that a larger adversarial measurement vector will

have a higher probability to bypass the detection. Therefore, we set the average L1-Norm

of the adversarial measurement vectors as the second evaluation metric. In our experiment,

the average L1-Norm of all normal measurement records is 32.05 kWh.

32



Table 3.2: Model Performance

Model Accuracy False Positive Rate

fFNN 86.9% 10.01%
f ′FNN 86.87% 14.01%
fRNN 97.5% 2.58%
f ′RNN 97.48% 2.62%
fCNN 93.49% 7.79%
f ′CNN 93.28% 6.41%

Table 3.3: Model Structures

Networks FNN RNN CNN

Models fFNN f ′FNN fRNN f ′RNN fCNN f ′CNN
Layer 0 input 48 input 48 input 48× 1 input 48× 1 input 6× 8 input 6× 8
Layer 1 128 Dense 168 Dense 256 LSTM 246 LSTM 128 Conv2D 156 Conv2D
Layer 2 256 Dense 328 Dense Dropout 0.25 Dropout 0.25 128 Conv2D 214 Conv2D
Layer 3 128 Dense 168 Dense 168 LSTM 148 LSTM MaxPooling2D MaxPooling2D
Layer 4 Dropout 0.25 128 Dense Dropout 0.25 Dropout 0.25 Dropput 0.25 Dropput 0.25
Layer 5 32 Dense Dropout 0.25 128 LSTM 108 LSTM flatten flatten
Layer 6 Dropout 0.25 64 Dense 2 Dense Softmax 2 Dense Softmax 32 Dense 48 Dense
Layer 7 2 Dense Softmax Dropout 0.25 - - Dense 2 Softmax Dense 2 Softmax
Layer 8 - 2 Dense Softmax - - - -

The models f∗ act as the defenders while f ′∗ as attackers. The activation function of each layer is ReLu
unless specifically noted. The kernel size is 3× 3 for CNN models.

333333



Baselines

We set up two vanilla black-box attackers as baselines to demonstrate the effectiveness

of adversarial attacks. The first vanilla attacker VA1 will gradually try different α of h1 as

defined in Table 3.1 while the second vanilla attacker VA2 generates uniformly distributed

measurement vector between 0 and a variable u.

3.4.4 Experimental Result

The evaluation experiments are conducted with 1,000 adversarial measurement vectors. All

the DNN’s detection recall of the original randomly initialized adversarial measurement

vectors is 100%. The standard deviation of the Gaussian distribution used for initialization

is set to σ = 0.0001.

Vanilla Attacks

As expected, the detection recall of the defenders’ models decreases with the parameter α

increases under VA1 attack. This indicates that VA1 has a higher success probability if

he/she was willing to decrease his/her stolen profit. From Fig. 3.1, if VA1 wants to have

a relatively high success probability for energy theft, such as over 65%, the required power

consumption bill should be over 20 kWh (α > 0.65).

As shown in Fig. 3.2, the detection recall of RNN and CNN remains high (over 95%)

with the parameter u increases. This indicates that a uniformly distributed consumption

measurement vector is obviously abnormal for models that are trained to learn the daily

electricity consumption patterns. Overall, the VA2 attack is not effective for energy theft.

State-of-the-art Approaches

We apply the random initialization approach to the state-of-the-art AML algorithms and

evaluate the attack performances under the white-box and black-box settings. Similar to

Algorithm 1, we map all the negative values in the adversarial measurements to zero to be

feasible. We test different ε values for FGSM and FGV, and evaluation result is shown in

Fig. 3.3 and Fig. 3.4 respectively.
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Figure 3.1: Vanilla attacker 1 evaluation result.
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Figure 3.2: Vanilla attacker 2 evaluation result.
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Figure 3.3: FGSM Evaluation Result
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Figure 3.4: FGV Evaluation Result
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From Fig. 3.3, we can learn that FGSM can achieve notable attack performance for FNN

and RNN. In the black-box settings, the probability of bypassing RNN detection is over

90% while the adversarial measurement’s L1-Norm is only 2.9 kWh (ε = 10−0.9). The attack

performance is even better for FNN. When ε = 10−1.2, the energy thief obtains a 100%

detection bypassing rate with a 1.4 kWh electricity bill. The single-step attack FGSM does

not perform well for CNN detection. The best evasion rate is around 44% for the white-box

attack and 32% for the black-box attack.

Overall, the attack performance of FGV is slightly worse than FGSM in black-box settings

but is still effective, as shown in Fig. 3.4. For example, the black-box attack to RNN obtains

a 94% detection bypassing rate while the L1-Norm is 10.6 kWh (ε = 10−0.5), which is higher

than FGSM (2.9 kWh) but is still smaller than the normal measurements (32.05 kWh).

Similar to FGSM, the FGV achieves the best performance for FNN detection, followed by

RNN and CNN.

The evaluation result of the iterative attack DeepFool is summarized in Table 3.4. The

iterative attack demonstrates notable performances in white-box settings. The detection

recall of all three DNNs becomes 0% under white-box attacks while the L1-Norm is smaller

than 1 kWh. However, as expected, the adversarial measurements generated by iterative

attacks are less transferable. Under the black-box setting, the DeepFool attack only shows

effectiveness in FNN detection while the detection recall of CNN and RNN remains 100%.

SearchFromFree Iteration Algorithm

We then evaluate the performance of our ssf-Iter algorithm, an iterative attack algorithm

that utilizes a step-size scheme to search for transferable adversarial measurements, as shown

in Fig. 3.5 and Fig. 3.6.

From Fig. 3.5, we can learn that our algorithm performs best in FNN, followed by CNN

and RNN. In most cases, the detection recall of three DNNs approaches to zero under the

white-box attack while the adversarial measurements are still small enough (around 1 kWh).
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Table 3.4: DeepFool Evaluation Performance

Model FNN CNN RNN
Metric recall size recall size recall size

white-box 0% 0.94 0% 0.23 0% 0.02
black-box 17.4% 1.14 100% 0.115 100% 0.06

∗ ‘size’ is the L1-Norm of adversarial measurements (kWh)
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Figure 3.5: White-box SearchFromFree
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Figure 3.6: Black-box SearchFromFree.
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As expected, the adversarial performances under the black-box setting are worse than the

white-box setting, as shown in Fig. 3.6. In general, the probability of bypassing the detection

is lower and the corresponding measurement size is larger. The attacker is required to pay a

higher cost (L1-Norm of adversarial measurements) in the black-box settings to obtain the

same detection bypassing rate in the white-box settings. Statistically, the FNN detection

still performs worst under black-box adversarial attacks. By analyzing the corresponding

evaluation parameters, we can learn that the attacker can bypass the FNN’s detection with

nearly 100% success probability while the average L1-Norm is around 1 kWh. For CNN

detection, our adversarial attack can achieve over 70% successful rate while keeping the

L1-Norm below 4 kWh.

Attack performance is better for RNN detection. In most attack scenarios, the RNN’s

detection recall is below 30% while the L1-Norm is lower than 3 kWh. It is worth noting

that if the attacker sets size to 0.01, the adversarial attack can obtain over 80% successful

probability with an around 0.2 kWh measurement size. Compared with the DeepFool

attack, our algorithm achieves similar performance in the white-box settings and better

transferability under the black-box settings.

Parameter Selection: Fig. 3.5 and Fig. 3.6 show that the attack performances can

be impacted by the parameters in Algorithm 1. However, from the 2D pixel figures, we

can observe that the attack performances follow specific patterns according to the two

parameters. Overall, as long as the parameters fall in a specific range, the attack performance

will be satisfied. Meanwhile, by comparing Fig. 3.5 and Fig. 3.6, we can learn that the

performances of black-box attacks share similar manifolds with white-box attacks under

our step-size scheme. This indicates that the attacker can select the algorithm parameters

based on the performances of his/her local DL models. In practical scenarios, different

attackers may also collude together to search for the parameters that produce the best

attack performance.
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Chapter 4

Control Domain Adversarial Attacks

in CPS: ConAML

In this section, we study the adversarial attacks in control domain CPSs by proposing the

ConAML framework.

4.1 Introduction

Machine learning (ML) has shown promising performance in many real-world applications,

such as image classification [43], speech recognition [36], and malware detection [114]. In

recent years, motivated by the promotion of cutting-edge communication and computational

technologies, there is a trend to adopt ML in various control domain cyber-physical system

(CPS) applications, such as data center thermal management [61], agriculture ecosystem

management [23], power grid attack detection [83], and industrial control system anomaly

detection [53].

However, recent research has demonstrated that the superficially well-trained ML models

are highly vulnerable to adversarial examples [96, 35, 89, 75, 55, 25, 76]. In particular,

adversarial machine learning (AML) technologies enable attackers to deceive ML models

with well-crafted adversarial examples by adding small perturbations to legitimate inputs.

As CPSs have become synonymous to security-critical infrastructures such as the power grid,
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nuclear systems, avionics, and transportation systems, such vulnerabilities can be exploited

leading to devastating consequences.

AML research has received considerable attention in artificial intelligence (AI) communi-

ties and it mainly focuses on computational applications such as computer vision. However, it

is not applicable to control domain CPSs because the inherent properties of CPSs render the

widely-used threat models and AML algorithms in previous research infeasible. In general,

the existing AML research makes common assumptions on the attacker’s knowledge and the

adversarial examples. The attacker is assumed to have full knowledge of the ML inputs and

these features are assumed to be mutually independent. For example, in computer vision

AML [35], the attacker is assumed to know all the values of pixels of an image and there is

no strict dependency among the pixels. However, this is not realistic for attacks targeting

control domain CPSs. CPSs are usually large and complex systems whose data sources

are heterogeneous and geographically distributed. The attacker may compromise a subset

of sensors and modify their measurement data. Generally, for the uncompromised data

sources, the attacker cannot even know the measurements, let alone making modifications.

