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Abstract

Multi-view data is the result of an entity being perceived or represented from multiple perspec-
tives. Plenty of applications in visual understanding contain multi-view data. For example, the
face images for training a recognition system are usually captured by different devices from mul-
tiple angles. This thesis focuses on the cross-view visual recognition problems, e.g., identifying
the face images of the same person across different cameras. Several representative multi-view
settings, from the supervised multi-view learning to the more challenging unsupervised domain
adaptive (UDA) multi-view learning, are investigated. Novel multi-view learning algorithms are
proposed correspondingly. To be more specific, the proposed methods are based on the advanced
deep neural network (DNN) architectures for better handling visual data. However, directly
combining the multi-view learning objectives with DNN can result in different issues, e.g., on
scalability, and limit the application scenarios and model performance. Corresponding novelties
in DNN methods are thus required to solve them. This thesis is organised into three parts. Each
chapter focuses on a multi-view learning setting with novel solutions and is detailed as follows:

Chapter 3 A supervised multi-view learning setting with two different views are studied.
To recognise the data samples across views, one strategy is aligning them in a common feature
space via correlation maximisation. It is also known as canonical correlation analysis (CCA).
Deep CCA has been proposed for better performance with the non-linear projection via deep
neural networks. Existing deep CCA models typically decorrelate the deep feature dimensions
of each view before their Euclidean distances are minimised in the common space. This feature
decorrelation is achieved by enforcing an exact decorrelation constraint which is computation-
ally expensive due to the matrix inversion or SVD operations. Therefore, existing deep CCA
models are inefficient and have scalability issues. Furthermore, the exact decorrelation is in-
compatible with the gradient based deep model training and results in sub-optimal solution. To
overcome these aforementioned issues, a novel deep CCA model Soft CCA is introduced in this
thesis. Specifically, the exact decorrelation is replaced by soft decorrelation via a mini-batch
based Stochastic Decorrelation Loss (SDL). It can be jointly optimised with the other training
objectives. In addition, our SDL loss can be applied to other deep models beyond multi-view
learning.

Chapter 4 The supervised multi-view learning setting, whereby more than two views exist,
are studied in this chapter. Recently developed deep multi-view learning algorithms either learn
a latent visual representation based on a single semantic level and/or require laborious human
annotation of these factors as attributes. A novel deep neural network architecture, called Multi-
Level Factorisation Net (MLFN), is proposed to automatically factorise the visual appearance
into latent discriminative factors at multiple semantic levels without manual annotation. The
main purpose is forcing different views share the same latent factors so that they are can be
aligned at all layers. Specifically, MLFN is composed of multiple stacked blocks. Each block
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contains multiple factor modules to model latent factors at a specific level, and factor selection
modules that dynamically select the factor modules to interpret the content of each input image.
The outputs of the factor selection modules also provide a compact latent factor descriptor that
is complementary to the conventional deeply learned feature, and they can be fused efficiently.
The effectiveness of the proposed MLFN is demonstrated by not only the large-scale cross-view
recognition problems but also the general object categorisation tasks.

Chapter 5 The last problem is a special unsupervised domain adaptation setting called unsu-
pervised domain adaptive (UDA) multi-view learning. It contains a fully annotated dataset as the
source domain and another unsupervised dataset with relevant tasks as the target domain. The
main purpose is to improve the performance of the unlabelled dataset with the annotated data
from the other dataset. More importantly, this setting further requires both the source and target
domains are multi-view datasets with relevant tasks. Therefore, the assumption of the aligned
label space across domains is inappropriate in the UDA multi-view learning. For example, the
person re-identification (Re-ID) datasets built on different surveillance scenarios are with images
of different people captured and should be given disjoint person identity labels. Existing meth-
ods for UDA multi-view learning problems are aligning different domains either in the raw image
space or a feature embedding space for domain alignment. In this thesis, a different framework,
multi-task learning, is adopted with the domain specific objectives for a common space learning.
Specifically, such common space is proposed to enable the knowledge transfer. The conventional
supervised losses can be used for the labelled source data while the unsupervised objectives for
the target domain play the key roles in domain adaptation. Two novel unsupervised objectives
are introduced for UDA multi-view learning and result in two models as below.

The first model, termed common factorised space model (CFSM), is built on the assumptions
that the semantic latent attributes are shared between the source and target domains since they
are relevant multi-view learning tasks. Different from the existing methods that based on domain
alignment, CFSM emphasizes on transferring the information across domains via discovering
discriminative latent factors in the proposed common space. However, the multi-view data from
target domain is without labels. Therefore, an unsupervised factorisation loss is derived and
applied on the common space for latent factors discovery across domains.

The second model still learns a shared embedding space with multi-view data from both
domains but with a different assumption. It attempts to discover the latent correspondence of
multi-view data in the unsupervised target data. The target data’s contribution comes from a
clustering process. Each cluster thus reveals the underlying cross-view correspondences across
multiple views in target domain. To this end, a novel Stochastic Inference for Deep Clustering
(SIDC) method is proposed. It reduces self-reinforcing errors that lead to premature convergence
to a sub-optimal solution by changing the conventional deterministic cluster assignment to a
stochastic one.
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x A visual data sample
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Y Set of non-visual data y
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Major notations of deep neural network

Φ A deep neural network (module / layer)
θ Model parameters of Φ
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∂ Differentiation operator
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µµµ A cluster centre feature vector
ψψψ A set of cluster centre features

General rules for notation definition
scalar normal lower-case letters
set normal UPPER-case letters
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Basic Operations

AAAT transpose of matrix AAA
tr(AAA) trace of AAA, ∑i aii
||AAA||F Frobenius norm,

√
tr(AAAT AAA)
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Chapter 1

Introduction

Artificial Intelligence (AI), also called machine intelligence, is the intelligence demonstrated by

machines in ’learning’ and ’solving problems’ as a human does. Benefited from the repaid devel-

opments of AI theories (e.g., deep learning and reinforcement learning) and computer techniques

(e.g., Graph Process Units (GPUs) and massive storage devices), AI systems are applied in a

wide range of applications such as self-driving cars, surveillance, stock management, medical

diagnosis, etc. Among different data formats, visual data provides an enormous amount and the

richest information. For example, self-driving cars usually equipped with multiple cameras for a

better understanding of road conditions. Visual intelligence thus plays a crucial role in extracting

valuable visual information via effective data analysis. One of the fundamental tasks in under-

standing visual data is recognition. It requires the intelligent systems should be able to precisely

identify what appears or is happening in the visual input. In the case of the self-driving car, all the

people and vehicles around it should be visually recognised for driving safety. However, visual

recognition is a challenging task, and one of the main obstacles is the visual appearances of the

same entity/instance can be different. This is caused by many factors such as lighting conditions,

occlusions, deformations, camera view angles and various recording devices. Such factors are

also called views. Different types of views exist and are commonplace in many realistic visual

applications. Therefore, understanding the multi-view visual data has attracted great attentions

from both research and industrial communities.
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1.1 Multi-View Visual Data

Visual analytic problems are challenging due to the diverse visual patterns are presented in the

highly-uncertain contexts. Many factors are responsible for this. However, some of these factors

are only randomly occur in limited scenarios as noises. On the contrary, the factors that can be

systematically described and are widely exist in the large scale visual data are more worthy of

attention. Such factors are denoted as views. In this thesis, three distinctive views in visual data

are studied, as shown in Figure 1.1.

Camera The visual appearance of the same entity captured from different cameras can be

drastically changed. For example, the images of a person recorded by different surveillance

cameras can have very different appearance characteristics due to the camera angles and the

specified environments.

Modality A view can be a specified modality of the visual data. An object/entity can be rep-

resented in different visual modalities other than the normal RGB mode. For example, the near

infrared images are recorded in a face recognition system to compensate the lighting-sensitive

RGB ones.

Dataset The independently collected visual datasets with relevant tasks can be treated as the

multi-view data where each dataset corresponds to one view, denoted as a domain. Each domain

represents a distinctive visual pattern, and the sampling bias among datasets are called domain

gaps. For example, the images of digital numbers collected from hand-writings (MNIST) (LeCun

et al, 1998) and street view house numbers (SVHN) (Netzer et al, 2011) form two domains with

apparent visual differences. However, they are used for the same task, digit categorisation.

Hybrid Views Different types of views can simultaneously appear in sophisticated visual learn-

ing settings. One example is the unsupervised domain adaptive (UDA) person re-identification

(Re-ID) problem with two person Re-ID datasets are available. Both of them serve the retrieval

purpose based on the visual appearance of people. However, they are built upon different surveil-

lance networks with distinctive environments and visual patterns. Each dataset thus corresponds

to a domain. Moreover, each Re-ID dataset contains the person images captured by multiple

cameras in a specified surveillance network. Therefore, each domain also contains the multi-

view data on its own.

Multi-view data is not limited to the visual applications and widely appears in different topics

such as translation in natural language processing (NLP). Therefore, many techniques developed
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Cam1 Cam2 Cam3 Cam4 Cam5

RGB

Infrared

Airport

Campus

Camera Modality HybridDataset

SVHN

MNIST

Figure 1.1: Illustrations of multi-view visual data. Different types of views are considered.
Cameras: person images from different surveillance cameras. Different modalities, e.g., RGB
and infrared, can be treated as specified views. Different datasets with relevant tasks as domains,
e.g., two digit datasets. The hybrid case, unsupervised domain adaptive person Re-ID. Each
Re-ID dataset corresponds to a specified domain. Each domain consist of multi-view data, i.e.,
person images from different cameras.

here can potentially benefit a variety of tasks in data mining and machine learning.

1.2 Multi-View Learning Tasks for Visual Understanding

Different learning tasks based on the multi-view visual data can be divided into three main cate-

gories, cross-view recognition, multi-view fusion and multi-view synthesis. The main character-

istics of these three tasks are detailed as follows.

Cross-View Recognition The main purpose of this task is to match or retrieval the correspond-

ing data samples of the same entity/object across different views. Many visual applications

are cross-view recognition problems such as recognising the same person under different non-

overlapping camera views in the person re-identification (Re-ID), as shown in Figure 1.2. The

main challenge in cross-view recognition comes from the nature of multi-view data where differ-

ent views contain the distinctive information of the same visual entity. To overcome this obstacle

for better results, the consensus and discriminative information across different views play the

key role. The consensus information bridges the gaps across views while the discriminative one

helps to distinguish different entities.

Multi-View Fusion The learning objective of multi-view fusion is integrating information from

different views for a more comprehensive understanding of the entity and thus improving the

model performance. Taking the visual system of a self-driving car as an example. The thermal

images should be captured along with the RGB ones to build a more comprehensive and robust

perception on road conditions, as illustrated in the middle case of Figure 1.2. Instead of focusing

on the cross-view consensus information, multi-view fusion requires the complementary and

discriminative information. That is to find out the orthogonal and irreplaceable information from
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Cross-View Fusion Synthesis

Query

Gallery

RGB Thermal
Original

Synthesised

Figure 1.2: Three multi-view learning tasks, cross-view recognition, multi-view fusion and multi-
view synthesis, are illustrated accordingly. Person re-identification is a typical application of
cross-view recognition where the query and gallery person images are from different camera
views. Fusing visual inputs from the RGB and thermal views helps the self-driving system to
have a better understanding of its environment. The person images with the new styles of the
other domain are generated (as shown in the second row). Nevertheless, the main characteristics
such as gestures are still kept in the generated images.

each view and then fuse them for better results.

Multi-View Synthesis This final task focuses on generating the visual data samples of specified

or even novel views. One obvious benefit of multi-view synthesis is to alleviate the impact of

imbalance or missing data among different views. For example, in person re-identification (Re-

ID), Generative Adversarial Networks (GANs) (Goodfellow et al, 2014) can be used to synthesis

the person images across domains/datasets for the unsupervised domain adaptive (UDA) Re-ID

problems (Deng et al, 2018; Wei et al, 2018). The generated images are adapted to the target

style while keeping the main characteristics of an identity.

In this thesis, the cross-view recognition problems, which widely exist in many applications,

are the main concerns. Furthermore, it is noteworthy that both cross-view recognition and multi-

view fusion belong to broader multi-view recognition. Therefore, many techniques discussed

and proposed here for the cross-view recognition can also be generalised to the fusion one.

1.3 Cross-View Recognition Settings

Two separated dimensions can be used to describe the different cross-view recognition settings

studied in this thesis. The first dimension is the number of views, and the second dimension is

the amount of annotation available for each view.

Number of Views The multi-view data consists of two views only is the most straightforward

setting. However, it still attracts many attentions. Two main reasons are behind this. On the one
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Airport Campus

Unlabelled Target Data Labelled Source Data

Figure 1.3: Unsupervised domain adaptive (UDA) multi-view learning in person re-
identification. The target domain is from an airport surveillance. Labelling such large-scale
multi-view visual data is very expensive. The other labelled Re-ID dataset (from a campus sce-
nario) is available as source domain to improve the performance of target one.

hand, many problems follow the two-view setting. For example, a self-driving car usually uses

the images from RGB and thermal modalities. On the other hand, many multi-view learning algo-

rithms are derived from the simple two-view case before generalised to more complex situations.

The more sophisticated settings are with data from more than two views. One typical scenario

is that different cameras capture visual data from multiple view angles. For example, in the per-

son re-identification problems, person images are captured by various non-overlapped cameras

from distinctive view-points and environments. Moreover, as the number of views increased, the

complexity of cross-view modelling can boosts drastically.

Amount of Annotations for Views In the supervised multi-view learning, the labels of data

samples under different views are available, or the cross-view correspondences are provided as

data pairs. However, exhaustively labelling or pairing all different views can be expensive, es-

pecially when different domains/datasets are considered. To improve the performance of such

unlabelled dataset, another labelled dataset with relevant tasks can be exploited. It is known as

the unsupervised domain adaptation (UDA) (Ganin et al, 2016) setting. Moreover, the UDA can

be treated as a multi-view learning setting with the fully annotated data from one (source) domain

and the unlabelled data from another (target) domain. A special UDA setting called the unsu-

pervised domain adaptive (UDA) multi-view learning is the main focus here. Specifically, each

domain under the UDA multi-view setting is a multi-view dataset, as the hybrid case of multi-

view data described in Section 1.1. Different from the conventional UDA setting which assumes

that different domains share the same label space, the UDA multi-view learning does not hold

such assumption and only requires different domains have relevant multi-view learning tasks. A
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concrete example is the unsupervised domain adaptive (UDA) person Re-ID, as illustrated in Fig-

ure 1.3. The source and target Re-ID datasets are captured from different surveillance networks

with clear domain gaps. Both the source and target datasets serve the Re-ID purposes, but the

people in the two different surveillance networks are non-overlapped and should have disjoint

identity labels.

The three representative settings considered in this thesis can be coordinated with the two

criteria mentioned above. The supervised two-view setting is first studied, then generalised to the

multi-view learning with labels. In the challenging UDA multi-view learning, the target domain

is unlabelled and learned with the labelled source domain under relevant multi-view learning

tasks, but their label spaces are disjoint.

1.4 Challenges, Motivations and Solutions

To bridge the visual differences of the same entity/object under multiple views, a latent space

that is inferred from the original visual space can be used to aligned them. There are differ-

ent approaches to project the instances from the visual space to the latent one. The conven-

tional paradigm makes use of handcrafted features (e.g., HOG (Freeman and Roth, 1995) and

SIFT (Lowe et al, 1999)) to encode the visual information and subspace methods (Oja, 1983)

for space transformations. However, the handcrafted features can hardly capture high-level vi-

sual semantics and the shallow subspace methods usually do not have enough model capacities

for the sophisticated visual tasks. In this thesis, the more advanced deep neural network (DNN)

methods are exploited. They provide end-to-end solutions for learning an effective latent space

directly from the visual space. To align multi-view data via DNNs, the learning objectives are

either explicitly optimising the deep latent space with the distance/correlation based alignment

loss or implicitly forming tight clusters of multi-view data guided by the classification loss.

