137 research outputs found

    Methods for improving entity linking and exploiting social media messages across crises

    Get PDF
    Entity Linking (EL) is the task of automatically identifying entity mentions in texts and resolving them to a corresponding entity in a reference knowledge base (KB). There is a large number of tools available for different types of documents and domains, however the literature in entity linking has shown the quality of a tool varies across different corpus and depends on specific characteristics of the corpus it is applied to. Moreover the lack of precision on particularly ambiguous mentions often spoils the usefulness of automated disambiguation results in real world applications. In the first part of this thesis I explore an approximation of the difficulty to link entity mentions and frame it as a supervised classification task. Classifying difficult to disambiguate entity mentions can facilitate identifying critical cases as part of a semi-automated system, while detecting latent corpus characteristics that affect the entity linking performance. Moreover, despiteless the large number of entity linking tools that have been proposed throughout the past years, some tools work better on short mentions while others perform better when there is more contextual information. To this end, I proposed a solution by exploiting results from distinct entity linking tools on the same corpus by leveraging their individual strengths on a per-mention basis. The proposed solution demonstrated to be effective and outperformed the individual entity systems employed in a series of experiments. An important component in the majority of the entity linking tools is the probability that a mentions links to one entity in a reference knowledge base, and the computation of this probability is usually done over a static snapshot of a reference KB. However, an entity’s popularity is temporally sensitive and may change due to short term events. Moreover, these changes might be then reflected in a KB and EL tools can produce different results for a given mention at different times. I investigated the prior probability change over time and the overall disambiguation performance using different KB from different time periods. The second part of this thesis is mainly concerned with short texts. Social media has become an integral part of the modern society. Twitter, for instance, is one of the most popular social media platforms around the world that enables people to share their opinions and post short messages about any subject on a daily basis. At first I presented one approach to identifying informative messages during catastrophic events using deep learning techniques. By automatically detecting informative messages posted by users during major events, it can enable professionals involved in crisis management to better estimate damages with only relevant information posted on social media channels, as well as to act immediately. Moreover I have also performed an analysis study on Twitter messages posted during the Covid-19 pandemic. Initially I collected 4 million tweets posted in Portuguese since the begining of the pandemic and provided an analysis of the debate aroud the pandemic. I used topic modeling, sentiment analysis and hashtags recomendation techniques to provide isights around the online discussion of the Covid-19 pandemic

    Weakly-supervised Fine-grained Event Recognition on Social Media Texts for Disaster Management

    Full text link
    People increasingly use social media to report emergencies, seek help or share information during disasters, which makes social networks an important tool for disaster management. To meet these time-critical needs, we present a weakly supervised approach for rapidly building high-quality classifiers that label each individual Twitter message with fine-grained event categories. Most importantly, we propose a novel method to create high-quality labeled data in a timely manner that automatically clusters tweets containing an event keyword and asks a domain expert to disambiguate event word senses and label clusters quickly. In addition, to process extremely noisy and often rather short user-generated messages, we enrich tweet representations using preceding context tweets and reply tweets in building event recognition classifiers. The evaluation on two hurricanes, Harvey and Florence, shows that using only 1-2 person-hours of human supervision, the rapidly trained weakly supervised classifiers outperform supervised classifiers trained using more than ten thousand annotated tweets created in over 50 person-hours.Comment: In Proceedings of the AAAI 2020 (AI for Social Impact Track). Link: https://aaai.org/ojs/index.php/AAAI/article/view/539

    Mining Twitter for crisis management: realtime floods detection in the Arabian Peninsula

    Get PDF
    A thesis submitted to the University of Bedfordshire, in partial fulfilment of the requirements for the degree of doctor of Philosophy.In recent years, large amounts of data have been made available on microblog platforms such as Twitter, however, it is difficult to filter and extract information and knowledge from such data because of the high volume, including noisy data. On Twitter, the general public are able to report real-world events such as floods in real time, and act as social sensors. Consequently, it is beneficial to have a method that can detect flood events automatically in real time to help governmental authorities, such as crisis management authorities, to detect the event and make decisions during the early stages of the event. This thesis proposes a real time flood detection system by mining Arabic Tweets using machine learning and data mining techniques. The proposed system comprises five main components: data collection, pre-processing, flooding event extract, location inferring, location named entity link, and flooding event visualisation. An effective method of flood detection from Arabic tweets is presented and evaluated by using supervised learning techniques. Furthermore, this work presents a location named entity inferring method based on the Learning to Search method, the results show that the proposed method outperformed the existing systems with significantly higher accuracy in tasks of inferring flood locations from tweets which are written in colloquial Arabic. For the location named entity link, a method has been designed by utilising Google API services as a knowledge base to extract accurate geocode coordinates that are associated with location named entities mentioned in tweets. The results show that the proposed location link method locate 56.8% of tweets with a distance range of 0 – 10 km from the actual location. Further analysis has shown that the accuracy in locating tweets in an actual city and region are 78.9% and 84.2% respectively