Furthermore, for robustness and resilience reasons, control domain CPSs usually employ

redundant data sources and incorporate faulty data detection mechanisms. For example, in

the power grid, redundant phasor measurement units (PMUs) are deployed in the field to

measure frequency and phase angle, and residue-based bad data detection is employed to

detect and recover from faulty data for state estimation [106]. Therefore, the features of ML

applications in CPS are not only dependent but also subject to the physical constraints of

the system. A simple example of constraints is shown in Figure 4.1. All three meters are

measuring the electric current (Ampere) data. If an attacker compromises Meter1, Meter2,

and Meter3, no matter what modification the attacker makes to the measurements, the

compromised measurement of Meter1 should always be the sum of that of Meter2 and

Meter3 due to Kirchhoff’s laws. Otherwise, the crafted measurements will be detected by

the bad data detection mechanism and obviously anomalous to the power system operators.

In addition to distributed data sources and physical constraints, sensors in real-world CPSs

are generally configured to collect data with a specific sampling rate. A valid adversarial

attack needs to be finished within the CPS’ sampling period.
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Figure 4.1: A CPS example (power grids).
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The intrinsic properties of CPS pose stringent requirements for the attackers. The

attacker is now required to overcome:

• Model constraint: No access to the original CPS DNNs.

• Sensor constraint: Can only compromise a portion of sensors and modify their

values.

• Knowledge constraint: No access to the ML models and the measurement values

of uncompromised sensors.

• Physical constraint: The adversarial examples need to meet the physical constraints

defined by the system.

• Time constraint: Attacks needs to be completed within a sample period of the

sensors.

to launch an effective attack that deceives the ML applications deployed in CPSs.

However, in this chapter, we show that the ML applications in CPSs are susceptible to

handcrafted adversarial examples even though such systems naturally pose a greater barrier

for the attacker.

In this chapter, we propose constrained adversarial machine learning (ConAML), a

general AML framework that incorporates the above constraints of CPSs. We firstly design

a universal adversarial measurement algorithm to solve the knowledge constraint. After that,

without loss of generality, we present a practical best-effort search algorithm to effectively

generate adversarial examples under linear physical constraints which are one of the most

common constraints in real-world CPS applications. Meanwhile, we set the maximum

iteration number to control the time cost of the attack. We implement our algorithms

with ML models used in three CPS applications and mainly focus on neural networks due

to its transferability. Our main contributions are summarized as follows:

• We highlight the potential vulnerability of deploying ML in CPSs, analyze the different

requirements for AML applied in CPSs with regard to the general computational

applications, and present a practical threat model for AML in CPSs.
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• We formulate the mathematical model of ConAML by incorporating the physical

constraints of the underlying system. To the best of our knowledge, this is also the

first work that investigates the physical mutual dependency among the ML features in

AML research.

• We proposed ConAML, an AML framework that contains a series of AML algorithms

to generate adversarial examples under the corresponding constraints.

• We assess our algorithms with three typical CPS applications, including incident

detection in transportation system, FDIA detection in the power grids and anomaly

detection water treatment system, where ML are intensively investigated for attack

detection in the research literature [40, 62, 115, 87, 86, 120, 83, 111, 44, 47, 10, 81,

105, 45, 53, 28, 18, 27, 5]. The evaluation results show that the adversarial examples

generated by our algorithms can effectively bypass the ML-powered detection systems

in the three CPSs.

4.2 Related Work

AML of neural networks was discovered by Szegedy et al. [96] in 2013. They found that a

deep neural network used for image classification can be easily fooled by adding a certain,

hardly perceptible perturbation to the legitimate input. Moreover, the same perturbation can

cause a different network to misclassify the same input even when the network has a different

structure and is trained with a different dataset, which is referred to as the transferability

property of adversarial examples in the following research. After that, in 2015, Goodfellow

et al. [35] proposed the Fast Gradient Sign Method (FGSM), an efficient algorithm to

generate adversarial examples. The Fast Gradient Value (FGV) method proposed by Rozsa

et al. [89] is a simple variant of FGSM, in which the authors utilize the raw gradient

instead of the sign. In 2016, Moosavi-Dezfooli et al. presented DeepFool which searches for

the closest distance between the original input to the decision boundary in high dimensional

data space and iteratively builds the adversarial examples [75]. According to [55], single-step

attack methods have better transferability but can be easily defended. Therefore, multi-steps
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methods, such as iterative methods [55] and momentum-based methods [25], are presented

to enhance the effectiveness of attacks. The above methods generate individual adversarial

examples for each legitimate inputs. In 2017, Moosavi-Dezfooli et al. designed universal

adversarial perturbations to generate perturbations regardless of the ML model inputs [76].

Research on AML applications continues growing rapidly. Sharif et al. generated

adversarial examples to attack a state-of-the-art face-recognition system and achieved a

notable result [92]. Grossee et al. constructed an effective attack that generated adversarial

examples against Android malware detection models [37]. The adversarial attacks that

target real-world applications also increase. In 2014, Laskov et al. developed a taxonomy

for practical adversarial attacks based on the attackers’ capability and launched evasion

attacks to PDFRATE, a real-world online machine learning system to detect malicious PDF

malware [88]. Followed by Xu et al. , in 2016, they utilized a genetic programming algorithm

to generate evasion adversarial examples to evaluate the robustness of ML classifiers [110].

Their methods were evaluated with PDFRATE and Hidost, another PDF malware classifier.

In 2018, Li et al. presented TEXTBUGGER, a framework to effectively generate adversarial

text against deep learning-based text understanding (DLTU) systems and achieved state-of-

the-art attack performance [58].

In addition to pure computation and cyberspace attacks, AML techniques that involve

the physical domain are drawing more and more attention. Kurakin et al. presented that ML

models are still vulnerable to adversarial examples in physical world scenarios by feeding a

phone camera captured adversarial image to an ImageNet classifier [54]. In 2016, Carlini et al.

presented hidden voice commands and demonstrated that well-crafted voice commands which

are unintelligible to human listeners, can be interpreted as commands by voice controllable

systems [15]. [99] and [67] investigated the security of machine learning models used in

autonomous driving cars. In 2018, [32] showed that an attacker can generate adversarial

examples by modifying a portion of measurements in CPSs, and presented an anomaly

detection model where each sensor’s reading is predicted as a function of other sensors’

readings. After that, Erba et al. also studied the AML in CPS and consider the physical

constraints [26]. They employed an autoencoder that trained on normal system data to

reconstruct the bad inputs to match the physical behavior. However, both [32] and [26]
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allow the attacker to know all the measurements and the generated adversarial examples

may still violate the physical constraints.

More related work on adversarial examples, including the generation algorithms and

related applications, can be found in [113].

4.3 System and Threat Model

4.3.1 ML-Assisted CPSs

Generally, a CPS can be simplified as a system that consists of four parts, namely sensors,

actuators, the communication network, and the control center [18], as shown in Figure 4.2.

The sensors measure and quantify the data from the physical environment, and send the

measurement data to the control center through the communication network. In practice,

the raw measurement data will be filtered and processed by the gateway according to the

error checking mechanism whose rules are defined by human experts based on the properties

of the physical system. Measurement data that violates the physically defined rules will be

removed.

Similar to [26], we consider the scenario that the control center utilizes ML model(s)

to make decisions (classification) based on the filtered measurement data from the gateway

directly, and the features used to train the ML models are the measurements of sensors

respectively. The target of the attacker will be deceiving the ML model(s) in CPSs to output

wrong (classification) results without being detected by the gateway by adding perturbations

to the measurements of the compromised sensors.

4.3.2 Threat Model

Adversarial attacks can be classified according to the attacker’s capability and attack goals

[88, 113, 16]. In this work, we consider the integrity attack that the attacker generates

adversarial perturbations to the ML inputs to deceive the ML model to make incorrect

classification outputs.
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Figure 4.2: Machine learning-assisted CPS architecture.
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There are several inherent properties of CPS that pose specific requirements for

adversarial attacks. First, in CPS, ML models are usually placed in the control centers and

other centralized locations which employ comprehensive and advanced security measures such

as air-gapped networks. It is highly unlikely for the attacker to have access to the models

and a black-box attack should be considered. Second, we assume that the attacker cannot

access the training dataset for the same reason as above, but has access to an alternative

dataset such as historical data that follows a similar distribution to train their models. It is

possible for the attacker to obtain historical data in practice, for instance, temperature data

for load forecasting, earthquake sensor data, flood water flow data, and traffic flow data,

since these data are usually published or shared among multiple parties.

To launch adversarial attacks, the attacker is assumed to compromise a certain number

of sensors, and can freely eavesdrop and modify their measurement data. These sensors are

deployed in the wild and their security is hard to guarantee. In real attack scenarios, this

can be implemented by either directly compromising the sensors, such as device intrusion

or attacking the communication network, such as man-in-the-middle attacks. However, due

to the vastly distributed nature of sensors in CPS, it is only reasonable for the attacker

to compromise a subset of the data sources but not all of them. For the uncompromised

sensors, the attacker can neither know their measurement values nor make modifications.

This constraint indicates that the attacker has limited knowledge of the ML inputs.

Meanwhile, the attacker is further required to generate adversarial examples that meet

the constraints imposed by the physical laws and system topology and evade any built-in

detection mechanisms in the system. Specifically, since they are very common in real-world

CPSs, we will mainly focus on linear constraints in this work, including both linear equality

constraints and linear inequality constraints. An example of the linear inequality constraint

is shown in Figure 4.3. All the meters in Figure 4.3 are measuring water flow which follows

the arrows’ direction. If an attacker wants to defraud the anomaly detection ML model of

a water treatment system by modifying the meters’ readings, the adversarial measurement

of Meter1 should always be larger than the sum of Meter2 and Meter3 due to the physical

structure of the pipelines. Otherwise, the poisoned inputs will be obviously anomalous to

the victim (system operator) and detected automatically by the error checking mechanisms.
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Figure 4.3: A CPS example (water pipelines).
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In practice, many of the linear constraints can be explicitly abstracted by the attacker

from the compromised measurement data. Meanwhile, the practical CPSs usually have built-

in tolerance for noise and normal fluctuation in the measurements so that the approximately

estimated constraints will still be effective for the adversarial attackers. Therefore, we assume

that the attacker know the linear constraints among the compromised measurements.