Challenges and Motivations Despite the promising multi-view learning results achieved by

existing DNN methods, many limitations and open problems still exist and are discussed as

follows.

1. The scalability of deep CCA. To align different views in a common space, one learning

strategy is to maximise the mutual correlations across views. It is also known as canonical

correlation analysis (CCA) (Hotelling, 1936; Golub and Zha, 1995). The recently pro-

posed deep CCA models (Andrew et al, 2013; Wang et al, 2015b) aim to learn nonlinear
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Figure 1.4: Each row shows a person captured by two camera views. A person’s appearance
can be described by appearance factors of multiple semantic levels for matching. Factorising the
visual appearance aims to automatically discover the discriminative latent factors across views.

projections with deep neural networks rather than kernels and has been shown to be more

effective than shallow CCA and KCCA. However, existing deep CCA models are ineffi-

cient and have scalability issues. The main reason is that exact or hard decorrelation is

adopted. Specifically, the extracted deep feature vector for each view is decorrelated by

forcing its correlation matrix over the training batch to be an identity matrix, before be-

ing minimised the distances across views in the common embedding space. Such exact

decorrelation operations are computationally expensive. Either matrix inversion (Andrew

et al, 2013; Wang et al, 2015b) or singular value decomposition (SVD) (Wang et al, 2015c)

is required at each iteration which severely limits scalability. Furthermore, existing deep

CCA models such as (Wang et al, 2015c) typically employ two separate and independent

optimisation steps: the feature representation for each view is first decorrelated exactly.

These decorrelation operations do not directly affect the following gradient computation

and subsequent backpropagation. Without jointly optimising the decorrelation constraint

and other objectives, only sub-optimal solutions are achieved.

2. Alignments only happen in the final deep layer. Most recent cross-view learning meth-

ods employ DNNs to learn view-invariant discriminative features. Different alignment

losses are directly applied on the features from the final feature layer and the features ex-

tracted from such layer are used for matching. Such alignment mainly focuses on the high-

level semantic. However, the discriminative visual semantics of multi-view data can be

found at multiple levels, as illustrated in Figure 1.4. Therefore, some existing works (Ku-
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mar et al, 2011; McLaughlin et al, 2017) focused on compensating the final deep feature

with attribute supervisions. The application scenarios of these methods are limited by the

additional visual attribute annotations, which are usually expensive to be acquired. Some

other DNNs (Long et al, 2015a; Fan et al, 2018a; Yang and Ramanan, 2015) are with

multi-level feature fusion architectures, but they are not designed for the multi-view learn-

ing purposes.

3. Unsupervised multi-view dataset as target domain. The main challenge here is the lack

of annotation in the views. Considering each view corresponds to a dataset, the unlabelled

dataset is denoted as the target domain. To improve the target performance, another super-

vised dataset is exploited as the source domain together with the unlabeled target data for

training. Existing models are developed for the conventional unsupervised domain adapta-

tion (UDA) setting with the assumption that the source and target domains are sharing the

same label space. Therefore, the domain alignment framework is adopted. Different ap-

proaches differ in whether the alignment takes place in the raw image space (Hoffman et al,

2017) or a feature embedding space (Long et al, 2015b; Lin et al, 2018). However, a more

challenging UDA setting, the unsupervised domain adaptive (UDA) multi-view learning,

is concerned. Specifically, both domains of the UDA multi-view learning are multi-view

datasets with relevant tasks. More importantly, it further assumes the label spaces across

domains are disjoint, which is opposite to the conventional UDA assumption. As a result,

existing domain alignment based approaches are intrinsically inappropriate for the UDA

multi-view learning problems, e.g., the UDA person Re-ID.

Solutions In this thesis, different solutions are provided to the corresponding challenges men-

tioned above and resulting in the novel DNN based methods.

1. Soft decorrelation in deep CCA. To address the scalability issues in existing deep CCA

methods, a robust decorrelation loss, called Stochastic Decorrelation Loss (SDL), is adopted

in our proposed deep CCA, called Soft CCA. SDL is a softer constraint as the loss is only

minimised rather than enforced exact decorrelation (off-diagonal elements of feature co-

variance matrix are all zeros). The overall learning objective in Soft CCA is consist of

the decorrelation loss SDL and other losses such as the distance losses across views in the

embedding space. They are all compatible with the stochastic gradient descent (SGD) in

deep learning and thus jointly optimised for more global solutions.
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2. Deep factorisation and multi-level fusion. To automatically discover the discriminative

and view-invariant latent factors at multiple semantic levels for the alignment across views,

a novel DNN architecture called Multi-Level Factorisation Net (MLFN) is proposed. The

overall network is composed of multiple blocks (each of which may contain multiple con-

volutional layers). Each block consists of two components: A set of factor modules (FMs),

each of which is a sub-network of identical architecture designed to model one factor, and

a factor selection module (FSM) that dynamically selects which subset of FMs in the block

are activated. Training this architecture results in FMs that specialise in processing differ-

ent types of factors, and at different blocks represent factors of different semantic levels.

The discovered latent factors can also be considered as latent attributes. More importantly,

a compact latent semantic feature can be extracted by aggregating the FSM output vectors

at all levels and enables an efficient fusion to complement the final-layer deep features.

3. Multi-task learning for UDA multi-view learning. Instead of following the domain

alignment framework, this study presents a multi-task learning framework for the UDA

multi-view learning tasks (Their comparisons are illustrated in Figure 1.5). Specifically,

a shared deep feature embedding space is proposed. This space serves the source domain

for supervised label prediction and the target domain with different unsupervised learning

objectives. Two models are proposed based on the specified assumption made on target

domain.

The first model, termed common factorised space model (CFSM), is developed based on

the idea that recognition should be performable in a shared latent factor space for both do-

mains. In order to automatically discover such discriminative latent factors and align them

for transferring knowledge across domains, our inductive bias is that input samples from

both domains should generate low-entropy codes, i.e., near-binary codes, in this common

space. This is a weaker assumption than distribution matching, but does provide a criterion

that can be optimised to transfer knowledge across domains in the absence of common la-

bel space. To assist the process of the knowledge propagates down from higher-level to

feature extraction for effective knowledge transfer, a novel graph Laplacian-based loss is

proposed. It is built on a graph in the high-level and regularises the lower-level network

feature output.

In the second model, the unlabelled multi-view instances from target domain are utilised
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Figure 1.5: Two different pipelines for the UDA multi-view learning are illustrated. Existing
work follows the domain alignment where different domains are aligned in either the image
or feature representation space. In this thesis, the multi-task learning framework is adopted.
Specified contributions to multi-view learning are made by the source and target domains. CFSM
is built on the shared latent attribute discovery while SIDC is based on clustering the target data.

based on a simple and sound assumption: They form clusters, data samples of the same

entity across views are potentially corresponding to a cluster. However, existing deep

k-means methods are based on the hard/deterministic assignment (Xie et al, 2016a) or it-

erative optimisation (Yang et al, 2017a). To achieve end-to-end joint feature learning with

an unsupervised clustering loss and deal with unreliable cluster assignment during train-

ing, a novel deep clustering method for the target domain called Stochastic Inference for

Deep Clustering (SIDC) is proposed. Firstly, SIDC treats the assignment as a random

variable rather than making the hard assignment of a sample to its nearest cluster. There-

fore, a training sample is less likely to get stuck in a wrong cluster and it thus ameliorates

the issue of reinforcing errors in deterministic approaches. Secondly, a reparameterisa-

tion trick (Jang et al, 2017) is exploited to model cluster assignment differentiably which

enables end-to-end joint learning.

1.5 Contributions

The contributions made in each main chapter are summarised as follows:

1. Chapter 3 A novel approach of deep CCA, Soft CCA, has been proposed. Comparing

with existing deep CCA models, Soft CCA has two advantages. On the one hand, it is more
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efficient and scalable than existing deep CCA methods - by avoiding computationally ex-

pensive operations such as SVD in existing works. On the other hand, by jointly optimising

the decorrelation loss with other losses, more globally optimal solutions can be achieved.

The proposed Stochastic Decorrelation Loss (SDL) plays the central role in our model. It

formulates the decorrelation as a soft constraint and can be jointly optimised with other

training objectives. Moreover, SDL is mini-batch based and the full batch statistic can

be efficiently approximated by using stochastic incremental learning. While the proposed

SDL is motivated by the feature decorrelation required by deep CCA learning, it can also

be applied as an activation regularisation to any deep model where feature decorrelation is

helpful.

2. Chapter 4 A deep factorisation model, called Multi-Level Factorisation Net (MLFN),

is proposed based on a novel deep network architecture. It makes two main contributions

to multi-view learning. On the one hand, it learns to discover and dynamically identify

discriminative latent factors in the visual inputs across multiple views with no attribute

supervision. On the other hand, the factors computed at different levels of the network

correspond to latent attributes of different semantic levels. When the selections of the

factors are used as a feature and fused with the conventional deep feature, a powerful view-

invariant feature representation of multi-view data is obtained. Furthermore, MLFN shows

its effectiveness on general object categorisation tasks which demonstrates its potential

beyond multi-view learning.

3. Chapter 5 The multi-task learning framework is adopted for the unsupervised domain

adaptive (UDA) multi-view learning problems. Two different models with distinctive as-

sumptions made on the unsupervised target domain are proposed.

The first method, common factorised space model (CSFM), is built on the assumption of

discovering the discriminative latent attributes across both source and target domains in the

shared space. Specifically, an unsupervised factorisation loss is then derived and applied

on such common space which serves the purpose of optimising low-entropy criterion for

discriminative latent factors discovery. On the other hand, a novel graph Laplacian based

loss is proposed to better exploit the more aligned and discriminative supervision from

higher-level to improve the deep feature learning. Finally, the proposed CFSM is demon-

strated to be simple yet effective for different transfer learning problems other than UDA
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Figure 1.6: An overview of the main studies carried out in this thesis. Three important cross-view
recognition problems are presented. In Chapter 3, the scalability issues of deep canonical corre-
lation analysis (CCA) are studied with the supervised data from two views. A deep factorisation
network architecture is proposed in Chapter 4 to discover the discriminative latent factors across
multiple views. In Chapter 5, we focus on the more challenging unsupervised domain adap-
tive (UDA) multi-view learning with an unlabelled multi-view dataset as the target domain. The
multi-task learning framework is adopted for this setting and two distinctive models are derived
under different assumptions.

multi-view learning.

The contributions of the second model are summarised as follows. First of all, a new

unsupervised domain adaptive multi-view learning model based on learning a joint feature

embedding that encourages the target domain data to form clusters. Secondly, a novel deep

clustering method called Stochastic Inference for Deep Clustering (SIDC) is proposed for

the target domain data. It jointly learns representation and clustering by treating cluster

assignment as a random, rather than deterministic, variable to alleviate compounding errors

at early training. Last but not least, a new triplet loss for target data is also formulated based

on the learned cluster centres and stochastic assignments to further boost the performance.

Moreover, it is shown that SIDC is effective on its own on the conventional data clustering

task.

To deliver a holistic understanding about this thesis, the main studies are summarised and

framed into a graphical abstract as illustrated in Figure 1.6.
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Chapter 2

Literature Review

Multi-View learning (MVL) is one of the fundamental tasks in machine learning where consid-

erable effort has been spent and significant improvements have been achieved over the years (Xu

et al, 2013; Zhao et al, 2017b; Li et al, 2018b). Many realistic problems can be modelled as

the multi-view settings and solved by the corresponding learning algorithms (Tao et al, 2017;

Guo and Xiao, 2012; Li et al, 2016). Different types of multi-view visual data are the main fo-

cus of this thesis. The common views in visual applications are camera views (Du et al, 2014;

McLaughlin et al, 2017) and modalities (Li et al, 2013; Yu et al, 2016). Different datasets with

relevant tasks are known as domains (Ganin and Lempitsky, 2015) and are treated as a spe-

cial kind of views. In general, these MVL problems can be summarized into three categories,

cross-view recognition (Lin et al, 2015b; Li et al, 2017b), multi-view fusion (Yu et al, 2013) and

multi-view synthesis (Tian et al, 2018; Sun et al, 2018), as shown in Figure 1.2. In this thesis, the

main concentrations are on solving cross-view visual recognition problems. Three representative

settings in cross-view recognition are studied. They differ in two axes, the number of views con-

sidered and the amount of supervision provided for views. They are listed as follows, evolving

from the simple to the more challenging ones,

1. Supervised multi-view data with two views only. This is the most simplified case in MVL

where many MVL algorithms starts with. The data samples of the same entity/object across

views are paired for model training.

2. Generalised multi-view setting. It is a more general setting with data samples from more
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than two views are considered. The supervision of the entities/objectives across different

views are also provided.

3. Unsupervised domain adaptive (UDA) multi-view learning. It is the most sophisticated one

among the three settings. Different from the previous two settings with full supervision

provided, the target domain (a multi-view dataset) is unsupervised. To improve the target

performance, a labelled multi-view dataset with relevant task is provided as source domain.

Different from the conventional UDA (Ganin and Lempitsky, 2015), the assumption of the

aligned label spaces across domains are not hold in the UDA multi-view learning. In

contrast, it assumes the disjoint label spaces of different domains.

Substantial efforts have been made towards solving the multi-view learning problems for vi-

sual understanding with different deep neural networks (DNNs). A brief overview of the signif-

icant deep learning schemes used in the visual recognition problems is provided in Section 2.1.

The progress made on the three cross-view recognition settings mentioned above is then re-

viewed. Deep CCA combines the Canonical Correlation Analysis (CCA) objective with DNN as

non-linear projection for the two-view supervised learning problems. However, existing meth-

ods have scalability issues, as detailed in Section 2.2. In Section 2.3, different advanced DNN

architectures for the supervised multi-view learning are discussed. They are also compared with

the proposed deep factorisation network. Finally, the connections and differences between the

unsupervised domain adaptive (UDA) multi-view learning and other transfer learning settings

are inspected in Section 2.4.

2.1 Visual Recognition Based on Deep Learning

2.1.1 Deep Hierarchical Architecture

In order to handle the large-scale visual data such as ImageNet (Deng et al, 2009) and surveillance

data (Zheng et al, 2017), the convolution based deep neural networks (DNNs) (LeCun et al, 2015;

Krizhevsky et al, 2012; He et al, 2016a) are deployed, and such deep models usually achieve

better performance than the non-deep/shallow ones. As shown in Figure 2.1, the discriminative

semantics in the raw image space are not structured. They are naturally ambiguous, uncertain

and highly unreliable due to uncontrollable factors, e.g., cluster context and noise. The DNN

provides a unified approach to process the raw visual data and handle these issues. It is widely

acknowledged (LeCun et al, 2015; Szegedy et al, 2015a; Jin et al, 2016) that the power of DNN
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Figure 2.1: The discriminative visual semantics (highlighted with circles) in the raw images are
not structured. It is hard to represent them with low-level features only since they are ambiguous
and variant to scales, positions as well as view angles.

comes from the multiple levels of representation transformations via stacking non-linear modules

from bottom to top to extract the more abstract and higher level of semantics in deep features.

Such ability of DNN plays the key role in visual recognition problems.