    Crisis detection from Arabic social media

    Get PDF
    Social media (SM) streams such as Twitter provide large quantities of real-time information about emergency events from which valuable information can be extracted to enhance situational awareness and support humanitarian response efforts. The timely extraction of crisisrelated SM messages is challenging as it involves processing large quantities of noisy data in real time. Supervised machine learning classifiers are challenged by out-of-distribution learning when classifying unseen (new) crises due to data variations across events. Besides that, it is impractical to label training data from each novel and emerging crisis since obtaining sufficient labelled data is time-consuming and labour-intensive. This thesis addresses the problem of Twitter crisis classification using supervised learning methods to identify crisis-related data and categorising them into different information types in the multi-source (training data from multiple events) setting. Due to Twitter’s ubiquity during emergency events in the Arab world, the current research focuses on Arabic Twitter content. We have created and published a large-scale Arabic Twitter corpus of crisis events. The corpus has been analysed and manually labelled. Analysing the content includes investigating the main information categories of conversations posted during a range of crisis events using natural language processing techniques. Building these resources is considered one of this thesis’s contributions. The thesis also investigates the generalisation performance of different supervised classical machine learning and deep learning approaches trained on out-of-crisis data to classify unseen crises. We find that deep neural networks such as LSTM and CNN outperform the classical machine learning classifiers such as support vector machines and decision trees. We also evaluate different architectures of deep neural networks and several pre-trained text representations (embeddings) learnt from vast amounts of unlabelled text. Results show that BERT-based models are more robust to out-of-distribution target events and remarkably outperform other models on the information classification task. Experiments show that the performance of BERT-based classifiers can be enhanced when training on similar data. Thus, the last contribution of the present study is to propose an instance distance-based data selection approach for adaptation to improve classifiers’ performance under a domain shift. Using the BERT embeddings, the method selects a subset of multi-event training data that is most similar to the target event. Results show that fine-tuning a BERT model on a selected subset of data to classify crisis tweets outperforms a model that has been fine-tuned on all available source data

    Coping with low data availability for social media crisis message categorisation

    Full text link
    During crisis situations, social media allows people to quickly share information, including messages requesting help. This can be valuable to emergency responders, who need to categorise and prioritise these messages based on the type of assistance being requested. However, the high volume of messages makes it difficult to filter and prioritise them without the use of computational techniques. Fully supervised filtering techniques for crisis message categorisation typically require a large amount of annotated training data, but this can be difficult to obtain during an ongoing crisis and is expensive in terms of time and labour to create. This thesis focuses on addressing the challenge of low data availability when categorising crisis messages for emergency response. It first presents domain adaptation as a solution for this problem, which involves learning a categorisation model from annotated data from past crisis events (source domain) and adapting it to categorise messages from an ongoing crisis event (target domain). In many-to-many adaptation, where the model is trained on multiple past events and adapted to multiple ongoing events, a multi-task learning approach is proposed using pre-trained language models. This approach outperforms baselines and an ensemble approach further improves performance..

    Macro-micro approach for mining public sociopolitical opinion from social media

    Get PDF
    During the past decade, we have witnessed the emergence of social media, which has prominence as a means for the general public to exchange opinions towards a broad range of topics. Furthermore, its social and temporal dimensions make it a rich resource for policy makers and organisations to understand public opinion. In this thesis, we present our research in understanding public opinion on Twitter along three dimensions: sentiment, topics and summary. In the first line of our work, we study how to classify public sentiment on Twitter. We focus on the task of multi-target-specific sentiment recognition on Twitter, and propose an approach which utilises the syntactic information from parse-tree in conjunction with the left-right context of the target. We show the state-of-the-art performance on two datasets including a multi-target Twitter corpus on UK elections which we make public available for the research community. Additionally we also conduct two preliminary studies including cross-domain emotion classification on discourse around arts and cultural experiences, and social spam detection to improve the signal-to-noise ratio of our sentiment corpus. Our second line of work focuses on automatic topical clustering of tweets. Our aim is to group tweets into a number of clusters, with each cluster representing a meaningful topic, story, event or a reason behind a particular choice of sentiment. We explore various ways of tackling this challenge and propose a two-stage hierarchical topic modelling system that is efficient and effective in achieving our goal. Lastly, for our third line of work, we study the task of summarising tweets on common topics, with the goal to provide informative summaries for real-world events/stories or explanation underlying the sentiment expressed towards an issue/entity. As most existing tweet summarisation approaches rely on extractive methods, we propose to apply state-of-the-art neural abstractive summarisation model for tweets. We also tackle the challenge of cross-medium supervised summarisation with no target-medium training resources. To the best of our knowledge, there is no existing work on studying neural abstractive summarisation on tweets. In addition, we present a system for providing interactive visualisation of topic-entity sentiments and the corresponding summaries in chronological order. Throughout our work presented in this thesis, we conduct experiments to evaluate and verify the effectiveness of our proposed models, comparing to relevant baseline methods. Most of our evaluations are quantitative, however, we do perform qualitative analyses where it is appropriate. This thesis provides insights and findings that can be used for better understanding public opinion in social media

    Social media crowdsourcing for rapid damage assessment following sudden-onset earthquakes

    Get PDF
    Rapid appraisal of damages related to hazard events is important to first responders, government agencies, insurance industries, and other private and public organizations. While satellite monitoring, ground-based sensor systems, inspections, and other technologies provide data to inform post-disaster response, crowdsourcing through social media is an additional and novel data source. In this study, the use of social media data, principally Twitter postings, is investigated to make approximate but rapid early assessments of damages following earthquake disasters. The goal is to explore the potential utility of using social media data for rapid damage assessment after sudden-onset hazard events and to identify insights related to potential challenges. This study defines a text-based damage assessment scale for earthquake damages and then develops a text classification model for rapid damage assessment. The 2019 Ridgecrest, California earthquake sequence is mainly investigated as the case study. Results reveal that Twitter users rapidly responded to this sudden-onset event, and the damage estimation shows temporal and spatial characteristics. The generalization ability of the model is validated through the investigation of damage assessment for another five earthquake events. Although the accuracy remains a challenge compared to ground-based instrumental readings and inspections, the proposed damage assessment model features rapidity with large amounts of data at spatial densities that exceed those of conventional sensor networks
    • …
    corecore