The real-world CPSs, such as the Supervisory Control and Data Acquisition (SCADA),

will have a constant measurement sampling rate (frequency) configured for their sensors. The

attacker who targets CPSs’ ML applications is then required to generate a valid adversarial

example within a measurement sampling period.

We summarize the threat model as follows:

• We assume the attacker has no access to the system operator’s trained model in the

control center, including the hyper-parameters and the related dataset. However, the

attacker has an alternative dataset as an approximation of the defender’s (system

operator’s) training dataset to train his/her ML models.

• The attacker can compromise a subset of sensors in the CPS and make modifications

to their measurement data. However, the attack can neither know nor modify the

measurements of uncompromised sensors.

• The attacker can know the linear constraints of the measurements imposed by the

physical system.

4.3.3 Physical Constraint Mathematical Representation

In this subsection, we present the mathematical definition of the physical linear constraints

of the ML inputs and represent the AML as a constrained optimization problem.

Notations

To simplify the mathematical representation, we will use AB =
[
ab0 , ab1 , ..., abn−1

]
to denote a

sampled vector of A = [a0, a1, ..., am−1] according to B, where B = [b0, b1, ..., bn−1] is a vector

of sampling index. For example, if A = [a, b, c, d, e] and B = [0, 2, 4], we have AB = [a, c, e].
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We assume there are totally d sensors in a CPS, and each sensor’s measurement is

a feature of the ML model fθ in the control center. We use S = [s0, s1, ..., sd−1]T and

M = [m0,m1, ...,md−1]T to denote all the sensors and their measurements respectively. The

attacker compromised r sensors in the CPS and C = [c0, c1, ..., cr−1] denotes the index vector

of the compromised sensors. Obviously, we have ‖C‖ = r and 0 < r ≤ d. Meanwhile, the

uncompromised sensors’ indexes are denoted as U = [u0, u1, ..., ud−r−1] (‖U‖ = d− r).

∆ = [δ0, δ1, ..., δd−1]T is the adversarial perturbation to be added to M . However, the

attacker can only inject ∆C =
[
δc0 , δc1 , ..., δcr−1

]T
to MC while ∆U = 0. The polluted

adversarial measurements become M∗
C = MC + ∆C , and m∗ci = mci + δci (0 ≤ i ≤ r − 1).

Apparently, we have δi = δcj when i = cj, i ∈ C, and δi = 0 when i /∈ C. Similarly, the

crafted adversarial example M∗ =
[
m∗0,m

∗
1, ...,m

∗
d−1

]
= M + ∆ is fed into fθ. We have

m∗i = m∗cj when i = cj, i ∈ C and m∗i = mi when i /∈ C. All the notations are summarized

in Table 4.1.

Mathematical Presentation

For linear equality constraints, such as the current measurements (Amperes) of the three

meters in Figure 4.1, we suppose there are k constraints of the compromised measurements

MC that the attacker needs to meet, and the k constraints can be represented as follow:



φ0,0 ·mc0 + ...+ φ0,r−1 ·mcr−1 = φ0,r

φ1,0 ·mc0 + ...+ φ1,r−1 ·mcr−1 = φ1,r

...

φk−1,0 ·mc0 + ...+ φk−1,r−1 ·mcr−1 = φk−1,r

(4.1)

The above constraints can be represented as (4.2). We have Φk×r = [Φ0,Φ1, ...,Φk−1]T ,

where Φi = [φi,0, φi,1, ..., φi,r−1] (0 ≤ i ≤ k− 1), Φi,j = φi,j (0 ≤ i ≤ k− 1, 0 ≤ j ≤ r− 1) and

Φ̃ = [φ0,r, φ1,r, ..., φk−1,r]
T .

Φk×rMC = Φ̃ (4.2)
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Table 4.1: List of Notations

Symbol Description
fθ The trained model with hyperparameter θ
S The vector of sensors
M The vector of measurements of S
∆ The perturbations vector added to M
M∗ The sum of ∆ and M . The vector of

compromised input
C The vector of the indexes of compromised

sensors or measurements
U The vector of the indexes of uncompromised

sensors or measurements
Y The original class of the measurement M
Y ′ The target class of the measurement M∗

Φ The linear constraint matrix
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The attacker generates the perturbation vector ∆C and adds it to MC such that fθ will

predict the different output. Meanwhile, the crafted measurements M∗
C = ∆C +MC should

also meet the constraints in (4.2) to avoid being noticed by the system operator or detected

by the error checking mechanism.

Formally, the attacker who launches AML attacks needs to solve the following optimiza-

tion problem:

max
∆C

L(fθ(M
∗), Y ) (4.3a)

s.t. M∗
C = MC + ∆C (4.3b)

Φk×rMC = Φ̃ (4.3c)

Φk×rM
∗
C = Φ̃ (4.3d)

M∗ = M + ∆ (4.3e)

∆U = 0 (4.3f)

where L is a loss function, and Y is the original class label of the input vector M .

In addition, the linear inequality constraints among the compromised measurements

can be represented as equation (4.4), and the constrained optimization problem to be solved

is also similar to (4.3) but replacing (4.3c) with Φk×rMC ≤ Φ̃ and (4.3d) with Φk×rM
∗
C ≤ Φ̃

respectively.

Φk×rMC ≤ Φ̃ (4.4)

4.4 Design of ConAML

The universal adversarial measurements algorithm is proposed in subsection 4.4.1 to solve

the knowledge constraint of the attacker. Subsection 4.4.2 and subsection 4.4.4 analyze the
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properties of physical linear equality constraints and linear inequality constraints in AML

respectively and present the adversarial algorithms.

4.4.1 Universal Adversarial Measurements

Algorithm 2: Universal Adv-Measur Algorithm

1 Input: fθ, MU , MC , λ, Y , MaxItera
2 Output: M∗

3 function uniAdvMeasur(fθ,MU,MC , λ, Y,MaxItera)
4 initialize ∆ = 0

5 build set MUC =
{
MC|U0 ,MC|U1 , ...,MC|UN

}
6 set counter cycNum = 0
7 while cycNum < MaxItera do
8 set flag to 0
9 for MC|Ui

in MUC do
10 ∆ = onePerturGenAlgorithm(∆,MC|Ui

)
11 if sampleEva(fθ, Y,MUC,∆) < λ then
12 set flag to 1
13 break

14 end

15 end
16 if flag equals 1 then
17 break
18 end
19 cycNum++

20 end
21 return M∗ = M + ∆

22 end

We first deal with the challenge of the attacker’s limited knowledge on the uncompromised

measurements MU . This challenge is difficult to tackle since the complete measurement

vector M is needed to obtain the gradient values in many AML algorithms [35, 89, 75, 55, 76]

. In 2017, Moosavi-Dezfooli et al. proposed the universal adversarial perturbation scheme

which generates image-agnostic adversarial perturbation vectors [76]. The identical universal

adversarial perturbation vector can cause different images to be misclassified by the state-of-

the-art ML-based image classifiers with high probability. The basic philosophy of [76] is to
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iteratively and incrementally build a perturbation vector that can misclassify a set of images

sampled from the whole dataset.

Algorithm 3: Sample Evaluation

1 Input: fθ, Y , MUC, ∆
2 Output: Classification Accuracy
3 function sampleEva(fθ, Y,MUC,∆)
4 add perturbation ∆ to all vectors in MUC
5 evaluate MUC with fθ and label Y
6 return the classification accuracy of fθ(MUC)

7 end

Inspired by their approach, we now present our universal adversarial measurements

algorithm. We define an ordered set of N sampled uncompromised measurements MU ={
MU0 ,MU1 , ...,MUN−1

}
, and use MC|Ui

to denote the crafted measurement vector from

MC and the sampled uncompromised measurement vector MUi
. Here, MC|Ui

is a crafted

measurement vector with
∥∥MC|Ui

∥∥ = d. The uncompromised measurement vectors in MU

can be randomly selected from the attacker’s alternative dataset.

Algorithm 2 describes a high-level approach to generate adversarial perturbations

regardless of uncompromised measurements. The algorithm first builds a set of crafted

measurement vector MUC based on MU and MC , and then starts an iteration over MUC.

The iteration process is limited to MaxItera times to control the maximum time cost. The

purpose is to find a universal ∆ that can cause a portion of the vectors in MUC misclassified

by fθ. The function sampleEva described in Algorithm 3 evaluates MUC and Y with the

ML model fθ and returns the classification accuracy. λ ∈ (0, 1] is a constant chosen by

the attacker to determine the attack’s success rate in MUC according to ∆. During each

searching iteration, algorithm 2 builds and maintains the perturbation ∆ increasingly using

an adversarial perturbation generation algorithms, as shown by Line 10 in Algorithm 2. We

will propose our methods to handle this problem in the next subsections.

Figure 4.4 presents a simple illustration of the iteration process in Algorithm 1. We

assume there are three sensors’ measurements M = [m0,m1,m2] and only one sensor’s

measurement m0 = α is compromised by the attacker. The yellow, green and orange shallow

areas in the plane M0 = α represent the possible adversarial examples of the crafted
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Figure 4.4: Iteration illustration.
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measurement vector MC|U0 , MC|U1 , and MC|U2 , respectively, where Ui are randomly

sampled measurements of uncompromised sensors (m1 and m2). The initial point M (red

F) iterates twice (r0 and r1) and finally reaches M∗ with the universal perturbation vector

∆. Therefore, M∗ is a valid adversarial example for all MC|Ui
(i ∈ {0, 1, 2}).

Comparison of Methods: Our approach is different from [76] in several aspects. First,

the approach proposed in [76] has identical adversarial perturbations for different ML

inputs while our approach actually generates distinct perturbations for each M . Second,

the approach in [76] builds universal perturbations regardless of the real-time ML inputs.

