1,496 research outputs found

    Scalable and Effective Deep CCA via Soft Decorrelation

    Get PDF
    Recently the widely used multi-view learning model, Canonical Correlation Analysis (CCA) has been generalised to the non-linear setting via deep neural networks. Existing deep CCA models typically first decorrelate the feature dimensions of each view before the different views are maximally correlated in a common latent space. This feature decorrelation is achieved by enforcing an exact decorrelation constraint; these models are thus computationally expensive due to the matrix inversion or SVD operations required for exact decorrelation at each training iteration. Furthermore, the decorrelation step is often separated from the gradient descent based optimisation, resulting in sub-optimal solutions. We propose a novel deep CCA model Soft CCA to overcome these problems. Specifically, exact decorrelation is replaced by soft decorrelation via a mini-batch based Stochastic Decorrelation Loss (SDL) to be optimised jointly with the other training objectives. Extensive experiments show that the proposed soft CCA is more effective and efficient than existing deep CCA models. In addition, our SDL loss can be applied to other deep models beyond multi-view learning, and obtains superior performance compared to existing decorrelation losses.Comment: To Appear at CVPR201

    Deep Multi-View Learning for Visual Understanding

    Get PDF
    PhD ThesisMulti-view data is the result of an entity being perceived or represented from multiple perspectives. Plenty of applications in visual understanding contain multi-view data. For example, the face images for training a recognition system are usually captured by different devices from multiple angles. This thesis focuses on the cross-view visual recognition problems, e.g., identifying the face images of the same person across different cameras. Several representative multi-view settings, from the supervised multi-view learning to the more challenging unsupervised domain adaptive (UDA) multi-view learning, are investigated. Novel multi-view learning algorithms are proposed correspondingly. To be more specific, the proposed methods are based on the advanced deep neural network (DNN) architectures for better handling visual data. However, directly combining the multi-view learning objectives with DNN can result in different issues, e.g., on scalability, and limit the application scenarios and model performance. Corresponding novelties in DNN methods are thus required to solve them. This thesis is organised into three parts. Each chapter focuses on a multi-view learning setting with novel solutions and is detailed as follows: Chapter 3 A supervised multi-view learning setting with two different views are studied. To recognise the data samples across views, one strategy is aligning them in a common feature space via correlation maximisation. It is also known as canonical correlation analysis (CCA). Deep CCA has been proposed for better performance with the non-linear projection via deep neural networks. Existing deep CCA models typically decorrelate the deep feature dimensions of each view before their Euclidean distances are minimised in the common space. This feature decorrelation is achieved by enforcing an exact decorrelation constraint which is computationally expensive due to the matrix inversion or SVD operations. Therefore, existing deep CCA models are inefficient and have scalability issues. Furthermore, the exact decorrelation is incompatible with the gradient based deep model training and results in sub-optimal solution. To overcome these aforementioned issues, a novel deep CCA model Soft CCA is introduced in this thesis. Specifically, the exact decorrelation is replaced by soft decorrelation via a mini-batch based Stochastic Decorrelation Loss (SDL). It can be jointly optimised with the other training objectives. In addition, our SDL loss can be applied to other deep models beyond multi-view learning. Chapter 4 The supervised multi-view learning setting, whereby more than two views exist, are studied in this chapter. Recently developed deep multi-view learning algorithms either learn a latent visual representation based on a single semantic level and/or require laborious human annotation of these factors as attributes. A novel deep neural network architecture, called Multi- Level Factorisation Net (MLFN), is proposed to automatically factorise the visual appearance into latent discriminative factors at multiple semantic levels without manual annotation. The main purpose is forcing different views share the same latent factors so that they are can be aligned at all layers. Specifically, MLFN is composed of multiple stacked blocks. Each block contains multiple factor modules to model latent factors at a specific level, and factor selection modules that dynamically select the factor modules to interpret the content of each input image. The outputs of the factor selection modules also provide a compact latent factor descriptor that is complementary to the conventional deeply learned feature, and they can be fused efficiently. The effectiveness of the proposed MLFN is demonstrated by not only the large-scale cross-view recognition problems but also the general object categorisation tasks. Chapter 5 The last problem is a special unsupervised domain adaptation setting called unsupervised domain adaptive (UDA) multi-view learning. It contains a fully annotated dataset as the source domain and another unsupervised dataset with relevant tasks as the target domain. The main purpose is to improve the performance of the unlabelled dataset with the annotated data from the other dataset. More importantly, this setting further requires both the source and target domains are multi-view datasets with relevant tasks. Therefore, the assumption of the aligned label space across domains is inappropriate in the UDA multi-view learning. For example, the person re-identification (Re-ID) datasets built on different surveillance scenarios are with images of different people captured and should be given disjoint person identity labels. Existing methods for UDA multi-view learning problems are aligning different domains either in the raw image space or a feature embedding space for domain alignment. In this thesis, a different framework, multi-task learning, is adopted with the domain specific objectives for a common space learning. Specifically, such common space is proposed to enable the knowledge transfer. The conventional supervised losses can be used for the labelled source data while the unsupervised objectives for the target domain play the key roles in domain adaptation. Two novel unsupervised objectives are introduced for UDA multi-view learning and result in two models as below. The first model, termed common factorised space model (CFSM), is built on the assumptions that the semantic latent attributes are shared between the source and target domains since they are relevant multi-view learning tasks. Different from the existing methods that based on domain alignment, CFSM emphasizes on transferring the information across domains via discovering discriminative latent factors in the proposed common space. However, the multi-view data from target domain is without labels. Therefore, an unsupervised factorisation loss is derived and applied on the common space for latent factors discovery across domains. The second model still learns a shared embedding space with multi-view data from both domains but with a different assumption. It attempts to discover the latent correspondence of multi-view data in the unsupervised target data. The target data’s contribution comes from a clustering process. Each cluster thus reveals the underlying cross-view correspondences across multiple views in target domain. To this end, a novel Stochastic Inference for Deep Clustering (SIDC) method is proposed. It reduces self-reinforcing errors that lead to premature convergence to a sub-optimal solution by changing the conventional deterministic cluster assignment to a stochastic one