2.1.2 Deep Model Optimisation

The most widely adopted DNN learning strategy is the stochastic gradient descent (SGD) (Ki-

wiel, 2001; Bottou, 2010). The mini-batch organisation and the mini-batch based differentiable

objectives are two key components of SGD. Firstly, the full batch learning is inefficient or infea-

sible for DNN training with large scale data. Mini-batch input is thus a more reasonable choice

by randomly sampling a small amount of instances for one step training and traversal with more

iterations. Secondly, the training objectives play the crucial roles in the final performance. Spec-

ified training objectives are proposed for different tasks. Several alignment losses are widely

used for deep multi-view learning. For example, Canonical Correlation Analysis (CCA) aligns

different views in the correlation sense (Andrew et al, 2013). Minimising the Euclidean distance

(L2 loss) of the corresponding latent features across views can also be a simple alignment loss (Li

et al, 2018b). Another widely used alignment loss is based on the positive and negative pairs in a

triplet, known as the triplet loss (Chechik et al, 2010; Schroff et al, 2015; Hermans et al, 2017).

It requires the distance between the anchor sample and the negative sample representations is

greater than the distance between the anchor and positive representations (with a margin). The

losses mentioned above explicitly align instances across views in the latent space. On the con-

trary, the classification loss is used for implicit alignment purpose (e.g., in person Re-ID (Zheng

et al, 2016a) and face recognition (Parkhi et al, 2015)) of encouraging data samples of the same
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entity (has the same labels) form a tight cluster.

2.2 Canonical Correlation Analysis

CCA is a multivariate statistical method for multi-view problems (Uurtio et al, 2018), first de-

veloped in (Hotelling, 1936). Conventional CCA is a linear model and it also generalised to the

non-linear versions such as kernel CCA (KCCA) (Hardoon et al, 2004) and Deep CCA (Andrew

et al, 2013). The linear and non-linear CCA objective can be unified as below following (Golub

and Zha, 1995),

argmin
ω1,ω2

1
2
||Pω1(X̃1)−Pω2(X̃2)||2F ,

s.t. PT
ω1
(X̃1)Pω1(X̃1) = PT

ω2
(X̃2)Pω2(X̃2) = I,

(2.1)

where X̃i represents the input data samples from view i, i ∈ {1,2} with corresponding projec-

tion function Pωi(·). The generalised case beyond two views will be discussed in Section 2.2.3.

The model parameters of Pωi(·) is ωi, i ∈ {1,2}. The covariance matrix of each view should be

I ∈ Rd×d , i.e., the identity matrix, with d denotes the common space feature dimension. In

other words, such objective can be interpreted as the feature dimensions of each view is decorre-

lated before different views are maximally correlated in a common space. The main differences

between linear and non-linear CCA models lie in the definitions of Pωi . Pωi(·) is a linear func-

tion of the input with weight matrix ωi := Wi in CCA. The non-linear projection functions of

KCCA is inexplicitly defined by the kernels (Hofmann et al, 2008) used. On the contrary, the

non-linear projections in Deep CCA are explicit, the deep neural networks Pωi := Φθi and the

model parameters ωi := θi.

2.2.1 Deep Canonical Correlation Analysis

Inspired by the success of deep neural networks (DNNs) in representation learning (Zhou et al,

2014), Deep CCA has received increasing interest (Andrew et al, 2013; Wang et al, 2015b,c). A

deep CCA architecture was first proposed by Deep CCA (DCCA) (Andrew et al, 2013) which

directly computes the gradients of CCA objective and requires both a second-order optimisation

method (Nocedal and Wright, 2006) and full-batch training inputs. It thus cannot cope with large

training data size. An alternative deep CCA objective and architecture are proposed in Stochas-

tic Deep CCA (SDCCA) (Wang et al, 2015c) which make it suitable for mini-batch stochastic

optimisation. However, due to the exact decorrelation used, SDCCA still requires a costly SVD
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operation at each training iteration. SVD’s O(d3) cost is not scalable to the large layer sizes d

(e.g., d = 1024) common in contemporary DNNs. In fact, all existing deep CCA models (Andrew

et al, 2013; Wang et al, 2015b,c) take an exact decorrelation step, which limits their scalability

and effectiveness as mentioned earlier. Furthermore, the exact decorrelating operations often

do not directly impact the following gradient computations and backpropagation, which could

lead to sub-optimal optimisation. The aforementioned issues can be alleviated or handled by for-

mulating the decorrelation constraint as a loss which is optimised end-to-end jointly with other

losses in a standard SGD procedure, making it both more scalable and more effective.

2.2.2 Decorrelation Loss

Beyond multi-view learning, many other deep models benefit from decorrelation of activations

in a neural network layer. For these models, a decorrelation loss such as the proposed Sotchastic

Decorrelation Loss (SDL) can be employed. Two such models are studied in this work, namely

the Factorisation Autoencoder (FAE), and convolutional neural network (CNN) based classifiers.

For each model, an alternative decorrelation loss exists.

FAE and XCov Loss Recently interest has regrown in models for disentangling the underlying

factors of variation in the appearance of objects in images, for example identity and viewpoint

(Zhu et al, 2014; Wen et al, 2016; Karaletsos et al, 2015; Veit et al, 2017; Kingma and Welling,

2014; Mathieu et al, 2016; Makhzani et al, 2015). FAE achieves semi-supervised disentangling of

latent factors via a two-branch autoencoder. Recently it has been shown in (Cheung et al, 2015)

that the efficacy of FAE can be improved by adding a decorrelation loss (termed XCov in (Cheung

et al, 2015)) to explicitly decorrelate the computed latent factor representations. Like our SDL,

computing XCov is also a mini-batch operation. But it only eliminates correlations across and

not within each factor; and it computes covariance only within each mini-batch, while our SDL

approximates full-batch statistics using stochastic incremental learning. SDL is demonstrated to

be more effective than XCov for helping FAE to disentangle latent factors via the experiments in

Sec. 3.1.4.

CNN Classifier and DeCov Loss Using CNN with a classification loss (e.g., cross entropy)

for object recognition is perhaps the most popular application of deep learning in computer vi-

sion. CNN classifiers are used for not only object category recognition tasks (Krizhevsky and

Hinton, 2009; Krizhevsky et al, 2012) but also object instance/identity recognition/verification

tasks such as face verification (Sun et al, 2014) and person re-identification (Xiao et al, 2016).
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Purpose
Mini-batch

input

Full-batch

statistics
Note

Hard Decorr. (Andrew et al, 2013) D ××× X 2nd Order Opt.

XCov (Cheung et al, 2015) MD X ××× L2 loss

BN (Ioffe and Szegedy, 2015) R X X STD

DeCov (Cogswell et al, 2015) D X ××× L2 loss

SDL D X X L1 loss

Table 2.1: Comparisons of decorrelation losses and operations. ’D’ stands for decorrelation.
’MD’ denotes mutual decorrelation. ’R’ is regularisation. The first method (Andrew et al, 2013)
is hard decorrelation with computational expensive second order optimisation (Nocedal and
Wright, 2006). Batch Normalisation (BN) is an operation for standardisation (STD) (Mendenhall
and Sincich, 2016) rather than decorrelation.

When training CNNs for classification, avoiding overfitting, saturation and slow convergence are

crucial (Glorot and Bengio, 2010). These problems are often alleviated by regularisation such as

Batch Normalisation (BN) (Ioffe and Szegedy, 2015) and dropout (Srivastava et al, 2014). Re-

cently it was shown that decorrelation losses can also be used for effective overfitting reduction

(Cogswell et al, 2015). Compared with the existing decorrelation loss DeCov (Cogswell et al,

2015), our SDL has the following advantages: (1) More accurate covariance statistics due to

full-batch approximation instead of the pure mini-batch statistics used in DeCov (Cogswell et al,

2015). (2) SDL uses a more robust L1 formuation instead of the L2 one in DeCov (Cogswell et al,

2015), which encourages sparser correlation and thus stronger decorrelation.

To highlight the differences and contributions, the comparisons among the different decorre-

lation losses mentioned above are listed in Table 2.1.

2.2.3 Multi-View Canonical Correlation Analysis

CCA models can handle the multi-view learning problems with more than two views, following

the multi-view CCA (Gong et al, 2014). Assuming the total number of views is V (V > 2), the

learning objective of multi-view CCA is similar to Eq. 2.1,

argmin
ω1,ω2,...,ωV

1
2

V

∑
i, j=1
||Pωi(X̃i)−Pω j(X̃ j)||2F ,

s.t. PT
ωi
(X̃i)Pωi(X̃i) = PT

ω j
(X̃ j)Pω j(X̃ j) = I, i 6= j,

(2.2)
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Eq. 2.2 generalises to the multi-view case by exhaustively pairing different two views and sum-

ming up their CCA objectives. It has three main disadvantages in handling the multi-view settings

(V > 2). (1) The number of exhaustive pairs grows fast, with the speed of O(V 2). For example,

there are 28 different view pairs when V = 8. (2) The overall model size can hardly be han-

dled since CCA requires the view-specified modelling, i.e., Pωi(·), i ∈ {1,2, ...,V}. It grows as

V increases. The situation in Deep CCA can be even worse since V independent deep networks

are deployed. (3) The training strategies and paces of different view pairs and models can be

diverse. Coordinating them for the holistic optimisation in Eq. 2.2 is challenging, especially in

deep CCA.

2.3 Deep Neural Network for Cross-View Recognition

Key to effective cross-view recognition is to learn the discriminative and invariant features across

views for matching. Most recent works (Li et al, 2018b; Wang and Deng, 2018; Zheng et al,

2016a) are developed based on different deep neural networks (DNNs) with the advanced ar-

chitectures. For example, the AlexNet (Krizhevsky et al, 2012) is used for the face recognition

problem (Parkhi et al, 2015). The feature representation are extracted from the very top feature

layer of a trained model. As a DNN comprises multiple feature extraction layers stacked one on

the top of each other, the visual concepts of higher semantic levels are captured when forwarding

from the bottom to the top layers, as pointed out in (LeCun et al, 2015; Szegedy et al, 2015a;

Jin et al, 2016). It is thus infeasible for the final layer of the network to capture discriminative

visual features of all semantic levels on its own. However, for cross-view recognition purposes,

discriminative and view-invariant factors of multiple semantic levels should be ideally preserved

in the learned features.

2.3.1 Deep Neural Networks for Person Re-ID

Specifically, a challenging cross-view recognition problem, i.e., person Re-ID (Zheng et al,

2016a; Li et al, 2017c; McLaughlin et al, 2017), is investigated. The person images in a Re-

ID dataset are captured from a surveillance system with multiple non-overlapped camera views.

The visual appearance of the same person across different views can change drastically due to

realistic variations such as occlusion, low resolution, illumination changes and blurs (Zheng et al,

2016a; Xiao Wang, 2019).
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Figure 2.2: A women in similar dressing, e.g., the red coat, but with distinctive ’looks’ (Hsiao
and Grauman, 2017) or ’styles’ (Takagi et al, 2017) which are latent visual concepts and hard to
be quantified.

Most recent person Re-ID methods train DNNs with various learning objectives including

classification, verification and triplet ranking losses (Xiao et al, 2016; Sun et al, 2017; Li et al,

2017c; McLaughlin et al, 2017). Once trained, these models typically extract visual features

from the final layer of a network for matching.

One approach to obtaining an appearance feature containing information from multiple se-

mantic levels is training to predict visual attributes (Layne et al, 2012; Lin et al, 2019). By defin-

ing and annotating diverse attributes at multiple semantic levels, and training to predict them,

these models are forced to encode attribute information using their top-layer features (McLaugh-

lin et al, 2017; Schumann and Stiefelhagen, 2017; Lin et al, 2019; Khamis et al, 2014; Matsukawa

and Suzuki, 2016). However, learning with the pre-defined attribute labels has two main draw-

backs, and limiting the efficiency and effectiveness of corresponding models.

1. The attribute annotation process is costly and error-prone. It usually require a manual

definition of the attribute dictionary and large scale image-attribute annotation, making

this approach non-scalable.

2. The pre-defined attributes are semantic (’describable’) but not necessarily discriminative (Farhadi

et al, 2009; Xiao Wang, 2019; Hsiao and Grauman, 2017). Therefore, only sub-optimal

performance can be achieved by learning with such manual attribute labels. Furthermore,

some discriminative attributes are with latent semantic and hard to be clearly stated and

quantified, as illustrated in Figure 2.2.

Another apporach is to complement the final layer feature with features from other layers.
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A couple of studies fused representations from multiple levels (Zhao et al, 2017a; Liu et al,

2017), but this required extra effort such as body-part detection (Zhao et al, 2017a) or attention

mechanisms (Liu et al, 2017) as the pre-defined auxiliary tasks.

2.3.2 Related Deep Neural Network Architectures

DNNs with Multi-Level Feature Fusion Multi-level fusion architectures have been devel-

oped in other computer vision tasks. In semantic segmentation (Long et al, 2015a; Fan et al,

2018a; Hariharan et al, 2015), feature maps from selected levels are used with shortcut connec-

tions to provide multiple granularities to the segmentation output. In visual recognition, deep

features from a few selected layers were merged together to improve the final-layer representa-

tion (Yang and Ramanan, 2015; Cai et al, 2017; Yu et al, 2017c; Yang et al, 2016b). However,

features extracted from limited and manually-specified layers may not reflect the optimal choice

for complementing the final representation. Very few fusion architectures on specific tasks, e.g.,

edge detection (Xie and Tu, 2015), fuse features from all layers/levels. These models are usually

designed to have limited levels (e.g., 3∼ 5), so their expressibility is limited.

Relevant DNN Blocks Instead of constructing each block with holistic modules as in (Krizhevsky

et al, 2012; Simonyan and Zisserman, 2015; He et al, 2016a), a split-transform-merge strategy

(Szegedy et al, 2016) is used to construct the modularised block architecture in ResNeXt (Xie

et al, 2016b). A group of sub-network modules with duplicate structures are equally activated

with their outputs summed up. Our proposed Multi-Level Factorisation Net (MLFN) leverages

the ResNeXt design pattern, but extends it to include a dynamic selection of which module subset

activates within each block for each image. This allows MLFN blocks to specialise in processing

different latent appearance factors, and the FSM output vectors to encode a compact descriptor

of detected latent factors at the corresponding level.

Our MLFN block is also related to that of Mixture-of-Expert (MoE) ones (Jacobs et al, 1991;

Yuksel et al, 2012; Ahmed et al, 2016). In MoEs, a softmax activation module aims at identifying

a single expert to process a given input instance. Mixture-of-Experts Layer (MoEL) methods

(Eigen et al, 2014; Shazeer et al, 2017) extend flat MoE to a stacked model. They have been used

to separate localisation and classification tasks in a two-level MoEL model (Eigen et al, 2014), or

to implement very large neural networks by allowing each node in a cluster to run one expert in

one layer of the large network (Shazeer et al, 2017). On the contrary, MLFN dynamically detects

multiple latent factors at each level that explain each input image jointly (e.g., a person can have



42 Chapter 2. Literature Review

…

…

…
FSM

(b) ResNeXt(a) Resnet

(c) MoE (d) MLFN

Softmax
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Figure 2.3: Four DNN blocks are illustrated for comparison. From (a) to (d), they are build-
ing blocks belong to Resnet (He et al, 2016a), ResNeXt (Xie et al, 2016b), Mixture-of-Experts
(MoE) (Eigen et al, 2014) and the proposed MLFN. Each blue module represents an independent
CNN sub-network. The longer it is, the more channels it handles. The green box is the gating
sub-module to modulate the outputs of CNN sub-networks. Its outputs are softmax activated be-
fore modulation in MoE. In our MLFN, it is called factor selection module (FSM) with sigmoid
activation.

both long hair and carry a bag). Thus MLFN block uses sigmoid activated FSM rather than

softmax as used in MoE/MoEL, which assumes a single expert should dominate. Illustrations of

the different DNN blocks, including the proposed MLFN one, are compared in Figure 2.3.