However, as the attacker has already compromised a portion of measurements, it is more

effective to take advantage of the obtained knowledge. In other words, our perturbations are

‘universal’ for MU but ‘distinct’ for M . Finally, the intrinsic properties of CPSs require

the attacker to generate a valid adversarial example within a sampling period while there is

no enforced limitation of the iteration time in [76].

4.4.2 Linear Equality Constraints Analysis

As shown in [35] and [89], the fundamental philosophy of AML can be represented as (4.5).

M∗ = M + ∆ = M + ε∇ML(fθ(M), Y ) (4.5)

However, directly following the gradient will not guarantee the adversarial examples meet

the constraints in (4.2) and (4.4). With the constraints imposed by the physical system, the

attacker is no longer able to freely add perturbation to original input using the raw gradient

of the input vector. In this subsection, we will analyze how the linear equality constraints

will affect the way to generate perturbation and use a simple example for illustration.

Under the threat model proposed in Section 4.3.2, the constraint of (4.3c) is always met

due to the properties of the physical systems. We then consider the constraint (4.3d).

Theorem 4.1. The sufficient and necessary condition to meet constraint (4.3d) is Φk×r∆C =

0.
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Proof. If we replace M∗
C in equation (4.3d) with equation (4.3b), we can get Φk×rM

∗
C =

Φk×r(MC+∆C) = Φk×rMC+Φk×r∆C = Φ̃. From equation (3c) we can learn that Φk×rMC =

Φ̃. Therefore, we have Φk×r∆C = 0 and prove Theorem 4.1.

From Theorem 4.1 we can also derive a very useful corollary, as shown below.

Corollary 4.2. If ∆C0, ∆C1, ..., ∆Cn are valid perturbation vectors that follow the

constraints, then we have ∆C′ =
∑n

i=0 ai ·∆Ci
is also a valid perturbation for the constraint

Φk×r.

Proof. We have Φk×r∆C′ = Φk×r
∑n

i=0 ai · ∆Ci
=
∑n

i=0 ai · Φk×r∆Ci
. Since ∆Ci

is a valid

perturbation vector and Φ∆Ci
= 0, we have Φk×r∆C′ = 0 and prove Corollary 4.2.

Theorem 4.1 indicates that the perturbation vector to be added to the original

measurements must be a solution of the homogeneous linear equations Φk×rX = 0. However,

is this condition always met? We present Theorem 4.3 to answer this question,.

Theorem 4.3. In practical scenarios, the attacker can always find a valid solution

(perturbation) that meets the linear equality constraints imposed by the physical systems.

Proof. Due to the intrinsic property of the targeted system, equation (3c) is naturally met,

which indicates that there is always a solution for the nonhomogeneous linear equations

Φk×rX = Φ̃. Accordingly, we have Rank(Φk×r) ≤ r. Moreover, if Rank(Φk×r) = r, there will

be one unique solution for equation (4.3c), which means the measurements of compromised

sensors are constant. The constant measurements are contradictory to the purpose of

deploying CPSs. In practical scenarios, M is changing over time, so that Rank(Φk×r) < r

and the homogeneous linear equation Φk×rX = 0 will have infinite solutions. Therefore, the

attacker can always build a valid adversarial example that meets the constraints.

We utilize a simplified example to illustrate how the constraints will affect the generation

of perturbations, as shown in Figure 4.5. According to 4.5, measurement M should move a

small step (perturbation) to the gradient direction (direction 1 in Figure 4.5) to increase the
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loss most rapidly. However, as shown by the contour lines in Figure 4.5, the measurement

M is always forced to be on the straight line y = 2 − 2x, which is the projection of the

intersection of the two surfaces. Accordingly, instead of following the raw gradient, M

should move forward to direction 2 to increase the loss. Therefore, although at a relatively

slow rate, it is still possible for the attacker to increase the loss under the constraints.

4.4.3 Adversarial Example Generation under Linear Equality

Constraint

The common method of solving optimization problems using gradient descent under

constraints is projected gradient descent (PGD). However, since neural networks are generally

not considered as convex functions [21], PGD cannot be used to generate adversarial examples

directly. We propose the design of a simple but effective search algorithm to generate the

adversarial examples under physical linear equality constraints.

Algorithm 4: Best-Effort Search (Linear Equality)

1 Input: ∆, fθ, C, M , step, size, Φ, Y
2 Output: v
3 function genEqPer(∆, fθ, C,M, step, size,Φ, Y )
4 initialize v = ∆
5 initialize stepNum = 0
6 while stepNum ≤ step− 1 do
7 if f ′θ′(M + v) doesn’t equals Y then
8 return v
9 end

10 r = eqOneStep(fθ, C,M + v, size,Φ, Y )
11 update v = v + r
12 stepNum = stepNum+ 1

13 end
14 return v

15 end

As discussed in subsection 4.4.2, the perturbation ∆C needs to be a solution of Φk×rX =

0. We use n = Rank(Φk×r) to denote the rank of the matrix Φk×r, where 0 < n < r. It

is obvious that the solution set of homogeneous linear equation Φk×rX = 0 will have r − n

basic solution vectors. We use I = [i0, i1, ..., ir−n−1]T to denote the index of independent
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Figure 4.5: Linear equality constraint illustration.
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variables in the solution set, D = [d0, d1, ..., dn−1]T to denote the index of corresponding

dependent variables, and Bn×(r−n) to denote the linear dependency matrix of XI and XD.

Clearly, we have XDn×1 = Bn×(r−n)XI(r−n)×1
. For convenience, we will use [I,D,B] =

dependency(Φk×r) to describe the process of getting I, D, B from matrix Φk×r.

As shown in Algorithm 4, the function genEqPer takes ∆ as an input and outputs a

valid perturbation v for M . Algorithm 4 keeps executing eqOneStep for multiple times

defined by step to generate a valid v increasingly. Function eqOneStep performs a single-

step attack for the input vector and returns a one-step perturbation r that matches the

constraints defined by Φ, which is shown in Algorithm 5. Due to Corollary 4.2, ∆ and v will

also follow the constraints. To decrease the iteration time, similar to [75], the algorithm will

return the crafted adversarial examples immediately as long as f ′θ′ misclassifies the input

measurement vector M + v, as shown by Line 7 in Algorithm 3.

Algorithm 5: One Step Attack Constraint ∆C

1 Input: fθ, C, M , size, Φ, Y
2 Output: r
3 function eqOneStep(fθ, C,M, size,Φk×r, Y )
4 calculate gradient vector G = ∇ML(fθ(M), Y )
5 set all elements of GU in G to zero
6 define G′ = GC

7 obtain tuple [I,D,B] = dependency(Φk×r)
8 update G′D = BG′I in G′

9 ε = size/max(abs(G′))
10 return r = εG

11 end

The philosophy of function eqOneStep in algorithm 5 is very straightforward. From

the constraint Matrix Φ, we can get the independent variables I, dependent variables D

and the dependency matrix B between them. We will simply keep the gradient values of I

and use them to compute the corresponding values of D (Line 7) so that the final output

perturbation r will follow Φ. The constant factor size defines the largest modification the

attacker can make to a specific measurement to control the search speed.
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4.4.4 Adversarial Example Generation under Linear Inequality

Constraint

Algorithm 6: Non-Constraint Perturbation.

1 Input: f ′θ′ , U , M , size, Y
2 Output: r
3 function freeStep(f ′θ′ , U,M, size, Y )
4 calculate gradient vector G = ∇ML(f ′θ′(M), Y )
5 set elements in GU to zero
6 ε = size/max(abs(G))
7 return r = εG

8 end

Linear inequality constraints are very in real-world CPS applications, like the water

flow constraints in Figure 4.3. Due to measurement noise, real-world systems usually

tolerate distinctions between measurements and expectation values as long as the distinctions

are smaller than predefined thresholds, which also brings inequality constraints to data.

Meanwhile, a linear equality constraint can be represented by two linear inequality

constraints. As shown in equation (4.4), linear inequality constraints define the valid

measurement subspace whose boundary hyper-planes are defined by equation (4.2). In

general, the search process under linear inequality constraints can be categorized into two

situations. The first situation is when a point (measurement vector) is in the subspace and

meets all constraints, while the second situation happens when the point reaches boundaries.

Due to the property of physical systems, the original point M will naturally meet all the

constraints. As shown in Algorithm 7, to increase the loss, the original point will first try

to move a step following the gradient direction through the function freeStep defined in

Algorithm 6. Algorithm 6 is very similar to the FGM algorithm [89] but no perturbation

is added to MU , namely rU = 0, which is similar to the saliency map function used in

[84]. After that, the new point M ′ is checked with equation (4.4) to find if all inequality

constraints are met. If all constraints were met, the moved step was valid and we can update

M = M ′. If M ′ violates some constraints in Φ, we will take all the violated constraints and

make a real-time constraint matrix ΦV , where V is the index vector of violated constraints.

We now convert the inequality constraint problem to the equality constraint problem with
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Algorithm 7: Best-Effort Search (Linear Inequality)

1 Input: ∆, f ′θ′ , C, U , M , step, size, Φ, Φ̃, Y
2 Output: v

3 function genIqPer(∆, f ′θ′ , C, U,M, step, size,Φ, Φ̃, Y )
4 initialize pioneer = ∆, valid = pioneer
5 initialize stepNum = 0
6 initialize V as empty // violated constrain index
7 while stepNum ≤ step− 1 do
8 if f ′θ′(M + valid) doesn’t equals Y then
9 break

10 end

11 chkRst = chkIq(Φ, Φ̃,M + pioneer, C)
12 if chkRst is empty then
13 valid = pioneer
14 r = freeStep(f ′θ′ , U,M + valid, size, Y )
15 pioneer = valid+ r
16 reset V to empty

17 else
18 extend V with chkRst
19 define Φ′ = ΦV // real-time constraints
20 r = eqOneStep(f ′θ′ , C,M + valid, size,Φ′, Y )
21 pioneer = valid+ r

22 end
23 stepNum = stepNum+ 1

24 end
25 return v = valid

26 end
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the new constraint matrix ΦV and the original point M . M will then try to take a step

using the eqOneStep function described in Algorithm 5 with the new constraint matrix

ΦV . Again, we check whether the new reached point meets all the constraints. If there are

still violated constraints, we extend V with the new violated constraints. The search process

repeats until reaching a valid M ′ that meets all the constraints. For simplicity, we will use

chkRst = chkIq(Φ, Φ̃,M ′, C) to denote the checking process of a single search in one step

movement, where chkRst is the index vector of the violated constraints in the search.