    High frame-rate cardiac ultrasound imaging with deep learning

    Full text link
    Cardiac ultrasound imaging requires a high frame rate in order to capture rapid motion. This can be achieved by multi-line acquisition (MLA), where several narrow-focused received lines are obtained from each wide-focused transmitted line. This shortens the acquisition time at the expense of introducing block artifacts. In this paper, we propose a data-driven learning-based approach to improve the MLA image quality. We train an end-to-end convolutional neural network on pairs of real ultrasound cardiac data, acquired through MLA and the corresponding single-line acquisition (SLA). The network achieves a significant improvement in image quality for both 55- and 77-line MLA resulting in a decorrelation measure similar to that of SLA while having the frame rate of MLA.Comment: To appear in the Proceedings of MICCAI, 201

    From neural PCA to deep unsupervised learning

    Full text link
    A network supporting deep unsupervised learning is presented. The network is an autoencoder with lateral shortcut connections from the encoder to decoder at each level of the hierarchy. The lateral shortcut connections allow the higher levels of the hierarchy to focus on abstract invariant features. While standard autoencoders are analogous to latent variable models with a single layer of stochastic variables, the proposed network is analogous to hierarchical latent variables models. Learning combines denoising autoencoder and denoising sources separation frameworks. Each layer of the network contributes to the cost function a term which measures the distance of the representations produced by the encoder and the decoder. Since training signals originate from all levels of the network, all layers can learn efficiently even in deep networks. The speedup offered by cost terms from higher levels of the hierarchy and the ability to learn invariant features are demonstrated in experiments.Comment: A revised version of an article that has been accepted for publication in Advances in Independent Component Analysis and Learning Machines (2015), edited by Ella Bingham, Samuel Kaski, Jorma Laaksonen and Jouko Lampine

    Linking Image and Text with 2-Way Nets

    Full text link
    Linking two data sources is a basic building block in numerous computer vision problems. Canonical Correlation Analysis (CCA) achieves this by utilizing a linear optimizer in order to maximize the correlation between the two views. Recent work makes use of non-linear models, including deep learning techniques, that optimize the CCA loss in some feature space. In this paper, we introduce a novel, bi-directional neural network architecture for the task of matching vectors from two data sources. Our approach employs two tied neural network channels that project the two views into a common, maximally correlated space using the Euclidean loss. We show a direct link between the correlation-based loss and Euclidean loss, enabling the use of Euclidean loss for correlation maximization. To overcome common Euclidean regression optimization problems, we modify well-known techniques to our problem, including batch normalization and dropout. We show state of the art results on a number of computer vision matching tasks including MNIST image matching and sentence-image matching on the Flickr8k, Flickr30k and COCO datasets.Comment: 14 pages, 2 figures, 6 table

    Unveiling the Potential of Probabilistic Embeddings in Self-Supervised Learning

    Full text link
    In recent years, self-supervised learning has played a pivotal role in advancing machine learning by allowing models to acquire meaningful representations from unlabeled data. An intriguing research avenue involves developing self-supervised models within an information-theoretic framework, but many studies often deviate from the stochasticity assumptions made when deriving their objectives. To gain deeper insights into this issue, we propose to explicitly model the representation with stochastic embeddings and assess their effects on performance, information compression and potential for out-of-distribution detection. From an information-theoretic perspective, we seek to investigate the impact of probabilistic modeling on the information bottleneck, shedding light on a trade-off between compression and preservation of information in both representation and loss space. Emphasizing the importance of distinguishing between these two spaces, we demonstrate how constraining one can affect the other, potentially leading to performance degradation. Moreover, our findings suggest that introducing an additional bottleneck in the loss space can significantly enhance the ability to detect out-of-distribution examples, only leveraging either representation features or the variance of their underlying distribution.Comment: Under review by AISTATS 202
    corecore