2.3.3 Other Visual Applications with Attributes

Attributes play the important role in aligning multi-view visual data, as mentioned above. The

latent factors discovered by our proposed MLFN can also be interpreted as latent attributes with

semantic meanings, as demonstrated in Section 4.2.4. According to (Ferrari and Zisserman,

2008), visual attributes are qualities of objects/entities from multiple perspectives such colors,

textures and shapes. They are usually considered to be more descriptive than the class/category

labels (Farhadi et al, 2009). Therefore, attributes are widely applicable to many other visual

tasks such as object categorisation (Nagarajan and Grauman, 2018; Farhadi et al, 2009; Ferrari

and Zisserman, 2008) and zero-shot learning (Lampert et al, 2009, 2013; Romera-Paredes and

Torr, 2015). However, their visual attributes are mainly come from manual annotations.
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2.4 Unsupervised Domain Adaptive Multi-View Learning

Labelling a large-scale visual dataset from scratch can be prohibitively expensive (Berinsky et al,

2012; Deng et al, 2009; Zheng et al, 2015). To improve the model performance on the unsu-

pervised target dataset, one learning strategy (Zhang et al, 2019; Ganin and Lempitsky, 2015;

Luo et al, 2017) is incorporating another labelled source dataset with relevant tasks for training.

Each dataset is denoted as a domain and this setting is also known as unsupervised domain adap-

tation (UDA) (Long et al, 2015b; Ganin et al, 2016). The main purpose of UDA is to transfer

knowledge from the source domain to the target one.

In this thesis, the main concentration is a specified UDA setting, the unsupervised domain

adaptive (UDA) multi-view learning, where both domains are multi-view datasets with relevant

tasks. Many multi-view visual applications (Zhang et al, 2019; Sohn et al, 2017) follow this set-

ting and our main focus is the unsupervised domain adaptive (UDA) person Re-ID (Kodirov et al,

2016; Wei et al, 2018; Wang et al, 2018). The main challenges are the disjoint label (e.g., person

identity) spaces across domains and the clear domain gaps, as illustrated in Figure 1.3. Moreover,

the relevant transfer learning settings such as the conventional unsupervised domain adaptation

(UDA) (Section 2.4.1) and the disjoint label space transfer learning (DLSTL) (Section 2.4.2) are

reviewed and compared as in follows.

2.4.1 Unsupervised Domain Adaptation with Domain Alignment

An underlying assumption made by the conventional unsupervised domain adaptation (UDA) is

both source and target domains share the same label space. Different domain alignment methods

are thus proposed for the UDA based on this assumption. The cross-domain alignments can

happen in either the raw image space (Hoffman et al, 2017; Kim et al, 2017) or a deep feature

embedding space (Chen et al, 2019; Ganin et al, 2016; Gretton et al, 2009).

Although the UDA person Re-ID problem does not hold such assumption, existing methods

still stick to the domain alignment framework. In (Wei et al, 2018; Deng et al, 2018), person

style transfer GANs are trained to synthesise images of persons in the target domain styles,

with identity information preserved from the source dataset for supervised training in the target

domain. Differently, cross camera-view image synthesis in (Zhong et al, 2018) only takes place in

the target domain for pseudo identity label generation. By performing joint feature learning using

both domains as in our model, (Zhong et al, 2018) achieves the best results thus far. However,
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it still cannot avoid the challenging GAN training process and requires the image synthesis and

Re-ID models to be trained in separate stages and independently. On the other hand, domain

feature alignment techniques such as maximum mean discrepancy (MMD) (Gretton et al, 2009)

have been used to drive Re-ID domain adaptation (Wang et al, 2018; Lin et al, 2018). However,

unlike the conventional domain-adaptation setting, the label spaces in UDA Re-ID are disjoint,

so it is unclear why and how they should be aligned. Moreover, both (Wang et al, 2018; Lin et al,

2018) made use of attributes to provide a good intermediate space for alignment, but attribute

annotation is not widely available, thus limiting their applicability.

2.4.2 Disjoint Label Space Transfer Learning

Transfer learning (TL) aims to transfer knowledge from one domain/task to improve performance

on the other (Pan and Yang, 2009). The most widely used TL technique for deep networks is

fine-tuning (Yosinski et al, 2014; Chen et al, 2018; Ren et al, 2015). Instead of training a target

network from scratch, its weights are initialised by a pre-trained model from another task such

as ImageNet (Deng et al, 2009) classification. Its target dataset requires to be fully supervised.

Another TL setting, Disjoint Label Space Transfer Learning (DLSTL), focuses on the disjoint

label spaces between source and target domains. The most concerned DLSTL problems are

semi-superivsed DLSTL (Luo et al, 2017), i.e., both unlabelled and few labelled target data are

available, and the unsupervised DLSTL, i.e., with unlabelled target data. Therefore, different

UDA multi-view learning problems, e.g., the UDA person Re-ID (Zheng et al, 2016a) and fine-

grained sketch based image retrieval (SBIR) (Sangkloy et al, 2016), belong to the unsupervised

DLSTL. On the contrary, the conventional UDA (Ganin et al, 2016) has the same label space

across domains. However, both settings have the unsupervised target datasets and the labelled

source ones, as in unsupervised transfer learning (Zhang et al, 2019; Ganin and Lempitsky, 2015;

Luo et al, 2017). As a summary, different transfer learning settings can find their coordinates on

two axes, the relation of the label spaces across domains and the amount of target supervision

provided, as illustrated in Figure 2.4.

2.4.3 Multi-Task Learning

The unsupervised domain adaptive (UDA) multi-view learning belongs to a specified transfer

learning setting DLSTL, as analysed above. Therefore, the multi-task learning pipeline for trans-

fer learning (Pan and Yang, 2009) can be adopted. Its main objective is to learn a shared deep
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Figure 2.4: Schematic of various transfer learning problems on two criteria: the relation between
source and target label space, and the amount of target problem supervision. MVL stands for
Multi-View Learning.

embedding space with contributions from both domains. Specifically, the space serves the source

domain for supervised learning and the target domain for unsupervised learning. The unsuper-

vised learning objectives play the key roles in boosting the target performance. Two different

assumptions on target data are proposed and results in two multi-task learning algorithms for

unsupervised domain adaptive multi-view learning.

The first method is based on the common space factorisation assumption. Such a space is

regularised to be low-entropy, i.e., near-binary. Each dimension of the space aims to capture

some latent visual attributes such as colour and texture. The use of binary codes for hashing

with deep networks goes back to (Salakhutdinov and Hinton, 2009). In computer vision, hashing

layers were inserted between feature- and classification-layers to provide a hashing code (Lin

et al, 2015a; Zhu et al, 2016). To produce a binary representation for fast retrieval, a threshold

is applied on the sigmoid activated hashing layer (Lin et al, 2015a). Entropy loss for unlabelled

data is another widely used regulariser (Long et al, 2016; Zhu, 2005). It is applied at the clas-

sification layer in problems where the unlabelled and labelled data share the same label space

– and reflects the inductive bias that a classification boundary should not cut through the dense

unlabelled data regions. Its typical use is on softmax classifier outputs where it encourages a clas-

sifier to pick a single label. Graph-based regularisation is popular for semi-supervised learning

(SSL) which uses both labelled and unlabelled data to achieve better performance than learning

with labelled data only (Zhu, 2005; Belkin et al, 2006). In SSL, graph based regularisation is

applied to regularise model predictions to respect the feature-space manifold (Yue et al, 2017;
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Nadler et al, 2009; Belkin et al, 2006). Moreover, exploiting the graph from lower-level to regu-

larise higher-level features is widely adopted in other scenarios, e.g., unsupervised learning (Jia

et al, 2015; Yang et al, 2017b).

The second method is based on the clustering assumption on the target samples. Taking per-

son Re-ID as a example, the target instances form cluster and each cluster can be interpreted as

an unknown identity. It is mostly related to PUL (Fan et al, 2018b), also a clustering paradigm

for deep UDA person Re-ID. PUL alternates between performing k-means clustering using fixed

features, and deep feature learning using fixed clusters as classification targets. Recent work

shows that jointly optimising deep representations with different clustering objectives (e.g., k-

means (Xie et al, 2016a; Yang et al, 2017a), agglomerative (Yang et al, 2016a), Gaussian Mix-

ture Model (Van den Oord and Schrauwen, 2014; Jiang et al, 2017; Viroli and McLachlan, 2017),

spectral (Shaham et al, 2018)) yields promising results (Aljalbout et al, 2018). Different from

these clustering work, the main focus is about the source-to-target knowledge transfer with the

unlabelled (target) multi-view data exploited via a clustering loss. A number of recent deep clus-

tering methods (Xie et al, 2016a; Yang et al, 2017a) also attempt to avoid the hard/deterministic

assignment in k-means clustering. DEC (Xie et al, 2016a) does soft cluster assignment using

a Student-t distribution, and an auxiliary distribution to sharpen the initial soft assignment. Al-

though DEC is end-to-end trainable by SGD, it fails to handle the reinforcing errors problem

since the auxiliary distribution always peaks in the same position as the initial soft assignment,

but with a higher probability. DCN (Yang et al, 2017a), on the other hand, is similar in that it

also uses a reconstruction loss to regularise the clustering by avoiding trivial clustering solutions

(such as mapping all the input to a single point). However, like PUL (Fan et al, 2018b), DCN

is based on alternating optimisation of k-means and deep feature learning (i.e., not end-to-end

trainable). It also does not address the reinforcing errors problem.

2.5 Summary

The preceding sections have discussed important studies in the literature with respect to the cross-

view recognition problems in different realistic large-scale visual applications. Specifically, three

representative multi-view learning settings, from the fully supervised two-view case to the more

generalised case with multiple views and finally the challenging unsupervised domain adaptive

(UDA) multi-view learning problems, are studied. Moreover, the deep neural network (DNN)
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frameworks are exploited to handle the large-scale visual data due to their effectiveness and op-

timisation efficiency. As pointed out in the review, existing cross-view recognition methods still

have many deficiencies. In the following chapters, novel approaches are presented to overcome

the challenges as outlined below:

1. Chapter 3 Scalable Deep Canonical Correlation Analysis: Deep CCA generalises shal-

low CCA to non-linear setting via deep neural network and achieves superior performance.

However, existing deep CCA models have the scalability issues due to the feature decorre-

lation constraints via the exact decorrelation which is computational expensive. To address

these limitations, a new perspective on CCA is provided. It allows the objective to be ex-

pressed as a soften loss to be minimised by gradient descent. It results in a novel Deep

CCA model, Soft CCA, that is simple to implement, more scalable and effective than ex-

isting deep CCAs. Beyond multi-view learning, the proposed Stochastic Decorrelation

Loss (SDL) is applicable to a variety of tasks and models, and is superior to alternatives.

2. Chapter 4 Deep Factorisation for Multi-View Learning: Existing deep models exploit

the features from the very top layers for cross-view recognition. Such deep features are

more abstract. However, the view-invariant discriminative factors can be found at differ-

ent semantic levels. To complement the final layer deep feature, existing methods rely on

visual attribute annotations or inefficient fusion of outputs from multiple layers. A novel

deep neural network architecture, called multi-level factorisation net (MLFN), is proposed

to handle these issues. On the one hand, a novel deep factorisation building block is pro-

posed. MLFN is built by stacking such block one by the other. It enables MLFN to

discover discriminative latent factors with no additional supervision. Moreover, the task

of learning multi-level factors is shared by all network blocks rather than burdening only

the final layer. On the other hand, MLFN fuses information from all levels in the deep

network, which is efficient because it provides a compact latent factor representation that

can be easily aggregated without prohibitive feature dimension.

3. Chapter 5 Unsupervised Domain Adaptive Multi-View Learning: This challenging

transfer learning setting consists of two multi-view datasets. One is an unsupervised target

domain and the other is a fully supervised source domain. These two datasets have rele-

vant tasks but with disjoint label spaces. For example, two person Re-ID datasets captured
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from different surveillance scenarios. The main purpose of the UDA multi-view learning

is to improve the target performance with the help of the labelled source domain. Exist-

ing methods follow the domain alignment framework as for the conventional unsupervised

domain adaptation (UDA) and aim to align the source and target domains in either the raw

image space or a deep feature embedding space. However, these methods are either hard

to be trained or inappropriate for the UDA multi-view learning problems. The multi-task

learning framework is adopted instead. Each domain makes specified contributions to the

learning of a shared deep embedding space. Supervised learning is applied on the source

domain. Two different assumptions on the unlabelled target data are proposed and result

in two novel algorithms as below.

Common Space Factorisation Assumption It is built on the idea that learning should be

performed in a shared latent factor space for both domains where each factor is interpreted

as latent attribute. To this end, a simple yet effective model is proposed to exploit an

unsupervised factorisation loss to discover a common set of discriminative latent factors

between source and target datasets. And to improve feature learning for subsequent tasks

such as retrieval, a novel graph-based loss is further proposed. Comprehensive experiments

are conducted to show that the proposed model is effective on various transfer learning

settings.

Clustering Assumption It conveys the idea that the target samples in the shared deep

embedding space form clusters. Each cluster can be interpreted as an object/entity across

views. Specifically, in person Re-ID, each cluster corresponds to an unknown identity of

target dataset. Therefore, the key component of our proposed method is a novel Stochastic

Inference for Deep Clustering (SIDC) model that encourages the unlabelled target domain

to form compact clusters. Our SIDC is end-to-end trainable, and resistant to compounding

errors due to the stochastic inference process. The effectiveness of SIDC is demonstrated

not only on the UDA multi-view learning problems but also the general clustering tasks.
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Chapter 3

Scalable Deep Canonical Correlation Analysis

Supervised cross-view recognition is a fundamental multi-view learning task with wide applica-

tions. To align different views in a joint embedding space, the correlation based learning objective

is adopted and aim to maximally correlated different views for alignment. It is also known as

Canonical Correlation Analysis (CCA). The recently proposed deep CCA methods aim to learn

nonlinear projections with deep neural networks and has been shown to be more effective than

different shallow CCA variants.

Existing deep CCA models typically first decorrelate the feature dimensions of each view

before the different views are maximally correlated in a common latent space. The exact decor-

relation is then applied for the feature decorrelation. Two main issues arise in these deep CCA

methods because of the exact decorrelation. On the one hand, the exact decorrelation opera-

tion, either based on matrix inversion or signular value decomposition (SVD), is computationally

expensive and severely limits the models scalability. On the other hand, these decorrelation oper-

ations do not directly affect the following gradient computation and subsequent backpropagation.

Therefore, existing deep CCA models are optimised with separate and independent steps, which

could lead to sub-optimal solutions.

A novel deep CCA approach, called Soft CCA, has been proposed in this chapter. In our

model, decorrelation is formulated as a soft constraint to be jointly optimised with other training

objectives. Specifically, a robust decorrelation loss, Stochastic Decorrelation Loss (SDL), is

introduced, which is mini-batch based and approximates the full-batch statistics efficiently with

stochastic incremental learning. SDL is a softer constraint as the loss is only minimised rather
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than enforced to be zero. Therefore, Soft CCA is more efficient and scalable than existing ones.

Moreover, SDL is end-to-end trainable with other losses and more globally solutions can be

achieved. Last but not least, SDL can also be applied as an activation regularisation to any deep

models where feature decorrelation is helpful.

The organisation of this chapter is as follows. Section 3.1 presents the details of SDL and

its combinations to different deep models such as Soft CCA, Factorisation Autoencoder (FAE)

and convolutional neural network (CNN). Experiments on cross-view recognition is conducted

in Section 3.2. In the meanwhile, we demonstrate that SDL can be applied to a number of models

for problems beyond multi-view learning. Finally, a summary is presented in Section 3.3.