Similar to Figure 4.5, a simple example is shown in Figure 4.6. To increase the loss,

the initial point a will take a small step following the gradient direction and reach point b.

Since b meets the constraints, it is a valid point. After that, b will move a step following the

gradient direction and reach point c′. However, point c′ violates the constraint β and the

movement is not valid. As we have point b is valid, we construct a linear equality constraint

problem with constraint α which is parallel to β. With constraint α, point b will move a step

to point c which is also a valid point. Point c then repeats the search process and increases

the loss gradually. The real-time equality constraint is only used once. When a new valid

point is reached, it empties the previous equality constraints and tries the gradient direction

first.

4.5 Experimental Evaluation

In this section, we evaluate our ConAML frameworks in CPS control domain with three

different CPS applications, including incident detection in transportation system, false data

injection attack in power system state estimation, and anomaly detection in water treatment

systems. We analyze and examine the practical requirements for launching adversarial

attacks in the three CPS applications, and summarize the corresponding constraints in Table

4.2.

From Table 4.2, we can learn that the attacker needs to overcome all constraints for

power grids and water systems CPSs in our study case, while the knowledge constraint is

released for the transportation study case.
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Figure 4.6: Best-Effort Search (linear inequality).

Table 4.2: Study Case Constraints

Constraints Transportation Power Grids Water Systems
Model Constraint F F F
Sensor Constraint F F F

Knowledge Constraint F F
Physical Constraint F F F

Time Constraint F F F
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We will present the detailed attack scenarios for each study case in the subsections. The

deep learning models are implemented using Tensorflow and the Keras library and are trained

on a Windows 10 machine with an Intel i7 CPU.

4.5.1 Case Study: Incident detection in transportation systems

Background: Deep learning-based incident detection

Traffic incidents can be a great threat to people’s lives and property, and timely incident

detection is very important for life-saving. On the other hand, with the development

of the Intelligent Transportation System (ITS), different sensing techniques are employed

in highways and provides massive heterogeneous data that contains the real-time traffic

information, such as average speed, total traffic flow, and average occupancy. With big data

techniques, the high granularity traffic data can be taken advantage of for many important

applications in ITS, such as traffic prediction [117, 64, 100] and incident detection.

In recent years, deep neural networks have been widely studied to be the key techniques

for incident detection [40, 62, 115, 87, 86, 120] . For example, an LSTM model can learn the

time-series pattern of the traffic information changing when an incident happens. With fine

tunned parameters, the DNNs achieve state-of-the-art performance in transportation system

incident detection.

Adversarial attacks for DNN-based incident detection

In general, the incident detection DNNs can be considered as a binary classifier, with the

input features contains the traffic information (speed). The DNN will predict if there is

an incident in the given timeslot based on the real-time speed data. The main metrics to

evaluate the performance of a trained incident detection DNN is are detection rate and false

alarm.

The state-of-the-art models in the literature can achieve an around 90% detection rate

and below around 10% false alarm rate. In this study case, we consider the attack scenario

that a malicious attacker aims to disable the availability of the DNN-based incident detection

in a transportation system. The adversarial attacker would launch a false-positive attack
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that aims to deceive the incident detection DNN to predict the wrong result (incident) based

on the normal traffic data.

As demonstrated in Table 4.2, the adversarial attacker of incident detection needs to

overcome model constraint, sensor constraint, physical constraint, and time constraint. We

assume the attacker can compromise a portion of speed sensors in a highway and can freely

modify the measurements of the compromised sensors. Meanwhile, due to the continuous

property of the highway, the difference between the speed measurements of adjacent sensors

should be small, namely the Physical Constraint is ‖Si,t − Si−1,t‖ ≤ ε, where ε is a constant

defined by the traffic condition. However, many transportation systems make the real-

time speed measurements public available, which enables the attacker to know the real-time

measurements of uncompromised speed sensors. Therefore, there is no knowledge constraint

for the adversarial attacker who targets transportation system CPSs.

Simulation Evaluation

Dataset: Different datasets were used in previous literature. In this study case, we study the

traffic data of US I-880 N highway. On the one hand, it was used in previous research [30, 40].

On the other hand, the California Department of Transportation provides a convenient public

portal for traffic data collection, and the incident data and traffic data of I-880 N highway

are publicly available on the Caltrans Performance Measurement system (PeMS) [82].

We collected all the I-880 N incident data of the year 2017, the incident types in the

data include traffic collision, hit and run injury, car fire, traffic break, animal hazard, and

construction. We collect 7,111 incident data records in total. We then collected the related

traffic speed data from 98 sensor stations in I-880 N. The sensors report the average speed

of the monitoring every five minutes. For incident that happened in slot n, we collected the

corresponding speed data from time slot n − 2 to time slot n + 2, and the regulated speed

data structure is demonstrated by Fig. 4.7. We label all incident traffic data records as 0.

We then randomly sample 7,111 normal traffic data records and label them as 1.

Incident detection DNN: LSTM DNNs are widely employed for incident detection in

previous literature since they have intrinsic advantages in learning the time-series data [115,

40]. In this case study, we train two LSTM DNNs for the defender and the attacker with
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the regulated DNN described above for traffic data classification, and the structures of two

DNNs are demonstrated in Tabel 4.3. We randomly split the dataset into the training part

(85%) and the testing part (15%). Both models are trained with a 0.0001 learning rate, 512

batch size, a mean squared error loss function, and a Stochastic Gradient Descent (SGD)

optimizer. Finally, the defender’s DNN achieves an 87.4% detection rate with 10.1% false

alarm rate while the attacker DNN’s detection rate is 86.5% and the false alarm rate is 9.7%.

Adversarial Attacks: We examine the traffic speed data of I-880 N highway, and set the ε =

8.5 for the physical constraint. The I-880 N highway has 98 speed sensors in the DNN systems

in total. In our simulations, we assume there are 5, 10, 15, 20 sensors being compromised

by the adversarial attacker respectively, and the sensors are randomly selected. We launch

the adversarial attack to the defender’s detection DNN with our ConAML algorithm, and

the result is demonstrated in Table 4.4.

From Table 4.4, we can learn that our adversarial attack can significantly increase the

false positive rate of the detection DNN with small modifications to the speed measurements.

In general, with more sensors being compromised, the attacker can have a better attack

performance.

4.5.2 Case Study: False Data Injection Attack Detection in Power

System State Estimation

Background: State Estimation and FDIA

Power grids are critical infrastructures that connect power generation to end customers

through transmission and distribution grids. In recent decades, the rapid development of

technologies in sensors, communication, and computing enables various applications in the

power grid. However, as the power system becomes more complex and dependent on the

information and communications technology, the threat of cyber-attacks also increases, and

the cyber-power system becomes more vulnerable [98, 101]. The cyberattack to the Ukraine

power grid in 2015 is a well-known example [63].
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Figure 4.7: Speed Data Structure

Table 4.3: Incident Detection LSTM

Layer 1 2 3 4
Defender 16 LSTM 16 LSTM 0.25 Dropout 2 Softmax
Attacker 24 LSTM 0.25 Dropout 2 Softmax -

Table 4.4: Incident Detection Evaluation Result

Case False Positive Rate Ave L1-Norm (mile/h)
5 82.8% 5.9
10 71.4% 6.3
15 83.7% 7.1
20 87.7% 2.8
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State estimation is a backbone of various crucial applications in power system control that

has been enabled by large scale sensing and communication technologies, such as SCADA.

Generally speaking, the state estimation is used to estimate the state of each bus, such as

voltage angles and magnitudes, in the power grid through analyzing other measurements.

We denote the vector of state variables as x = [x1, x2, ..., xn]T , and the meters’

measurements vector as z = [z1, z2, ..., zm]T , where xi ∈ R and zj ∈ R. The general state

estimation process can then be represented as follow:

z = h(x) + e (4.6)

where e is the measurement error vectors and h is a function of x. In practice, a simplified

DC power flow state estimation can be used to decrease the process time cost. A DC model

can then be represented as equation (4.7).

z = Hx + e (4.7)

The matrix Hm×n is determined by the configurations, topology and physical parameters

of the power system.

In general, a weighted least squares estimation (WLS) approach is used to solve equation

(4.7). The estimated state vector x̂ can then be computed through equation (4.8):

x̂ = (HTWH)−1HTWz (4.8)

where matrix W is the covariance matrix of the meters’ statistical measurement errors.

The measurements z may contain bad measurements due to possible meter errors or cyber

attacks. Therefore, state estimation usually integrates with a linear residual-based detection

approach to remove faulty measurements according to the difference between z and Hx̂. If

the L2-norm of ‖z−Hx̂‖ is larger than a threshold τ that is selected according to a false

alarm rate, the measurement z will be considered as polluted and be removed.

The residual-based detection involves non-linear computation (L2-Norm), however,

research has shown that a false measurement vector follows linear equality constraints can

be used to pollute the normal measurements without being detected. In 2009, Liu et al.
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proposed the false data injection attack (FDIA) that can bypass the residual-based detection

scheme and finally pollute the result of state estimation [66]. In particular, if the attacker

knows H, she/he could construct a faulty vector a that meets the linear constraint Ba = 0,

where B = H(HTH)−1HT−I, and the crafted faulty measurements z+a will not be detected

by the system, as demonstrated below.