3.1 Scalable Deep Canonical Correlation Analysis via Soft Decorrelation

3.1.1 Deep Canonical Correlation Analysis

Deep Canonical Correlation Analysis (CCA) extends linear CCA model by projecting views

of the same entity (here images of the same objects is considered) from different views to a

common latent space using a DNN with multiple branches, each corresponding to one view

(see Figure 3.1). A two-view case for correlation learning is considered. Assuming the training

visual data from both views are denoted as X̄ = {X̄1, X̄2} where the data samples from different

views are denoted as X̄1 and X̄2 respectively. The data sample correspondences across different

views are given in the supervised setting. Therefore, X̄1 and X̄2 are constructed by pairing the

corresponding data samples of the same objects. The number of different objects in X̄ is denoted

as N and N training pairs are thus available. The mini-batch inputs (X1 and X2) for deep neural

network (DNN) can be organised in the similar way, by stochastically sampling n pairs from

N and fed into the corresponding DNN branches. The DNN branches aim to learn functions

that project paired input images into a shared latent space where they are maximally correlated.

Denote the DNN projection function for view i, i = {1,2} as Φθi : Xi → ZZZi, or Φθi(Xi) = ZZZi

where ZZZi ∈ Rn×d is the projected feature matrix for n data items for view i in the d dimension

CCA embedding space and θi are the DNN parameters.

Following (Golub and Zha, 1995), CCA can be formulated in multiple ways and the most

relevant one here is:

argmax
θ1,θ2

tr(ΦT
θ1
(X1)Φθ2(X2)),

s.t. Φ
T
θ1
(X1)Φθ1(X1) = Φ

T
θ2
(X2)Φθ2(X2) = I,

(3.1)
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DNN   DNN   

Figure 3.1: Schematic of implementing Soft CCA with SDL.

where I indicates the identity matrix. The constraints enforce exact decorrelation within each of

the two input signals. Eq. 3.1 can be written into an equivalent form:

arg min
θ1,θ2

1
2
||Φθ1(X1)−Φθ2(X2)||2F ,

s.t. Φ
T
θ1
(X1)Φθ1(X1) = Φ

T
θ2
(X2)Φθ2(X2) = I,

(3.2)

It shows that the goal of maximising correlation between Φθ1(X1) and Φθ2(X2) can be achieved

by minimising the L2 distance between the decorrelated signals.

The key idea of our approach is to convert the hard constraint in Eq. 3.2 into a soft decorre-

lation loss to be optimised by SGD.

3.1.2 Stochastic Decorrelation Loss

The representations from one branch of a deep CCA network over a mini-batch is denoted as ZZZ ∈

Rn×d , where n is the mini-batch size and d indicates the number of neurons/feature channels. We

further assured that ZZZ has been mini-batch standardised, i.e., each activation over the mini-batch

has zero mean and unit variance. This can be easily achieved by adding a Batch Normalisation

(BN) (Ioffe and Szegedy, 2015) layer.

The mini-batch covariance matrix CCCt
mini for the t-th training step then is given as:

CCCt
mini =

1
n−1

ZZZT ZZZ. (3.3)

However, full-batch statistics are required by CCA objective for decorrelation. Therefore,

the full-batch covariance matrix CCC f ull is approximated by accumulating statistics collected from

each mini-batch. This is achieved by stochastic incremental learning. More specifically, an
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accumulative covariance matrix is first computed:

CCCt
accu = αCCCt−1

accu +CCCt
mini, (3.4)

where α ∈ [0,1) is a forgetting/decay rate and CCC0
accu is initialised with an all-zero matrix. A

normalising factor is also computed accumulatively as ct = αct−1+1 (c0 = 0 initially). The final

full-batch covariance matrix approximation is then computed as:

CCCt
appx =

CCCt
accu

ct . (3.5)

If an exact decorrelation strategy as in (Andrew et al, 2013; Wang et al, 2015b,c) is followed,

the off-diagonal elements of CCCt
appx are forced to be zeros. However, that has implications on

the computational cost and scalability which will be detailed later. Instead, we follow a soft

decorrelation procedure and formulate the decorrelation constraint as a loss. Specifically, SDL is

an L1 loss on the off-diagonal element of CCCt
appx:

`SDL =
d

∑
i=1

d

∑
j 6=i
|φ t

i j|, (3.6)

where φ t
i j is the element in CCCt

appx at (i, j). L1 loss is used here to encourage sparsity in the off-

diagonal elements. SDL is soft because it only penalises the correlation across activations instead

of enforcing exact decorrelation. It will be jointly optimised with any other losses the model may

have.

Gradients and Optimisation The gradient of `SDL w.r.t. zmi (the element in Z at (m, i)) can be

computed as

∂`SDL

∂ zmi
=

1
ct

1
n−1

k

∑
j

SSS(i, j)zm j,

SSS(i, j) =


1, φ t

i j > 0

0, i = j or φ t
i j = 0

−1, φ t
i j < 0

(3.7)

with the sign matrix SSS ∈ Rd×d and i, j = 1, ...,d. Eq. 3.7 can be written in a matrix form:

∂`SDL

∂ZZZ
=

1
ct

1
n−1

ZZZ ·SSS, (3.8)

where · indicates matrix multiplication.
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Once the SDL gradients are computed, they are passed through the network during back-

propagation and optimised along with other losses in end-to-end training.

Computational Complexity Eq. 3.6 shows that to compute the SDL in a forward pass, matrix

multiplication (as in Eq. 3.3) is needed, matrix addition (as in Eq. 3.4) and matrix element-

wise summation (as in Eq. 3.6). Therefore, the forward pass computation complexity of SDL is

O(nd2). The gradient computation during the backward pass is in Eq. 3.8. It is also a matrix

multiplication and therefore the complexity is O(nd2). The overall computational complexity

of one training iteration is thus O(nd2). In contrast, existing exact decorrelation computation

(Andrew et al, 2013; Wang et al, 2015c) has a complexity of O(nd2 +d3) due to the use of SVD.

Note that in large scale vision problems, the number of activations in an FC layer can easily be

thousands, meaning that the alternative hard decorrelation models are prohibitively expensive.

3.1.3 Stochastic Decorrelation Loss for Soft Canonical Correlation Analysis

With the proposed SDL, the constrained optimisation problem in Eq. 3.2 can be reformulated as

the following unconstrained objective:

arg min
θ1,θ2

`dist(Φθ1(X1),Φθ2(X2))+λ (`SDL(Φθ1(X1))+ `SDL(Φθ2(X2))), (3.9)

where `dist(Φθ1(X1),Φθ2(X2)) is the L2 distance and λ weights the alignment versus decorrelation

losses. The Soft CCA architecture is also illustrated in Figure 3.1. Note that both SDL and L2

loss are mini-batch based losses. Therefore, Soft CCA (deep CCA model with SDL) can be

realised using standard SGD optimisation for end-to-end learning.

3.1.4 Applications of Stochastic Decorrelation Loss to Other Deep Models

Factorisation Auto-Encoder (FAE) with Stochastic Decorrelation Loss (SDL) A two-factor

case is described although the model generalises to an arbitrary number of factors. The two-

factor FAE model is illustrated in Figure 3.2. Its encoder (a deep neural network) takes image

x as input and projects it into an embedding space/latent code which has two parts: yyy and zzz.

Taking the digit (0-9) images of MNIST dataset as an example, yyy is a factor that is annotated in

the training data, e.g., digit label. The other unspecified factors, such as hand writing style, are

captured by zzz. Both yyy and zzz are used as input to the decoder (e.g., a deconvolutional network)

which produces a reconstruction of x, denoted as x̂. The goal is not only to accurately reconstruct

the input x, but also to represent distinct factors of variation in yyy and zzz, as demonstrated in
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Encoder DNN

Decoder 

DNN
DNN  

Figure 3.2: Architecture of Factorisation Auto-Encoder (FAE) with SDL.

Section 3.2.2. In statistics, such distinct representations can be described as mutual decorrelated

and a decorrelation loss is thus required between yyy and zzz.

Assume the FAE model is parameterised by θ . Given a training set D containing images X

and their labels Ŷ for the known factor, the learning objective of FAE is:

argmin
θ

Lrec(X , X̂)+λLcla(Y,Ŷ ), (3.10)

where Lrec(X , X̂) is the reconstruction loss, which is a pixel L2 loss here, and Lcla(Y,Ŷ ) is the

classification loss, i.e., cross-entropy loss here. If there is no constraint on the relation between

yyy and zzz, they would not necessarily represent distinct aspects of the input signal. To disentangle

them, the SDL is introduced to the objective:

argmin
θ

Lrec(X , X̂)+λ1Lcla(Y,Ŷ )+λ2LSDL([Y,Z]). (3.11)

As shown in Figure 3.2, this means we decorrelate the elements of the concatenated code [yyy,zzz]

which decorrelates the two code parts (factors), as well as the signal within the factors.

Convolutional Neural Network (CNN) Classifier with SDL Since decorrelation loss encour-

ages a layer’s activations to be decorrelated, it reduces activation co-adaptation and maximises

the model’s capacity. Therefore, SDL can be applied to each layer of a CNN classifier to boost the

model performance. In our experiments, SDL is added to different CNN classifiers for different

recognition tasks to demonstrate its general applicability.

3.2 Results and Analysis

3.2.1 Soft Canonical Correlation Analysis

Datasets and Settings We evaluate the proposed Soft Canonical Correlation Analysis (CCA)

and alternative deep CCA models on two widely used datasets. MNIST (LeCun et al, 1998)
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consists of handwritten digit images with an image size of 28 × 28. It contains 60,000 training

and 10,000 testing images respectively. The experimental setting in (Chandar et al, 2016) for

cross-view recognition is followed. Deep CCA models are trained on the left and right halves of

a 10,000 sized subset of training images and 5-fold cross validation is done on the provided test

set for recognition. Multi-PIE (Gross et al, 2007) is a face dataset composed of 750,000 images

of 337 people with various factors contributing to appearance variation including viewpoint,

illumination and facial expression. A subset containing 6,200 images of all 337 identities in

neutral expression and lighting is used. Constructing an analogous experiment to the cross-view

recognition benchmark, these images are separated into the left and right view groups according

to their viewing angle. Left-right view angle pairs are then formed exhaustively for the same

identities to train the deep CCA models. Half of the images in both views are used for deep CCA

training and a 5-fold cross validation for recognition on the rest of the data is also done.

Implementation Details For MNIST cross-view recognition, the network architecture of each

view branch is identical to that in (Chandar et al, 2016) for fair comparison. Concretely, there

are three hidden layer containing 500, 300, d units/activations respectively, where the d units

are used as the common representation (CCA embedding layer). ReLU is applied on the hidden

layers’ activations (except the embedding layer). Once the CCA model is trained, on the test set,

features from one view (e.g., right) are extracted, embedded with deep CCA, and then fed to a

Linear SVM (Chang and Lin, 2011) classifier which is trained to recognise the images. Finally,

the model is evaluated based on features from the other view (e.g., left) being projected into the

shared embedding space, and recognised by the SVM. Clearly, the performance of the SVM on

this cross-view recognition task depends on the efficacy of the CCA embedding. An analogous

cross-view recognition setting is used for the Multi-PIE dataset. The DNN architecture for Multi-

PIE also has three hidden layers: 1024, 512, d units, the d units are used as the CCA embedding

layer. ReLU is applied on the hidden layers’ activations (except the embedding layer).

Competitors For shallow CCA, we compare the standard linear CCA (Hotelling, 1936) and its

nonlinear kernelised variant, KCCA (Hardoon et al, 2004). The KCCA results are obtained from

(Chandar et al, 2016). For the deep CCA models, CorrNet (Chandar et al, 2016), DCCA (An-

drew et al, 2013), DCCAE (Wang et al, 2015a) and SDCCA (Wang et al, 2015c) are compared.

CorrNet (Chandar et al, 2016) combines correlation maximisation with cross-view autoencoder

loss and uses Batch Normalisation. Without access to their code, only the reported result in
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Figure 3.3: Cross-view digit recognition results on MNIST. Note that CCA is not scalable to
a common space dimension that is greater than the total dimension of 784. Moreover, DCCA,
DCCAE and SDCCA are also intractable with our GPU resources when the common space di-
mension becomes 1000.

(Chandar et al, 2016), which was obtained only on MNIST with d = 50, is used. As far as we

know, SDCCA (Wang et al, 2015c) is the most efficient state-of-the-art deep CCA model to date.

Results on Cross-View Recognition Figures 3.3 and 3.4 show the results for cross-view digit

and face recognition. The following observations are made: (1) The deep models achieve better

performance than the shallow ones. (2) Our Soft CCA achieves the best results on both datasets

with all CCA space dimensions. (3) Increasing the common space dimension d benefits SDCCA

very little and even harms the performance of other competitors (e.g. CCA). In contrast, our Soft

CCA clearly benefits from larger CCA space dimensions.

50D 100D 200D 500D 1000D

Upper Bound 50 100 200 500 1000

CCA 28.3 34.2 48.7 74.0 -

DCCA 29.5 44.9 59.0 84.7 -

DCCAE 29.3 44.2 58.1 84.4 -

SDCCA 46.4 89.5 166.1 307.4 -

Soft CCA 45.5 87.0 166.3 356.8 437.7

Table 3.1: Correlation strength on MNIST. ‘-’ indicates that the result is not obtainable due to
the corresponding model being intractable with our available hardware.

Results on Cross-View Correlation Another way to evaluate CCA models is to measure

the average correlation strength of each matching pair of data when they are projected into the

common CCA space (Wang et al, 2015c). We follow the experimental setting and network ar-
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Figure 3.4: Cross-view face recognition results on Multi-PIE. Accuracy (%). Note that SDCCA
is intractable with our GPU resources when the common space dimension becomes 1000.

chitecture of (Wang et al, 2015c) (SDCCA) for a fair comparison. The results of MNIST and

Multi-PIE are shown in Table 3.1 and Table 3.2 respectively. Following conclusions are made

from the results: (1) Again the deep models achieve higher correlation values indicating that they

align the two views much better than the linear CCA model. (2) For the easier digit classifica-

tion task in MNIST, our model is slightly inferior to SDCCA at 50D and 100D, but better after

200D. For the more challenging face recognition problem in Multi-PIE, Soft CCA consistently

outperforms SDCCA and the gap increases with the dimension. These results suggest that our

model is more effective with higher dimensional embedding space, which is required for more

challenging computer vision tasks.

50D 100D 200D 500D 1000D

Upper Bound 50 100 200 500 1000

CCA 12.8 23.9 53.4 140.6 207.1

SDCCA 25.7 51.5 151.2 228.3 -

Soft CCA 29.2 60.5 163.2 257.7 283.9

Table 3.2: Correlation strength on Multi-PIE.

Evaluation on Scalability The training time for our model and that for the most efficient deep

CCA model proposed to date, SDCCA (Wang et al, 2015c), are compared. Figure 3.5 shows that

our soft CCA is always more efficient than SDCCA even at the low dimensions1. Importantly,

when the CCA embedding space dimension approaches 4,000 (roughly the same as the final FC

layer size of popular DNNs like AlexNet and VGGNet), our model is clearly much more efficient

1The speedup is significant even under low dimensions; it is just not very salient in Figure 3.5 due to
the scaling problem. E.g, at 50D and 100D, Soft CCA is 2 and 5 time faster to train respectively.
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Figure 3.5: Comparing training time (seconds/iteration) on MNIST given different CCA space
dimensions.

to train. This is due to the O(d2) vs. O(d3) computational complexity difference.

3.2.2 Factorisation Auto-Encoder with Stochastic Decorrelation Loss

Dataset and Settings MNIST (LeCun et al, 1998) is used, and the same experimental setting

as (Cheung et al, 2015) is followed. The network architecture is 784-1000-1000-{yyy+zzz}-1000-

1000-784, where 784 is the dimension of the vectorised image. ReLU is applied on the hidden

layers’ activations (except yyy, zzz). As shown in Figure 3.2, among the two factors to be disentan-

gled, yyy is the digit class which is annotated with the training data. The other factor zzz corresponds

to aspects of appearance besides class – i.e., the unannotated writing style. In our experiments,

the dimension of yyy is fixed to 10 corresponding to the 10 digit classes and the dimension of zzz is

also set to 10. The performance of a vanilla FAE (basic network with only reconstruction and

classification loss), FAE+XCov (Cheung et al, 2015), FAE+DeCov (Cogswell et al, 2015) and

our FAE+SDL are compared.