The FDIA enables an attacker to generate a false measurement vector a = [a1, a2, ..., am]T

to be added to legitimate measurement z, so that the polluted measurements will be za =

z + a. The original FDIA proposed in [66] shows that if the attacker knows the matrix

H, she/he can construct a = Hc (c represents the estimation error) that can bypass the

fault detection in state estimation, as shown by equation (4.9), where x̂bad and x̂ denote the

estimated x using za and z respectively.

‖za −Hx̂bad‖ = ‖z + a−H(x̂ + c)‖ (4.9a)

= ‖z−Hx̂ + (a−Hc)‖ (4.9b)

= ‖z−Hx̂‖ ≤ τ (4.9c)

Meanwhile, equation (4.10) from [66] provides an efficient way to generate a valid vector

a, where P = H(HTH)−1HT and matrix B = P− I.

a = Hc ⇔ Pa = PHc⇔ Pa = Hc⇔ Pa = a (4.10a)

⇔ Pa− a = 0⇔ (P− I)a = 0 (4.10b)

⇔ Ba = 0 (4.10c)

Equation (4.10c) indicates that a is a solution of the homogeneous equation BX = 0. If

an attacker compromised k measurements in z, and there will be k non-zero elements in a.

Equation (4.10c) will then become:
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B’a’ = 0 (4.11)

where B’m×k and a’m×k are corresponding columns and rows sampled from B and a

respectively according to the k compromised measurements. Liu et al. proved that as long

as k > m− n, non-zero a always exists.

As FDIA presented a serious threat to the power grid security, many detection and

mitigation schemes to defend FDIA are proposed, including strategical measurement

protection [12] and PMU-based protection [112]. In recent years, detection schemes

based on ML, especially neural networks, have been proposed and become popular

[83, 111, 44, 47, 10, 81, 105] in the literature. The ML-based detection does not require

extra hardware equipment and achieve the state-of-the-art detection performance. However,

in this section, we will demonstrate that ML approaches are vulnerable to ConAML. The ML

models in previous research are trained to distinguish normal measurement z and poisoned

measurement z + a. Our ConAML algorithms allow the attacker to generate an adversarial

perturbation v that meets the constraint Bv = 0 for his/her original false measurement

z + a and obtain a new false measurement vector zadv = z + a + v that will be classified as

normal measurements by the ML-based FDIA detection models. The matrix B then acts

as the constraint matrix Φ defined in equation (4.3). Meanwhile, zadv can naturally bypass

the traditional residual-based detection approach since the total injected false vector a + v

meets the constraint B(a + v) = Ba + Bv = 0. Our experiment in the next subsection will

show that our ConAML algorithms can significantly decrease the detection performance of

the ML-based detection schemes.

Experiment Design and Evaluation

We select the IEEE standard 10-machine 39-bus system as the power grid system as it is one

of the benchmark systems in related research. The structure of the IEEE 39-bus system is

shown in Figure 4.8. The features used for ML model training are the power flow (Ampere)

measurements of each branches. The system has 46 branches so that there there will be 46

features for the ML models.
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In our experiment, the goal of the attacker is to implement a false negative attack that

makes the polluted measurements zadv pass the detection of the ML models, namely to fool

the models to misclassify the false measurements as normal.

We utilize the MATPOWER [121] library to derive the H matrix of the system and

simulate the power flow measurement data. We also implement the FDIA using MATLAB

to generate false measurements. Both the power flow measurements and false measurements

follow Gaussian distributions. We make two datasets for the defender and the attacker

respectively. For each dataset, there are around 25,000 records with half records are polluted

with FDIA. We label the normal measurements as 0 and false measurements as 1 and use

one-hot encoding for the labels.

We investigate the scenarios that there are 10, 13, and 15 measurements being

compromised by the attacker, with the randomly generated compromised index vector C

and corresponding constraint matrix Φ (BC in (4.11)). We generate 1,000 false measurement

vectors in each test datasets.

After that, we train two deep learning models based on the training datasets accordingly,

with 75% records in the dataset used for training and 25% for testing. We use simple fully

connected neural networks as the ML models, as shown in Table 4.5. Both the models are

trained with a 0.0001 leaning rate, 512 batch size, and a mean squared error loss function.

The training process is around one minutes for each model.

Table 4.6 summarizes the detection performance of fθ under adversarial attacks generated

by our ConAML algorithms. From the table, we can learn that the ConAML attacks can

effectively decrease the detection accuracy of the ML models used for FDIA detection and

inject considerable bad data to the power systems. In all three study cases, the detection

accuracy of the defender’s model decreased to below 30% under the adversarial attacks.

Meanwhile, we can observe that the L2-Norm are very large, especially for the ’15’ study

case.

As shown in Figure 4.9, by comparing the evaluation results of different cases, we can learn

that compromising more sensors cannot guarantee better performances in attack detection.

This is due to the different physical constraints imposed by the system. However, with more

compromised sensors, the attacker can usually obtain a larger size of the injected bad data.
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Figure 4.8: IEEE 39-Bus System [8] [29].

Table 4.5: Model Structure - FDIA

Layer f f ′

0 46 Input 46 Input
1 32 Dense ReLU 30 Dense ReLU
2 48 Dense ReLU 40 Dense ReLU
3 56 Dense ReLU 30 Dense ReLU
4 48 Dense ReLU Dropout 0.25
5 32 Dense ReLU 20 Dense ReLU
6 Dropout 0.25 Dropout 0.25
7 16 Dense ReLU 2 Dense Softmax
8 Dropout 0.25 -
9 2 Dense Softmax -

Table 4.6: Evaluation Result Summary

Attack Case Accu L2-Norm Time (ms)

black-box
10 14.4% 1843.2 131.9
13 4.3% 4786.72 209.6
15 28.1% 9079.02 163.3

73



In our experiments, the time cost is relatively higher due to the universal adversarial

measurements algorithm, as shown in Figure 4.10. However, the time cost is still efficient

for many CPS applications in practice. For example, the sampling period of the traditional

SCADA system used in the electrical power system is 2 to 4 seconds. In practical scenarios,

the time cost of adversarial example generation depends on the computational resource of

the attacker. With the possible optimization and upgrade in software and hardware, the

time cost can be further reduced.

4.5.3 Case Study: Water Treatment System

Background: SWaT Dataset

We study the linear inequality physical constraints based on the Secure Water Treatment

(SWaT) proposed in [34]. SWaT is a scaled-down system but with fully operational water

treatment functions. The testbed has six main processes and consists of cyber control (PLCs)

and physical components of the water treatment facility. The SWaT dataset, generated by

the SWaT testbed, is a public dataset to investigate the cyber attacks on CPSs. The raw

dataset has 946,722 samples with each sample comprised of 51 attributes, including the

measurements of 25 sensors and the states of 26 actuators. Each sample in the dataset was

labeled with normal or attack. The detailed description of the SWaT dataset can be found

in [34] and [56].

The SWaT dataset is an important resource to study anomaly detection in CPSs. In

2017, Inoue et al. used unsupervised machine learning, including Long Short-Term Memory

(LSTM) and SVM, to perform anomaly detection based on the SWaT dataset [45]. By

comparison, Kravchik et al. employed Convolutional Neural Networks (CNN) and achieved

a better false positive rate [53]. In 2019, [28] proposed a data-driven framework to derive

invariant rules for anomaly detection for CPS and utilized SWaT to evaluate their approach.

Other research related to the SWaT dataset can be found in [18, 27, 5].

As shown in Table 4.7, the SWaT dataset includes the measurements from five kinds of

analog components (25 sensors in total) whose measurements are used as the input features

in previous anomaly detection ML models. Our experiments aims to demonstrate that the
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Figure 4.10: Time cost of black-box attacks according to λ with step = 40, size = 20.

Table 4.7: SWaT Analog Components

Symbol Description Unit
LIT Level Indication Transmitter mm
FIT Flow Indication Transmitter m3/hr
AIT Analyzer Indication Transmitter uS/cm
PIT Pressure Indication Transmitter kPa

DPIT Differential Pressure Ind Transmitter kPa
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ML models used for anomaly detection are vulnerable to adversarial attacks. However,

due to the physical properties of the SWaT testbed, the sensor’s measurements are not

independent but with linear inequality constraints.

In our experiment, we consider the scenario that the adversarial attacker compromises

the FIT components to inject bad adversarial water flow measurements while bypassing the

ML-based anomaly detection system. We then examined the SWaT testbed structure and

find out that there are apparent linear inequality constraints among the FIT measurements.

We checked the SWaT dataset and observed that all the normal examples in the dataset

meet the constraints. We also contacted the managers of the SWaT testbed and verified our

find. The linear inequality constraints of the seven FIT measurements in the dataset are

defined by the structure of the water pipelines and the placement of the sensors, as shown

in equation 4.12, where ε1 and ε2 are two constants of the system’s noise tolerance. We

utilized the double value of the maximum difference of the corresponding measurements in

the SWaT dataset to estimate ε1 and ε2, and we had ε1 = 0.0403 and ε2 = 0.153. Therefore,

the adversarial measurements should also follows the same linear inequality constraints to

avoid being noticed by the system operator.

FIT301 ≤ FIT201 (4.12a)

‖FIT401− FIT501‖ ≤ ε1 (4.12b)

‖(FIT502 + FIT503)− (FIT501 + FIT504)‖ ≤ ε2 (4.12c)

Based on (4.4), we can represent (4.12) as follow. And MC is the vector of measurements

of FIT201, FIT301, FIT401, FIT501, FIT502, FIT503 and FIT504 accordingly.

Experimental Design and Evaluation

Similar to the power system study case, we generate two training datasets for the defender’s

model fθ and the attacker’s model f ′θ′ respectively by poisoning the normal measurements
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with Gaussian noise. The ML models is trained to distinguish the normal measurement data

and the poisoned measurements (anomaly).

Φ5×7 =



−1 1 0 0 0 0 0

0 0 1 −1 0 0 0

0 0 −1 1 0 0 0

0 0 0 −1 1 1 −1

0 0 0 1 −1 −1 1


Φ̃ =



0

0.0403

0.0403

0.153

0.153


In the Swat dataset, we extracted the normal records which were sampled when the whole

system was working steadily. We also removed all the actuators’ features. Here, we denote

the extracted records as De. After that, we randomly picked out three test datasets from

De as the with each test dataset contains 1000 records. We added Gaussian noise to the

compromised measurements of records in all test datasets. We checked the polluted record

every time when a noise vector was added to ensure all the records in test datasets meet

the linear inequality constraints. Here, we denote the rest records of De as Dtrain which

contains 120,093 records with each record having 25 features in our implementation. We

randomly and equally split Dtrain into Ddefender and Dattacker for the defender and attacker

respectively and pollute half records with normally-distributed random noise in Dtrain and

Ddefender. The polluted records in Ddefend and Dattacker are labeled with 1 and the rest with

0. We allow the records in Dtrain and Ddefend with label 1 to violate the constraints since

the ML models are also expected to detect the obviously anomalous measurements.

We utilize Ddefend and Dattack to train the ML models fθ and f ′θ′ for the defender and

attacker respectively. Again, 75% records in the both datasets were used for training the 25%

records for testing during the training process. Similar to FDIA experiment, we utilize fully

connected neural networks and the structures are shown in Table 4.8. Through parameter

tuning, model fθ and f ′θ′ achieves 97.2% and 96.7% accuracy respectively.

After that, we consider the scenarios that there were 2, 5, and 7 FIT measurements

compromised by the attacker and generate the related test datasets. The goal of the attacker

is to generate the adversarial FIT measurements with the linear inequality constraints
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defined by equation (4.12) so that the poisoned measurements can be classified as ‘normal’

by the defender’s ML model fθ.

Table 4.9 summarizes the evaluation performances of ConAML attacks. From the table,

we can learn that the ConAML framework can still effectively decrease the detection accuracy

of the ML models for black-box attacks. Similar to the power system study case, a larger

number of compromised sensors cannot produce a better performance in bypassing the

detection. The reason for this result is that more compromised sensors will also have more

complex constraints between their measurements. Meanwhile, more constraints will increase

the computation overhead of the best effort search algorithms since there will be a ‘larger’

constraint matrix.

Figure 4.11 demonstrated the trend of the detection accuracy and injected bad data size

according to λ. From the figure, we can learn that, with the λ increases, the probability

of the adversarial examples being detected also increases. This matches the intuition that

if an adversarial example can obtain higher successful attack probability with the sampling

measurement set, the probability of evading detection will also increase. Meanwhile, a smaller

injected data size is expected to make the adversarial examples look more ‘normal’ to the

detection model.

4.6 Extension: Non-Linear Constraints

Many other machine learning-based applications in the CPS domains, for instance, load

forecasting in power and water systems, traffic forecasting in transportation systems, have

nonlinear constraints. The non-linear constraints can be very complex in various CPSs and

cannot be covered in one study.

In general, similar to linear constraints, the k nonlinear constraints of the compromised

measurements can be represented as equation (4.13), where µi is a nonlinear function of MC .

We now investigate a special case of the nonlinear constraints. If there exists a subset

of the compromised measurements, in which each measurement can be represented as an

explicit function of the measurements in the complement set, the attacker will also be able
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Table 4.8: Model Structure - Water Treatment

Layer f f ′

0 25 Input 25 Input
1 20 Dense ReLU 24 Dense ReLU
2 40 Dense ReLU 32 Dense ReLU
3 30 Dense ReLU 32 Dense ReLU
4 Dropout 0.25 16 Dense ReLU
5 20 Dense ReLU 2 Dense Softmax
6 Dropout 0.25 -
7 2 Dense Softmax -

Table 4.9: Evaluation Result Summary

Attack Case Accu L2-Norm Time (ms)

black-box
2 1.3% 0.309 17.5
5 2.3% 0.340 111.7
7 1.14% 0.411 451.8
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Figure 4.11: Performance of black-box attacks according to λ with step = 50, size = 0.06.
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to generate the perturbation accordingly. We use P = [p0, p1, ..., pn−1] to denote the

index vector of the former measurement set, and use Q = [q0, q1, ..., qr−n−1] to denote the

index vector of the complement set. We can then represent (4.13) as (4.14), where Ξ =

[ξ0, ξ1, ..., ξn−1] is a vector of explicit functions.



µ0(mc0 ,mc1 , ...,mcr−1) = 0

µ1(mc0 ,mc1 , ...,mcr−1) = 0

...

µk−1(mc0 ,mc1 , ...,mcr−1) = 0

(4.13)



mp0 = ξ0(mq0 ,mq1 , ...,mqr−n−1)

mp1 = ξ1(mq0 ,mq1 , ...,mqr−n−1)

...

mpn−1 = ξn−1(mq0 ,mq1 , ...,mqr−n−1)

(4.14)

Apparently, the roles of MQ and MP in (4.14) are similar to the MI and MD in linear

constraints correspondingly. Instead of a linear matrix, the function set Ξ represents the

dependency between MP and MQ. The nonlinear constraints make properties such as

Theorem 1 infeasible. To meet the constraints, the attacker needs to find the perturbation ∆Q

first and obtain M∗
Q by adding it to MQ. After that, the attacker can compute M∗

P = Ξ(M∗
Q)

.

The above case of nonlinear constraints is special and may not be scalable to various

practical applications. Although there are different types of nonlinear systems, they can be

generalized using piece-wise linear constraints by setting proper ranges and breakpoints. We

leave this as an open problem for future work.
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Chapter 5

Adversarial Defense in CPS: Random

Padding Framework

In this chapter, we study the defense mechanisms for adversarial attacks in cyber-physical

systems. We review and study several state-of-the-art defense mechanisms proposed in the

computer vision domain, and analyze and evaluate their performance for CPS applications.

Meanwhile, we demonstrate that some state-of-the-art adversarial defense methods, such

as adversarial detection and input reconstruction, have intrinsic constraints for control

domain adversarial attacks. To solve this, we propose a random input padding framework.

Simulation evaluation shows that our framework can significantly decrease the effectiveness

of adversarial examples in both customer domain (energy theft detection) and control domain

(FDIA detection) adversarial attacks.

5.1 Defense Requirements

White-box adversarial attacks allow the attacker to have access to the target DNN, which

is a common setting in previous literature and has been extensively studied since it helps

researchers to learn the weakness of DNNs more directly [108]. Robust against white-box

adversarial attacks is the desired property that the DNNs should maintain [104], especially

for critical infrastructure. In particular, the cyberattacks targeting critical CPSs are usually

nationwide and the attacker owns considerable resources, like the well-known Ukraine power
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grid attack in 2015 [63]. In this paper, we expect the defense mechanisms in DNN-based

control domain CPS application to be resilient to white-box adversarial attacks.

5.2 State-of-the-art Adversarial Defense Mechanisms

In this section, we review several state-of-the-art adversarial defense mechanisms, including

adversarial training, adversarial detection, and input reconstruction.

Adversarial Training

Adversarial training is one of the common methods to mitigate an adversarial attack [54,

91, 104]. The basic principle of adversarial training is to generate and include adversarial

examples in each data batch during the training stages. As the DNN is trained to recognize

adversarial examples, it becomes more robust.

Adversarial Detection

Adversarial detection aims to recognize adversarial examples at the DNN inference stage

[69, 73, 109]. In particular, a auxiliary binary classification DNN Fadv is trained with normal

records and corresponding adversarial examples [73] to detect if an input is an adversarial

example. The adversarial detection DNN Fadv will be employed first to recognize the input

records, and only the normal records will be fed into the original functional DNN.

Input Reconstruction

The input reconstruction mechanisms aim to recover the normal input records from possible

adversarial examples [38][72]. Typically, an autoencoder is used to reconstruct the model

inputs. Since the autoencoder is trained only with normal data records, it can learn the

overall distribution of the normal data. When an adversarial example is received, the

autoencoder can push the adversarial example to the manifolds of its legitimate records

[72]. Meanwhile, the divergence between the autoencoder’s input and output can also be

used as a metric for adversarial example detection.
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Figure 5.1: Adversarial Training

Figure 5.2: Adversarial Detection

Figure 5.3: Input Reconstruction
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5.3 State-of-the-art: Limitation Analysis

Through analysis, we find that the state-of-the-art defense mechanisms have intrinsic

limitations for adversarial defense in control domain CPS applications due to different attack

requirements and properties, as shown below:

Adversarial Training

Adversarial training needs to generate adversarial examples for each batch of data during

the training process, which increases the training computation overhead significantly. As

demonstrated by line 8 in Algorithm 5, to avoid being removed by the detection scheme, the

adversarial perturbations need to be projected to fit the constraint. The mapping process

will further significantly introduce computation overhead to the adversarial training process.

Therefore, adversarial training is not scalable to large systems that contain massive data

resources.

Adversarial Detection and Input Reconstruction

A common assumption of adversarial detection is that the adversarial examples follow a

different distribution from normal inputs. The assumption is reasonable in the computer

vision domain (the natural images will not contain the well-crafted perturbations) but not

applicable for control domain CPS applications.

As introduced in chapter 4, the manifold of the normal measurements can be represented

by the constraint Φk×rMC = Φ̃ empirically. To bypass the built-in detection of CPS

application, the adversarial examples are also required to meet the constraint Φk×rM
∗
C = Φ̃.

Intuitively, the crafted adversarial measurements share a similar manifold with the normal

measurements. Therefore, adversarial detection will not work effectively in control domain

CPS applications. This analysis can also be adapted to input reconstruction methods.
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5.4 Random Input Padding Framework

As discussed above, the adversarial defense in control domain CPS application is non-trivial

since the adversarial measurements share the same manifold as the normal measurements.

Given the victim model, the attacker generates the perturbation iteratively through a

gradient-based optimization process. As presented in [54], the perturbation generated

by multi-step attacks usually has worse transferability, which indicates that adversarial

perturbation is highly likely to be unique for each given data point in the adversarial attacks.