Evaluation on Disentanglement In the ideal case, the two factors will be completed disen-

tangled in yyy and zzz, i.e., yyy contains no information about the style and zzz contains nothing about

the class. To quantify this, the digit classification performance are compared with the inferred yyy

and zzz on the test set. Classification based on yyy is given by the prediction scores from the FAE

classification branch. The inferred zzz requires an additional classification model and a linear SVM

is trained using zzz from the training set and test it on the test set. Predictions based on yyy and zzz

should thus ideally give perfect and random chance accuracies respectively. Table 3.3 shows that

with SDL, the style feature zzz’s classification performance is close to random guess (10%), and

better (closer to random) than that of XCov and DeCov, whilst using with the vanilla FAE with

no decorrelation loss, it still contains extensive class information. Meanwhile, the disentangled
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FAE XCov DeCov SDL

z (↓) 43.44 14.51 15.42 11.35

y (↑) 97.23 95.72 97.09 97.33

Table 3.3: Disentanglement efficacy. Classification accuracy (%) using representation of each
branch in MNIST FAE.

yyy provides the highest classification accuracy using our FAE+SDL. The results suggest that our

model is more effective than the alternative XCov and DeCov in disentangling latent factors.

This is because our SDL does a stochastic approximation of the full-batch statistics, whilst both

XCov and DeCov only use information from each mini-batch.

Qualitative Results With the style factor disentangled from the class factor, the FAE can be

used to transfer styles to a new digit. Given an input image containing a certain digit with certain

handwriting style, we can keep the inferred zzz and change the value yyy manually to a different digit

class. After feeding both the original zzz and the modified yyy to the decoder, a new digit can be

synthesised with the same style as the input image. Qualitative results are shown in Figure 3.6.

We see the better disentanglement efficacy of our model in terms of clearer digit reconstruction

with clearer style transfer.

Style

Given 

Labels 0  1  2  3  4  5   6  7  8  9 0  1  2  3  4   5  6  7  8  9 0  1  2  3  4   5  6  7  8  9

(a) (b) (c)

Figure 3.6: Qualitative results of handwriting style transfer with different FAE models. (a) FAE;
(b) FAE + XCov (Cheung et al, 2015) ; (c) FAE + SDL. The dimension of zzz is set to 10.

3.2.3 Deep Classifier with Stochastic Decorrelation Loss

Experiments on Object Recognition CIFAR10 (Krizhevsky and Hinton, 2009) which con-

sists of 60,000 32× 32 colour images in 10 categories, with 6000 images per category is used.

The standard experimental setting in (Krizhevsky and Hinton, 2009) is followed. The DNN
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baseline model used is a 20-layer ResNet (He et al, 2016a). SDL is compared with existing

decorrelation loss DeCov (Cogswell et al, 2015) and the baseline (with BN but without any

decorrelation loss) in Table 3.4. The proposed SDL leads to a 1.32% performance improvement

over the baseline model and also outperforms the alternative DeCov loss by 0.82%.

Baseline DeCov SDL

Accuracy 91.12 91.62 92.44

Table 3.4: CIFAR10 classification results (%)

Person Re-Identification In this experiment, a CNN classifier is applied to solve a more chal-

lenging recognition problem. The person re-identification (Re-ID) problem aims to match pedes-

trians captured by non-overlapping CCTV cameras2. One of the biggest and most popular Re-ID

benchmarks is used. Market-1501 (Zheng et al, 2015) is collected from 6 different cameras. It

has 32,668 bounding boxes of 1,501 identities obtained using a Deformable Part Model (DPM)

person detector. Following the standards split (Zheng et al, 2015), we use 751 identities with

12,936 images for training and the rest 750 identities with 19,732 images for testing. Experiments

are conducted under both the single-query and multi-query evaluation settings3. The Rank-1 ac-

curacy is computed to evaluate all the methods. The mean average precision (mAP) (Zheng et al,

2015) is also calculated. For the base model, we use one of the state-of-the-art deep Re-ID mod-

els, DGDNet (Xiao et al, 2016), which is built on Inception modules (Szegedy et al, 2015b). Our

model (DGDNet+SDL) adds SDL on the output of each BN layer in DGDNet during training.

The results are shown in Table 3.5, along with some high performing state-of-the-art alterna-

tives. We can see that: (1) Our model (DGDNet+SDL) outperforms a number of state-of-the-art

alternatives. (2) Compared to the base model (DGDNet without decorrelation loss), adding our

SDL boosts the performance by a clear margin. (3) When the alternative DeCov loss is added

to the base model, its performance is also improved, but by a smaller margin. This result thus

2Note that person Re-ID is a multi-view learning problem with multiple (more than two) views. Deep
CCA is inefficient in handling this, as mentioned in Sec. 2.2.3. The state-of-the-art Re-ID approaches train
a holistic deep model with identity-supervised classification loss.

3In Person Re-ID, multiple query (M-Query/MQ) is an evaluation setting assumes a person has mul-
tiple query images that are under the same camera view. Therefore, the query feature of that person is
computed by averaging or max pooling the features of such query images. In contrast, single query (S-
Query/SQ) mode has one query image only. Comparing with the single query results, multiple query ones
are usually better since the multiple query feature contains more information. However, single query is
the default evaluation method across all datasets.
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S-Query M-Query

mAP R1 mAP R1

Siamese LSTM (Varior et al, 2016b) – – 35.3 61.6

Gated S-CNN (Varior et al, 2016a) 39.55 65.88 48.45 76.04

CNN Embedding (Zheng et al, 2016b) 59.87 79.51 70.33 85.84

Spindle (Zhao et al, 2017a) - 76.9 - -

HP-net (Liu et al, 2017) - 76.9 - -

OIM (Xiao et al, 2017) - 82.1 - -

Re-rank (Zhong et al, 2017) 63.6 77.1 - -

DPA (Zhao et al, 2017c) 63.4 81.0 - -

SVDNet (Sun et al, 2017) 62.1 82.3 - -

Context (Li et al, 2017a) 57.5 80.3 66.7 86.8

JLML (Li et al, 2017c) 64.4 83.9 74.5 89.7

DGDNet∗ 64.55 85.06 73.30 89.40

DGDNet+DeCov (Cogswell et al, 2015) 65.74 85.86 74.72 90.53

DGDNet+SDL 67.67 86.75 75.77 91.06

Table 3.5: Market-1501 Results. S-Query means Single Query, and M-Query means Multiple
Query. ‘–’ indicates no reported result. DGDNet∗ refers to the basic network used in DGD (Xiao
et al, 2016), but trained from scratch only on Market-1501, without multi-task learning through
the Domain Guided Dropout layer using six auxiliary datasets for fair comparison.

indicates that the proposed SDL is more effective than DeCov.

Ablation Study Note that SDL differs from DeCov in two aspects: (i) SDL approximates

the global covariance by accumulating mini-batch covariance statistics; and (ii) SDL exploits

an L1 instead of L2 formulation as in DeCov for robustness and correlation sparsity. In order

to gain some insight on what contribute to SDL’s superior performance, two variants of De-

Cov (Cogswell et al, 2015), called DeCovGC and DeCovL1, are considered. DeCovGC is DeCov

with added accumulating covariance statistic only while DeCovL1 adopts a L1 formulation as in

SDL. As shown in Table 3.6, both DeCov variants have better results than DeCov (Cogswell et al,

2015) while SDL (with both accumulating covariance statistic and L1 loss) achieves the highest

performance among them. It suggests that both differences contribute to the effectiveness of

SDL.
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CIFAR 10 Market-1501

DeCov 91.62 85.86

DeCovGC 91.86 86.28

DeCovL1 91.90 86.01

SDL 92.44 86.75

Table 3.6: Ablation study on the advantage of SDL over DeCov. The CIFAR10 classification
accuracy (%) and the Market-1501 results are in R1 accuracy (%) under the single query setting.

3.3 Summary

This chapter has presented a novel deep CCA model, term Soft CCA, for the cross-view cor-

relation learning in visual data. Soft CCA provides an efficient and effective solution to deep

CCA optimisation by introducing a soft decorrelation loss. Extensive experiments show that

the proposed Soft CCA is more effective and scalable than existing deep CCA methods. Com-

pared to exact decorrelation solutions, Soft CCA is easy to implement in contemporary learning

frameworks, and therefore is promising for enabling practical use of CCA techniques in the deep

learning community. Moreover, we demonstrated that as a by-product, the developed SDL loss

can be applied beyond CCA as a general purpose decorrelation loss – to any deep learning task

where feature decorrelation is required. As case studies, SDL was shown to outperform alter-

native decorrelation losses in FAE latent factor disentanglement and CNN object and instance

recognition.

Deep CCA has two potential limitations in handling multi-view leaning tasks with data from

more than two views. On the one hand, the data of each view requires a specific model for

the projection from visual to latent space in CCA. As a result, the model size of CCA will be

increased as more views incorporated in a problem. This leads to memory inefficient issue in deep

CCA when the number of views is large since an independent deep neural network is deployed

for a view. On the other hand, it is harder to train a deep CCA with more views. The learning

schedules of different deep networks can be various and coordinating them for optimal global

performance is also challenging.
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Chapter 4

Deep Factorisation for Multi-View Learning

Deep Canonical Correlation Analysis (CCA) aligns different views via the correlation-based loss

and the view-specific deep models. However, deep CCA is inefficient in handling the multi-view

data with more than two views since multiple view-specific deep neural networks can end up with

a large overall model size. Optimising multiple deep models simultaneously with view-specific

inputs is another obstacle in deep CCA training. Moreover, the cross-view alignment only takes

place in the embedding space of final layers in deep CCA.

This chapter presents a novel deep factorisation model that is capable of learning the view-

invariant latent factors with no additional attribute annotations to handle the multi-view data.

Specifically, the proposed deep neural network (DNN) architecture, called Multi-Level Factori-

sation Net (MLFN), is built on stacking the novel factorisation DNN block, as introduced in

Figure 2.3 and the overall architecture is illustrated in Figure 4.1. Different blocks (from bot-

tom to top) contains the latent factors at specific levels (from low to high). By subjecting to

the multi-view supervision only, MLFN aims to automatically discover the latent discrimina-

tive view-invariant factors at multiple semantic levels and dynamically identify their presence in

each visual input. Moreover, a compact feature, called Factor Signature (FS), is generated by

aggregating the discriminative information from all levels. It enables an efficient fusion archi-

tecture in MLFN to complement the final-layer deep feature. Finally, MLFN is a holistic single

DNN architecture based on instance level inputs and labels and avoids the cross-view pairing and

view-specified modelling as in deep CCA.

This chapter is structured as follows. Section 4.1 provides the technical details of the pro-
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Figure 4.1: Illustration of Multi-Level Factorisation Net (MLFN) Architecture. Best viewed in
colour.

posed MLFN. Experimental part is in Section 4.2. Person re-identification (Re-ID) is a typical

visual application of cross-view recognition. The effectiveness of the proposed MLFN is mainly

demonstrated on a range of Re-ID datasets. Moreover, MLFN also achieves compelling results

on the general object categorisation CIFAR-100 dataset (Krizhevsky and Hinton, 2009). Finally,

a summary is given in Section 4.3.

4.1 Multi-Level Factorisation Network for Multi-View Latent Factor Discovery

4.1.1 Model Architecture

The proposed MLFN architecture is shown in Figure 4.1, L MLFN blocks are stacked to model

L semantic levels. Let Bl denote the lth block, l ∈ {1, ...,L} from bottom to top. Within each Bl ,

there are two key components: multiple Factor Modules (FMs) and a Factor Selection Module

(FSM). Each FM is a sub-network with multiple convolutional and pooling layers of its own,

powerful enough to model a latent factor at the corresponding level indexed by l. Each block Bl

consists of Kl FMs with an identical network architecture. For simplicity, only one input image

is considered in the following formulation. Given an image, the output of the ith (i ∈ {1, ...,Kl})
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FM in Bl is denoted as

MMMl,i ∈ RHl×Wl×Cl , (4.1)

where MMMl,i is a feature map with height Hl , width Wl and Cl channels.

Each block Bl also contains a FSM that produces a FM selection vector SSSl ∈R1×Kl . To handle

the case where multiple discriminative latent factors are required simultaneously to explain the

visual appearance of the input image, within each level, SSSl is sigmoid activated,

Sl = σ(ĀAAl), (4.2)

where l ∈ {1, ...,L}, σ(·) is an element-wise sigmoid and ĀAAl is the pre-activation output of the

FSM.

Thus the factorised representation of an input image at the lth level can be represented as a

tuple:

{MMMl,SSSl}, (4.3)

where MMMl ∈ RHl×Wl×Cl×Kl assembles all MMMl,i, i ∈ {1, ...,Kl}. The FSM output vector SSSl is used

for modulating outputs MMMl from corresponding FMs. Moreover, shortcut connection is employed

by each MLFN block. Therefore, the output of Bl is

ỸYY l = MMMl×4 SSSl + X̃XX l, (4.4)

where ×4 denotes the mode-4 product of Tensor-matrix multiplication; ỸYY l ∈ RHl×Wl×Cl denotes

the output tensor of Bl and X̃XX l is the corresponding input. X̃XX l is from the output of previous block

ỸYY l−1 and the output of an initial convolutional layer is used as input when l = 1.

Factor Signature In order to complement the final-level deep representation ỸYY L (feature output

of BL) with the factorised representation learned from lower levels, a compact Factor Signature

(FS) representation preserving discriminative information from all levels is computed. FS aggre-

gates all FSM output vectors SSSl , l ∈ {1, ...,L}. Denoting FS as ŜSS,

ŜSS = [SSS1, ...,SSSL], (4.5)

where ŜSS ∈ R1×L, K = ∑
L
l=1 Kl represents the feature dimension of ŜSS. The value of L depends

on the architecture of MLFN, i.e., both the total number of blocks L and the number of FMs

Kl in each block. However, it is independent of the deep feature dimensions in ỸYY l . Therefore, ŜSS

provides a compact multi-level representation even when the deep feature dimension Hl×Wl×Cl
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is large, and when information from all levels is combined. Usually, K is in the order of hundreds

and it is much smaller than concatenating all ỸYY ls, which typically results in tens of thousands of

dimensions.

Fusion MLFN fuses the deep features ỸYY L computed from the final block BL and the Factor

Signature (FS) ŜSS. Concretely, ỸYY L and ŜSS are first projected to the same feature dimension d with

projection function T implemented as a fully connected layer. The final output representation RRR

of MLFN is computed by averaging the two projected features as in Eq. 4.6.

RRR =
1
2
( fff ỸYY + fff ŜSS),

fff ỸYY = T (ỸYY L,d)

fff ŜSS = T (ŜSS,d)

(4.6)

4.1.2 Optimisation

The visual appearance of each input is dynamically factorised into {MMMl,SSSl} at multiple semantic

levels1 in the corresponding MLFN block Bl, l ∈ {1, ...,L}, as in Eq. 4.3. Denoting the ith FM in

Bl as Fl,i(·) and its parameters as θl,i, then

MMMl,i = Fl,i(X̃XX l;θl,i). (4.7)

The output feature ỸYY l is computed as in Eq. 4.4. Assuming MLFN is subject to a final loss ` and

the gradient ∂`
∂ỸYY l

can be acquired. In order to update the parameters θl,i in backpropagation, the

following gradient is computed,

∂`

∂θl,i
=

∂`

∂ỸYY l

∂ỸYY l

∂Fl,i

∂Fl,i

∂θl,i
. (4.8)

From Eq. 4.4 and Eq. 4.7,
∂ỸYY l

∂Fl,i
= Sl,i, (4.9)

where Sl,i is the FSM output corresponding to the ith FM in Bl . Combining Eq. 4.8 and Eq. 4.9,

∂`

∂θl,i
= Sl,i

∂`

∂ỸYY l

∂Fl,i

∂θl,i
, (4.10)

where ∂`
∂ỸYY l

is back propagated from higher levels and ∂Fl,i
∂θl,i

is the gradient of an FM w.r.t its

parameters. Sl,i comes from the corresponding FSM. It dynamically indicates the contribution of

Fn,i in processing an input image.