Therefore, there is an intuition that the perturbation will no longer work if the input to the

model changes. Inspired by the stochastic-based defense mechanisms in the computer vision

field [72][107], we propose a random input padding defense framework to mitigate the effect

of adversarial attacks in the control domain CPS applications.

The philosophy of our random input padding framework is straightforward, and the

overall structure is shown in Fig 5.4. A random padding layer is added in front of the

DNN in both training and inference stages. In general, the measurements of the sensors z

are used as the features to train the detection models. Our framework firstly requires the

operator to pick a padding dimension number P (P > m) as the input feature numbers for

the DNN. Thereafter, we pad P −m zeros randomly to the plain inputs z and there will be

P −m padding scenarios in total. The DNN is then required to learn the pattern from the

plain measurements that are embedded into the padded inputs during the training process.

During the inference stage, when a new measurement vector z is received, the framework

randomly pads z to a P dimensional vector and feeds the padded vector to the DNN. Ideally,

the detection rate against adversarial attacks should be 1 − 1
P−m+1

(P ≥ m). The padding

framework also works with possible input reshape, as shown in Fig 5.4.

As the padding process is random for each z at the inference stage, the attacker (and

even the operator) cannot know the final DNN padded input vectors even when she/he

knows the whole framework. For white-box attacks, the attacker will be able to generate

perturbations for one of the P −m padding scenarios. Since the multi-steps perturbations

have relatively weak transferability, the adversarial attacks should have a lower success rate

under the random padding framework. Intuitively, a larger P will decrease the success rate
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Figure 5.4: Illustration of random inputs padding framework
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of adversarial attacks and finally increase the robustness of the DNN used for control domain

CPS applications.

Different from [107], our framework requires input data pre-processing (padding) during

the training stage and cannot be applied to a trained model directly. This is because the

measurement data of a specific control domain CPS should follow the manifold defined by

the physical property of the system, which will be destroyed if the measurement vectors

are reshaped, resized, or sampled directly. Meanwhile, our framework only increases the

computation of the training process slightly and is compatible with different neural networks.

5.5 Simulation Evaluation

5.5.1 Customer Domain CPS application: Energy Theft Detec-

tion

We analyze the properties of adversarial measurements and energy theft measurements and

find that their distribution should be different. We then employ the t-Distributed Stochastic

Neighbor Embedding (t-SNE) tool to reduce the measurement vectors into 2-d vectors and

visualize their difference, as shown in Fig. 5.5.

From Fig. 5.5, we can learn that the manifolds of adversarial measurements and energy

theft measurements are different, which matches the assumptions of adversarial detection and

input reconstruction. We then generate a training dataset that contains 15,000 adversarial

measurement vectors and the same number of energy theft measurement vectors. We

use the dataset to train an auxiliary binary classifier DNN, and the DNN achieves over

98% classification accuracy. Therefore, adversarial detection can effectively distinguish

adversarial measurements. For input reconstruction, we trained an FNN autoencoder with

the normal energy theft measurements. After that, we feed the adversarial measurements to

the autoencoder first and forward the output of the autoencoder to the energy theft detection

DNN, the detection DNN then achieves over 97% detection accuracy.

We also evaluate the random padding framework, we train several LSTM DNNs with the

same structure with fRNN in Table 3.3 except for the input dimension (match the padding).
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Figure 5.5: Energy theft/adversarial measurements visualization (t-SNE dimensionality
reduction)

Figure 5.6: Detection recall of padded DNNs

Figure 5.7: Detection recall of padded DNNs under adversarial attacks
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We select LSTM DNNs in our simulation due to their detection performance. The evaluation

results are demonstrated in Fig. 5.6 and Fig. 5.7. From Fig. 5.7, we can learn that the

random padding framework significantly increases the robustness of DNNs under adversarial

attacks. In addition, from Fig. 5.6, we can learn that the padding process will not influence

the DNNs’ detection performance on normal inputs.

5.5.2 Control Domain CPS application: FDIA detection

We employ the algorithm described in [54] to evaluate the performance of adversarial

training in FDIA detection. We generate the adversarial measurements of all false records

in each batch during the training process with the real-time trained DNN and added them

to the training data. The training process takes 530 seconds to converge and achieves

98.5% overall detection accuracy and 99.2% detection recall of false measurements. For

comparison, the normal training process takes around 75 seconds to converge. Meanwhile,

we launch adversarial attacks to the adversarial trained DNN and the detection recall of

false measurements decreases to 15.6%. Therefore, adversarial training is not appropriate

for adversarial defense in FDIA detection.

We employ the adversarial detection methods described in [73] and generate the

adversarial examples of all false measurements in the original training dataset. We use

the original false measurements and their corresponding adversarial measurements to train a

binary classification DNN F adv. We empirically attempt different structures and parameters

of the F adv and observe that its performance is not reliable. The best classification accuracy

in our experiments is around 75%. As analyzed, we explain that this result is caused

by the similar manifolds shared between the false measurements za and the adversarial

measurements zadv. To verify our analysis, we utilize the t-SNE to visualize the manifolds

in 2-dimensions, as shown in Fig. 5.8. From Fig. 5.8, we can learn that the adversarial

measurements share a very similar manifolds with the normal false measurements. This

is due to the the physical property of the power system and the constraints. Therefore,

adversarial detection can not distinguish the adversarial measurements from model inputs

effectively in FDIA detection.
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Figure 5.8: FDIA adversarial measurements visualization (t-SNE dimensionality reduction)
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We utilize an autoencoder described in [72] and [38] to recover the general false

measurements from their adversarial measurements. Similar to adversarial detection, the

similar manifolds shared between the false measurements and adversarial measurements in

FDIA decreases the effectiveness of input construction. A basic FNN is trained as the

autoencoder fencoder with all records in Dtrain. We then evaluate the autoencoder loss of the

false measurements and adversarial measurements described in [72]. As shown in Fig. 5.9,

the loss of two kinds of measurement vectors is very close and difficult to separate.

We evaluate the defense performance of our random padding framework with three

different types of DNNs, including FNN, long short-term memory (LSTM, acts as RNN),

and CNN. We modify the number of the input neurons according to the padding number

P for all three DNNs. Meanwhile, we empirically select the kernel size of the CNN for

different P inputs in our experiments. The overall detection accuracy of three types of

DNNs under the random padding framework is shown in Fig. 5.10. We can learn that

with the padding number P increases, the detection accuracy of FNN and CNN decreases

gradually and becomes stable. The detection accuracy of FNN and CNN reaches aroung

96% and 95% respectively while RNN (LSTM) obtains a better performance (aorund 98%)

under the random padding framework.

Figure 5.11 demonstrates the adversarial resistance property of our random padding

framework. When there is no input padding (P = 46), all the models’ detection performances

drop to below 15%. However, with the increase of padding number P , the detection recall

increases significantly and trends become stable to specific ranges. From the figure, we can

learn that the FNN and RNN perform better than CNN in adversarial resistance. The best

performance of FNN is 79.7% (P = 70), and for RNN and CNN is 89.5% (P = 64) and 71.8%

(P = 70) respectively. Overall, our framework can remarkably increase the robustness of the

DNNs in FDIA detection compared with previous state-of-the-art approaches.
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Figure 5.10: Detection accuracy of random inputs padding framework.

Figure 5.11: Detection recall of random inputs padding framework under adversarial
attack.
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Chapter 6

Conclusions and Future Works

In this dissertation, we investigate the potential security problems of employing deep learning

techniques in cyber-physical system applications.

6.1 Conclusions

In chapter 2, we study the data privacy issues in cloud-assisted CPS data storage systems. We

propose a practical searchable symmetric scheme that enables the user to query keywords

from the encrypted ciphertext data. Compared with previous typical SSE methods, our

scheme achieves high space-efficiency with little information disclosure that is tolerated for

practical CPS applications.

In chapter 3, we study the adversarial machine learning in customer domain CPS

applications with the DNN-based energy theft detection. We summarize the specific

properties of the adversarial attacks and propose a practical threat model. We then

propose the SearchFromFree framework which contains a random initialization scheme to

maximize the attacker’s profit and a step-size iterative scheme to increase the transferability

of adversarial measurements. The evaluation based on a real-world smart meter dataset

shows that our framework allows the adversarial attacker to report extremely low power

consumption data to the utilities without being detected by the well-trained DNN models.

In chapter 4, we study adversarial machine learning in control domain CPS applications.

From the attacker’s perspective, we find that the control domain CPS applications propose
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more challenges for the adversarial attacker. The main constraints are 1) knowledge

constraints that prevent the attacker learning the measurements of uncompromised sensors

and 2) physical constraint that requires the adversarial examples to follow the inner

constraints defined by the physical system among the sensors. We then propose ConAML,

a framework for adversarial attacks to control domain CPS applications. We evaluate the

ConAML framework with three different applications and the result shows our framework

enables the attacker to generate effective adversarial examples under practical constraints.

In chapter 5, we investigate the defense mechanisms of adversarial attacks. We evaluate

the performance of several state-of-the-art defense mechanisms, including adversarial

detection, adversarial training, and input reconstruction. However, we find that they have

intrinsic limitations on defending against control domain adversarial attacks. To solve this,

we propose a random padding framework to increase the robustness of DNNs. The evaluation

based on both customer domain application (energy theft detection) and control domain

application (FDIA detection) shows that our framework is resistant to white-box adversarial

attack and outperforms the state-of-the-art approaches.

6.2 Future Research Directions

Based on the recent research on CPS security, we summarize the potential research directions:

• The SSE proposed in this dissertation can also be evaluated with other CPS

applications whose data requires high-level privacy, such as medical CPSs.

• A more accurate and reliable deep learning-based incident detection model is needed.

The current models can only indicate incidents of a highway, and more accurate models

that indicate the specific incident location will be studied in the future.

• The adversarial examples are inevitable as long as the DNNs are not perfect. Therefore,

more practical security solutions for practical CPS deep learning applications should

be studied. An example of the preferred solution can be specific sensor protection

schemes.
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