1Figure 4.5 illustrates the learned multiple levels visual semantic factors by the proposed MLFN.
Relevant explanation can be found at What is Learned paragraph in Section 4.2.4
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Sl,i will be close to 1 if the latent factor represented by MMMl,i is identified to be present in the

input. In this case, the impact of this input is fully applied on θl,i to adapt the corresponding FM.

On the contrary, when Sl,i is close to 0, it means the input only holds irrelevant or opposite latent

factors to MMMl,i. Therefore, the parameters in the corresponding FM are unchanged when training

with this input as Sl,i ≈ 0 stops the update.

The factor selection vectors SSSl (Eq. 4.2) play a key role in MLFN during both training (as

analysed above) and inference (providing the factor signature). Learning discriminative FSMs

would be hard if trained with gradients back propagated through many blocks from the top. This

is because the supervision from the loss would be indirect and weak for the FSMs at the bottom

levels. However, because our final feature output RRR is computed by fusing the final-block output

ỸYY L with the FS ŜSS (Eq. 4.6), and the FS is generated by concatenating all FSM output vectors, the

supervision flows from the loss down to every FSM via direct shortcut connections (Figure 4.1).

Thus our FSMs are deeply supervised (Lee et al, 2015; Jin et al, 2016) to ensure that they are

discriminative, but without the increase in parameters that would be required for deep supervision

of conventional deep features.

MLFN for Person Re-ID The training procedure of MLFN for Person Re-ID follows the stan-

dard identity classification paradigm (Xiao et al, 2016; Zhao et al, 2017a; Sun et al, 2017) where

each person’s identity is treated as a distinct class for recognition. A final fully connected layer

is added above the representation RRR that projects it to a dimension matching the number of train-

ing classes (identities), and the cross-entropy loss is used. MLFN is then end-to-end trained. It

discovers latent factors with no supervision other than person identity labels for the final classi-

fication loss. During testing, appearance representations RRR (Eq. 4.6) are extracted from gallery

and probe images, and the L2 distance is used for matching.

4.2 Results and Analysis

4.2.1 Datasets and Settings

Datasets Person Re-identification (Re-ID) aims to match people across multiple surveillance

cameras with non-overlapping views. As shown in Figure 4.2, there are usually more than six

camera views in the large-scale person Re-ID datasets. The visual appearance of a person across

different views can change drastically due to the distinctive view characteristics such as illumi-

nation, background, camera angle and human pose. Three person Re-ID benchmarks, Market-
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c1 c2 c3 c4 c5 c6 c7 c8

c1 c2 c3 c4 c5 c6

c1 c2 c3 c4 c5 c6

Market-1501

Cuhk03

DukeMTMC-reID

Figure 4.2: Three large scale person Re-ID datasets, Market-1501, CUHK03 and DukeMTMC-
reID, are shown with samples from different camera views.

1501 (Zheng et al, 2015), CUHK03 (Li et al, 2014) and DukeMTMC-reID (Zheng et al, 2017)

are used for evaluation. Market-1501 (Zheng et al, 2015) has 12,936 training and 19,732 testing

images with 1,501 identities in total from 6 cameras. Deformable Part Model (DPM) (Felzen-

szwalb et al, 2010) is used as the person detector. The standard training and evaluation protocols

in (Zheng et al, 2015) where 751 identities are used for training and the remaining 750 for testing

is followed. CUHK03 (Li et al, 2014) consists of 13,164 images of 1,467 people. Both manu-

ally labelled and DPM detected person bounding boxes are provided. Two experimental settings

are adopted on this dataset. The first setting, denoted as CUHK03 Setting 1, is the 20 random

train/test splits used in (Li et al, 2014) which selects 100 identities for testing and training with

the rest. Results on the more challenging yet more realistic detected person bounding boxes are

reported under this setting. The other setting, denoted as CUHK03 Setting 2, was proposed in

(Zhong et al, 2017). It is more challenging than Setting 1 with less training data. In particular,

767 identities are used for training and the remaining 700 identities for testing. DukeMTMC-

reID (Zheng et al, 2017) is the Person Re-ID subset of the DukeMTMC Dataset (Ristani et al,

2016). There are 16,522 training images of 702 identities, 2,228 query images and 17,661 gallery

images of the other 702 identities. Manually labelled pedestrian bounding boxes are provided.

Our experimental protocol follows that of (Zheng et al, 2017).

In addition to the Re-ID datasets, an object category classification dataset, CIFAR-100 (Krizhevsky

and Hinton, 2009), is used to show that our MLFN can also be applied to other general recog-

nition problems. CIFAR-100 (Krizhevsky and Hinton, 2009) has 60K images with 100 classes
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MLFN Block #FSM Layer Ouputs

1-3 128, 64, 32

4-7 256, 128, 32

8-13 512, 128, 32

14-16 512,128, 32

Table 4.1: Architecture details of FSM modules in different MLFN blocks. 16 indicates the last
block of MLFN.

with 600 images in each class. 50K images are used for training and the remaining for testing.

Evaluation Metrics The Cumulated Matching Characteristics (CMC) curve is used to evaluate

the performance of Re-ID methods. Due to space limitation and for easier comparison with

published results, we only report the cumulated matching accuracy at selected ranks in tables

rather than plotting the actual curves. Note that mean average precision (mAP) is also used as

suggested in (Zheng et al, 2015) to evaluate the performance. For CIFAR100, the error rate is

used.

MLFN Architecture Details For Person Re-ID tasks, sixteen blocks (L = 16) are stacked in

MLFN. Within each building block, 32 FMs are aggregated as in (Xie et al, 2016b). Correspond-

ingly, a 32-D FSM output vector is generated within each MLFN block. As a result, the FS

dimension K = 512 (32 FMs×16 blocks). The final feature dimension of RRR, d is set to 1024. For

the object categorisation task CIFAR-100 (Krizhevsky and Hinton, 2009), the MLFN depth is

reduced in order to fit the memory limitation of a single GPU. The number of blocks is reduced

to 9 which results in K = 288.

The proposed MLFN architecture consists of 16 MLFN Blocks/Layers. A Factor Selection

Module (FSM) is included in each Block. The FSM networks used in this paper are all three-

layered Multiple Layer Perceptron (MLP). Global Average Pooling (GAP) is applied on the input

of FSM. Batch Normalisation and Relu are used to activate each layer’s output. Architecture

details are shown in Table 4.1.

Data Augmentation The input image size is fixed to 256× 128 for all person Re-ID experi-

ments. Left-right flip augmentation is used during training. For CIFAR-100, training images are

augmented as in (He et al, 2016a). No data augmentation is used for testing.

Optimisation Settings All person Re-ID models are fine-tuned on ImageNet (Deng et al,

2009) pre-trained networks. The Adam (Kingma and Ba, 2014) optimiser is used with a mini-
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SQ MQ

R1 mAP R1 mAP

Spindle (Zhao et al, 2017a) 76.9 - - -

HP-net (Liu et al, 2017) 76.9 - - -

OIM (Xiao et al, 2017) 82.1 - - -

Re-rank (Zhong et al, 2017) 77.1 63.6 - -

DPA (Zhao et al, 2017c) 81.0 63.4 - -

SVDNet (Sun et al, 2017) 82.3 62.1 - -

DaF (Yu et al, 2017b) 82.3 72.4 - -

ACRN (Schumann and Stiefelhagen, 2017) 83.6 62.6 - -

Context (Li et al, 2017a) 80.3 57.5 86.8 66.7

JLML (Li et al, 2017c) 83.9 64.4 89.7 74.5

LSRO (Zheng et al, 2017) 84.0 66.1 88.4 76.1

SSM (Bai et al, 2017) 82.2 68.8 88.2 76.2

DML (Zhang et al, 2018) 87.7 68.8 91.7 77.1

DPFL (Yanbei et al, 2017) 88.6 72.6 92.2 80.4

MLFN 90.0 74.3 92.3 82.4

Table 4.2: Results (%) on Market-1501. −: not reported.

batch size of 64. Initial learning rate is set to 0.00035 for all Re-ID datasets except CUHK03

setting 2 (Zhong et al, 2017) with 0.0005. Similarly, Training iterations are 100k for all Re-ID

datasets except CUHK03 setting 2 (Zhong et al, 2017) for which it is 75k. For CIFAR, the initial

learning rate is set to 0.1 with a decay factor 0.1 at every 100 epochs and Nesterov momentum of

0.9. SGD optimisation is used with a 256 mini-batch size on a K80 GPU for 307 epochs training.

4.2.2 Person Re-ID Results

Results on Market-1501 Comparisons between MLFN and 14 state-of-the-art methods on

Market-1501 (Zheng et al, 2015) are shown in Table 4.2. SQ and MQ correspond to the single

and multiple query setting respectively. The results show that our MLFN achieves the best per-

formance on all evaluation criteria under both settings. It is noted that: (1) The gaps between our

results and those of the two models (Zhao et al, 2017a; Liu et al, 2017) that attempt to fuse multi-

level features are significant: 13.1% R1 accuracy improvement under SQ. This suggests that our

fusion architecture with deep supervision is more effective than the handcrafted architectures
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R1 mAP

LSRO (Zheng et al, 2017) 67.7 47.1

OIM (Xiao et al, 2017) 68.1 -

APR∗ (Lin et al, 2019) 70.7 51.9

ACRN (Schumann and Stiefelhagen, 2017) 72.6 52.0

SVDNet (Sun et al, 2017) 76.7 56.8

DPFL (Yanbei et al, 2017) 79.2 60.6

MLFN 81.0 62.8

Table 4.3: Results (%) on DukeMTMC-reID. ∗: Arxiv paper.

with manual layer selection in (Zhao et al, 2017a; Liu et al, 2017), which require extra effort but

may lead to suboptimal solutions. (2) The best model that uses attribute annotation (Schumann

and Stiefelhagen, 2017) also yields inferior results (SQ 83.6 vs 90.0 for R1 and 62.6 vs 74.3 for

mAP), despite the fact that more supervision was used. This indicates that the automatically dis-

covered latent factors at multiple levels in MLFN provides a more discriminative representation.

(3) The closest competitor, DPFL uses multiple network branches to model image input scaled to

different resolutions, which is orthogonal to our approach and can be easily combined to improve

our performance further.

Results on DukeMTMC-reID Person Re-ID results on DukeMTMC-reID (Zheng et al, 2017)

are given in Table 4.3. This dataset is challenging because the person bounding box size varies

drastically across different camera views, which naturally suits the multi-scale Re-ID models

such as DPFL (Yanbei et al, 2017). The results show that MLFN is 1.8% and 2.2% higher than

the prior state-of-the-art DPFL (Yanbei et al, 2017) on R1 and mAP metrics respectively. This

indicates that even without explicitly extracting features from input images scaled to different

resolutions, by fusing features from multiple levels (blocks in MLFN), it can cope with large

scale changes to some extent.

Results on CUHK03 Table 4.4 shows results on CUHK03 Setting 1 when detected person

bounding boxes are used for both training and testing. MLFN achieves the best result, 82.8%,

under this setting. Note that DGD (Xiao et al, 2016), Spindle Net (Zhao et al, 2017a) and HP-

net (Zhao et al, 2017a) were trained with the JSTL setting (Xiao et al, 2016) where additional

data in the form of six Re-ID datasets were used. They also used mixed labelled and detected
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R1

DGD] (Xiao et al, 2016) 75.3∗

Spindle] (Zhao et al, 2017a) 88.5∗

HP-net] (Liu et al, 2017) 91.8∗

LSRO† (Zheng et al, 2017) 84.6

OIM (Xiao et al, 2017) 77.5

JLML (Li et al, 2017c) 80.6

SVDNet (Sun et al, 2017) 81.8

DPFL (Yanbei et al, 2017) 82.0

MLFN 82.8/89.2∗

Table 4.4: Results (%) on CUHK03 Setting 1 (Li et al, 2014). ] indicates using external Re-ID
data (JSTL setting (Xiao et al, 2016)). Results with ∗ are obtained with the same setting in (Xiao
et al, 2016). † indicates GAN images generated from the Market-1501 dataset are used.

bounding boxes for both training and testing. Following the multi-bounding box setting, even

without using auxiliary training data as in JSTL, the accuracy of MLFN jumps from 82.8% to

89.2%. Similarly, LSRO (Zheng et al, 2017) used external Re-ID datasets for training, thus

gaining an advantage.

The results in Table 4.5 correspond to CUHK03 Setting 2, which is a harder and newer setting

with less reported results. Clear gaps are now shown between MLFN and DPFL (Yanbei et al,

2017): The rank 1 (R1) performance of MLFN is more than 11% higher using either labelled or

detected person images. This result suggests that the advantage of MLFN is more pronounced

given less training data. Similar performance jumps are also observed using the mAP metric.

Labelled Detected

R1 mAP R1 mAP

DaF (Yu et al, 2017b) 27.5 31.5 26.4 30.0

Re-rank (Zhong et al, 2017) 38.1 40.3 34.7 37.4

SVDNet (Sun et al, 2017) 40.9 37.8 41.5 37.3

DPFL (Yanbei et al, 2017) 43.0 40.5 40.7 37.0

MLFN 54.7 49.2 52.8 47.8

Table 4.5: Results (%) on CUHK03 Setting 2.



4.2. Results and Analysis 73

4.2.3 Object Categorisation Results

We next evaluate whether our MLFN is applicable to more general object categorisation tasks

by experimenting on CIFAR-100. The results are shown in Table 4.6. For direct comparison we

reproduce results with ResNet (He et al, 2016b) and ResNeXt (Xie et al, 2016b) of similar depth

and model size to our MLFN. The improved result over ResNeXt shows that our dynamic factor

module selection and factor signature feature bring clear benefit. MLFN also beats DualNet (Hou

et al, 2017), another representative recent ResNet-based model that fuses two complementary

ResNet branches as in an ensemble, thus doubling in model size. Note that for distinguishing

different object categories, e.g., dog and bird, low-level factors such as colour and texture are

often less useful as for instance classification problems such as person Re-ID. However, this result

suggests that discriminative latent factors still exist in multiple levels for object categorisation and

can be discovered and exploited by our MLFN.

Error Rates (%)

DualNet (Hou et al, 2017) 27.57

ResNet (He et al, 2016b) 30.21

ResNeXt (Xie et al, 2016b) 29.03

MLFN 27.21

Table 4.6: Results on CIFAR-100 datasets.

4.2.4 Further Analysis

Ablation Study Recall that our MLFN discovers multiple discriminative latent factors at each

semantic level, by aggregating FMs with identical structures within each block Bl . The FSM

output vectors SSSl enable dynamic factorisation of an input image into distinctive latent attributes,

and these are aggregated over all blocks into a compact FS feature (ŜSS) for fusion (Eq. 4.6) with

the conventional (final-block) deep feature ỸYY L to produce the final representation RRR. To validate

the contributions of each component, we compare: MLFN: Full model. MLFN-Fusion: MLFN

using dynamic factor selection, but without fusion of the FS feature. ResNeXt: When the FSMs

are removed so all FMs are always active, our model becomes ResNeXt (Xie et al, 2016b).

ResNet: When the sub-networks at each level of ResNeXt are replaced with one larger holistic

residual module, ResNet (He et al, 2016b) is obtain. A comparison of these models on all three
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Datasets Market-1501 CUHK03 DukeMTMC-reID

Methods
SQ MQ Labelled Detected

R1 mAP
R1 mAP R1 mAP R1 mAP R1 mAP

ResNet 84.3 66.0 89.6 76.1 41.7 37.9 43.5 38.6 71.6 48.6

ResNeXt 88.0 69.8 91.3 79.0 43.8 38.7 43.1 38.0 75.7 54.1

MLFN-Fusion 87.9 70.8 91.7 80.2 47.1 42.5 47.1 41.0 78.7 58.4

MLFN 90.0 74.3 92.3 82.4 54.7 49.2 52.8 47.8 81.0 62.8

Table 4.7: Ablation Results on three Person Re-ID datasets. CUHK03 results were obtained
under Setting 2.

person Re-ID datasets is shown in Table 4.7. It shows that MLFN is consistently better than

the stripped-down versions on all datasets, and each new component contributed to the final

performance: The margin between MLFN and MLFN-Fusion shows the importance of including

the latent factor descriptor FS in the representation and suggests that the FS feature is complement

to the final-block feature ỸYY L, and the margin between MLFN−Fusion and ResNeXt shows the

benefit of dynamic module selection.

MLFN Architecture Parameter Selection The number of blocks (L) in MLFN is set to 16

follows the ResNeXt-50 (Xie et al, 2016b). The FS dimension K depends on L and the number

of FMs at each MLFN block. These are set, without tuning, so that the model is of a comparable

size to ResNeXt-50 (Xie et al, 2016b) for direct comparison. On GTX1080 GPU, the runtime is

similar: MLFN (0.81s/batch) and ResNeXt (0.78s/batch), and so is the GPU memory consump-

tion. The final feature dimension d of MLFN is 1024 since it is the widely used feature dimension

for Person Re-ID (Sun et al, 2017). The impacts of ds on the re-id performance are illustrated as

in Figure 4.3. It can be seen that the performance is consistently good when d > 512.
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Figure 4.3: Sensitivity to dimemsion d. DukeMTMC-reID (Zheng et al, 2017) is used.
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Efficacy of Re-ID with Factor Signature Alone For solely FS-based matching, a binary SVM

is trained based on the absolute difference of paired FS to predict whether they belong to the same

person or not. SVM scores of testing pairs are then computed for recognition. The corresponding

results on Market-1501 are reported in Table 4.8. It shows that, compared with the results in Table

4.2, the result of FS only is already comparable with the state-of-the-art.

SQ MQ

R1 mAP R1 mAP

ŜSS 81.0 58.9 88.0 68.8

Table 4.8: Market-1501 (Zheng et al, 2015) Re-ID performance (%) with ŜSS (FS) only.

Discovered Latent Factors are Predictive of Attributes What do the discovered latent fac-

tors represent? We hypothesise that despite not being trained with any manually annotated at-

tributes, FS (ŜSS) is identifying latent data-driven attributes present in the data; these latent attribute

may overlap or correlate with human-defined semantic attributes. To validate this, SVMs are then

trained based on ŜSS only to predict ground-truth manually annotated attributes in Market-1051 and

DukeMTMC-reID. Results based on the final representation RRR from MLFN are also reported. Fi-

nally, these are compared to APR (Lin et al, 2019), which is end-to-end trained based on attribute

supervision.

On Market-1051, MLFN-ŜSS and APR (Lin et al, 2019) obtain the same performance of

85.33%. MLFN-RRR further improves to 87.50%. On DukeMTMC-reID, 82.30% and 83.58% are

achieved by MLFN-ŜSS and MLFN-RRR respectively, which are better than APR’s 80.12%. These

results thus show that our low-dimensional MLFN-ŜSS alone can be more effective in attribution

prediction than APR. Remind that MLFN is trained without annotated attributes while APR net-

work is designed for supervised attribute learning. This shows that our architecture is well suited

for extracting semantic attribute related information automatically.

The relations between FS and Attributes can be further illustrated by Figure 4.4 where the

predicted attributes using our FS feature and the human labelled attributes are compared. For

each person image, 35 binary attributes are annotated by human annotators on the identity level,

that is, different images of the same person would have the identical attribute vectors regardless

whether those attributes are visually observable in the images. These attributes form different

groups and within each group, they are mutually exclusive. For example, female and male form
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Figure 4.4: Examples of attribute prediction using our factor signature (FS) feature. Market-1501
dataset is used. Best viewed in colour.

one group, and young, teen, adult, old form another. Some attributes are thus subjective, e.g., no

ground-truth age is known and there is no clear definition of what ‘young’ entails.

Figure 4.4(a) shows an example where our FS feature can be used to correctly predict all

the attributes with SVM classifiers. In this example, although the big hat occludes the face and

part of the hair of the person, the colour of the top and the shoe style give away the fact that

this a female. A harder example is shown in Figure 4.4(c). This time the image is a bit blurred

and the viewpoint is from the back. However, our FS feature can still predict all the attributes

correctly. Our FS feature based prediction makes two mistakes for the person image shown in

Figure 4.4(e). Specifically, the backpack attribute is missed and the lower-body garment colour
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Bottom

Top

S2,29

S7,31

S10,23

S15,29

Figure 4.5: Four groups of images corresponding to highest (first row) and lowest (second row)
values of four FSM outputs Sl,i, from bottom to top level respectively. Best viewed in colour.

is predicted to be black rather than blue. Both mistakes are understandable. For the backpack,

since the frontal view is shown and the backpack has very thin straps, this attribute can be easily

missed even by human (the human annotator labelled this because s/he had access to multiple

views of this person including a back view where the backpack is clearly visible). As for the blue

vs black for the lower-body cloth, it seems to be a close call even for humans.

What is Learned To visualise the latent discriminative appearance factors learned by MLFN,

each element of the FSM output vector is ranked, denoted as Sl,i, with all testing samples in

Market-1501 (Zheng et al, 2015) as inputs. Person images with the highest and lowest twenty

values of each Sl,i are recorded. Figure 4.5 shows four example sets of such images from different

element i, i ∈ {1, ..,KL} and blocks l, l ∈ {1, ...,L}. Clear visual semantics can be seen from

both the highest and lowest FSM output value image clusters in each group. And as expected,

as the block index number l increases, the semantic level of the latent factors captured at the

corresponding blocks gets higher, i.e., they evolve from colour and texture related factors to

clothes style and gender related ones. This is achieved despite that no attribute supervision

is used in training MLFN. It is also interesting to note that visual characteristics conveyed by

images with the highest FSM output values are complementary or opposite to those of lowest

ones from the same group. For example, highest value images in S2,29 contain green colour,
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while lowest value images contain the complementary colour red. High value in S7,31 encodes

cold colours while low value encodes warm colours. Highest values in S10,23 reflect textures

while lowest ones mean large untextured colour blocks are detected. Images of men select with

high confidence S15,29, while images of females depress its value.

4.3 Summary

This chapter presents a deep factorisation model for learning with the supervised multi-view,

i.e., more than two views, data. Specifically, a novel deep neural network (DNN) architecture,

Multi-Level Factorisation Net (MLFN), has been proposed. It learns to discover and dynami-

cally identify discriminative latent factors in multi-view visual inputs. The factors computed at

different levels of the network correspond to hidden attributes of different semantic levels. When

the selection of the factors are used as a feature and fused with the conventional deep feature, a

powerful view-invariant visual appearance feature representation is obtained. MLFN is applied

to the person Re-ID, a challenging cross-view recognition problem. MLFN consistently out-

performs the state-of-the-art deep models on three largest Re-ID datasets and shows promising

performance on a more general object categorisation task.

The cross-view recognition algorithms proposed in Chapter 3 and this chapter requires the

fully supervised multi-view data for model training. However, labelling the multi-view visual

data can be time-consuming and tedious. Multi-view data can lack annotations on specific views.

And the supervised learning methods cannot exploit the data from the unlabelled views. The

next chapter deals with a challenging multi-view data setting with an unlabelled dataset as the

target view/domain. Another labelled dataset with the relevant task is exploited as the source

domain. Each domain corresponds to a multi-view dataset, and the label spaces across domains

are disjoint. The primary objective is to improve the performance of the target domain with data

from both source and target datasets for the model training.
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Chapter 5

Unsupervised Domain Adaptive Multi-View Learning

The previous two chapters propose the supervised multi-view learning algorithms, Soft CCA

(Chapter 3) and MLFN (Chapter 4), for different types of fully labelled multi-view visual data.

However, the supervision of multi-view data are expensive to acquire. In many application

scenarios, the data samples of the views are unlabelled. In this chapter, a challenging unsu-

pervised multi-view learning setting, called unsupervised domain adaptive (UDA) multi-view

learning, is investigated. Specifically, an unlabelled multi-view dataset is considered as the tar-

get view/domain. To enhance the performance of the target domain, the source domain, a fully

supervised multi-view dataset with relevant tasks, is utilised. However, training the supervised

learning algorithms on the source domain and directly applied it to the target one usually results

in unsatisfied performance due to the existence of domain gaps. Most existing approaches for un-

supervised domain adaptation are domain alignment methods. They are based on the assumption

of a shared label space across different domains. Therefore, different domains should be aligned

in either the raw image space (Wei et al, 2018) or a feature embedding (Ganin and Lempitsky,

2015). Nevertheless, the UDA multi-view learning setting holds an opposite assumption: the

label spaces across domains are disjoint. The domain alignment methods are thus not suitable

under this setting.

In this chapter, we propose to tackle the UDA multi-view setting by multi-task learning a

shared deep feature embedding space. Different domains make distinctive contributions to the

space learning. The learning task of source domain is supervised label prediction while the tar-

get objective can be specified under different unsupervised learning assumptions. Therefore, the
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proposed multi-task framework is totally different from existing methods in that no attempt for

domain alignment is made. Specifically, two different assumptions on target domain are made

and thus result in distinctive models for UDA multi-view learning problems. The first model,

called Common Factorised Space Model (CFSM), assumes that recognition should be performed

in a shared latent factor space for both domains where each factor can be interpreted as latent

attribute. An unsupervised factorisation loss is proposed to serve this purpose on target domain.

The second model is based on a simple and sound assumption, the target multi-view data in-

stances form clusters in the shared space and each cluster potentially corresponds to an unknown

entity/object. To fulfill this objective, a novel deep clustering method, Stochastic Inference for

Deep Clustering (SIDC), is developed.

This chapter is organised as below. The CFSM is presented first in Section 5.1. As show in

Section 5.2 that CFSM is widely applicable to many transfer learning tasks besides UDA multi-

view learning. The details of SIDC are then described in Section 5.3. Its performance on an UDA

multi-view learning problem, i.e., the UDA person Re-ID, are reported in Section 5.4. Finally, a

summary of the proposed methods is given in Section 5.5.

5.1 Common Factorised Space Model

In this section, the Common Factorised Space Model (CFSM) is the main focus. It provides a

simple yet effective multi-task training solution for UDA multi-view learning problems. To dis-

cover a shared latent factor space across domains for recognition, an unsupervised factorisation

loss is proposed. Moreover, a novel graph Laplacian-based loss is derived to better exploit the

more aligned and discriminative supervision from higher-level to improve deep feature learning.

Besides the UDA multi-view learning problems, the CFSM is effective on other tasks such as the

conventional UDA.

5.1.1 Methodology

Definition and Notation For UDA multi-view learning, there is a source (labelled) domain S

and a target (unlabelled or partially labelled) domain T . The key characteristic of UDA multi-

view learning is the disjoint label space, i.e., the source YS and target YT label spaces are po-

tentially disjoint: YS ∩YT = ∅. Instances from source/target domains are denoted XS and XT

respectively. The combined inputs {XS,XT} are denoted as X .
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Figure 5.1: Different colours corresponding to different data streams. Green indicates source
data. Blue is used for target data. Purple means joint data from both source and target domains.
The parameters of CFSM are θM, θC and θS corresponding to the feature extractor ΦM, CFS layer
ΦC and source classifier χS. θS is learned with source data using supervised loss while θM, θC

are estimated using data from both domains with all losses and regularisations.

Model Architecture The proposed model architecture consists of three modules, a feature ex-

tractor F = ΦM(X) that can be any deep neural network and is shared between all domains.

This is followed by a fully connected layer and sigmoid activation σ , which define the Common

Factorised Space (CFS) layer. This provides a representation of dimension dC, fff C = ΦC(·) =

σ(WWWΦM(·)+ bbb). Recall that the goal of CFS is to learn a latent factor (low-entropy) represen-

tation for both source and target domains. The sigmoid activation means that the layer’s scale

is fff C ∈ (0,1)dC , so activations near 0 or 1 can be interpreted as the corresponding latent factor

being present or absent. To encourage a near-binary representation, unsupervised factorisation

loss is applied. For the labelled source domain only, the pre-activated fff C are then classified by

softmax classifier χS with cross-entropy loss. The overall architecture is illustrated in Figure 5.1.

Regularised Model Optimisation The parameters of the proposed CFSM are θ := {θM,θC,θS}

including parameters of the feature extractor ΦM, CFS layer ΦC and source classifier χS. Both the

labelled source {XS,YS} and unlabelled target data XT are used in the multi-task model training

procedure.
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Firstly, the labelled source data {XS,YS} contributes to the model training as a supervised

learning task with a loss `sup(XS,YS;θ) which is a conventional cross-entropy. However, such

loss is inapplicable to the target domain data since no supervision is provided.

To adapt the knowledge across domains, the unlabelled target data plays the key role in

model training. Therefore, unsupervised domain adaptation losses/regularisations are required

to enable the multi-task learning with target domain. As mentioned before, conventional UDA

losses/regularisations are not applicable in the UDA multi-view learning problem since the label

space across domains are disjoint. Therefore, we proposed the Common Factorised Space (CFS)

by using the CFS layer ΦC. A low-entropy loss is used to regularise its model learning (parameter

θC). On the other hand, the UDA multi-view learning problem usually relies on the feature

representation for retrieval tasks, e.g., in person Re-ID. More regularisations are thus required

on the learning of feature extractor ΦM (with parameter θM). As illustrated in Figure 5.1, two

unsupervised regularisations are exploited in our CFSM based on the data samples from both

domains.

Low-Entropy Regularisation: Unsupervised Adaptation Firstly, the definition of the low-

entropy regulariser on the CFS is discussed. The sigmoid activated outputs fff C from CFS layer

ΦC can be interpreted as multi-label predictions on latent factors. The uncertainty measure for

label prediction can be defined by using its entropy,

−
N

∑
i=1

< fff C,i, log( fff C,i)>

=−
N

∑
i=1

< ΦC(xi), log(ΦC(xi))>

(5.1)

where fff C,i denotes the common factor representation ΦC(xxxi) of instance xxxi ∈ X . This is applied

on both source and target data, so N is the number of instances in both datasets. log(·) is applied

element-wise, and < ·, · > is vector inner product. According to the low-uncertainty criterion

(Carlucci et al, 2017), optimising such prior can be achieved by minimising this uncertainty

measure. Eq. 5.1 is thus the regulariser corresponding to the low-entropy prior. Specifically, this

loss biases the representation FC to contain more certain predictions, e.g., closer to 0 or 1 for each

discovered latent factor. Therefore, it is denoted as unsupervised factorisation loss.

In summary, the low-entropy regulariser on CFS is built upon the assumption that the two

domains share a set of latent attributes and that if a source classifier is well adapted to the target,

then the presence/absence of these attributes should be certain for each instance. Therefore, it
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essentially generalises the low-uncertainty principle (widely used in existing unsupervised and

semi-supervised learning literature) to the disjoint label space setting.

Graph Regularisation: Robust Feature Learning The second prior is regularising the fea-

ture extractor ΦM. The unique property of our setup so far is that the knowledge transfer into

the target domain is via the CFS layer; therefore we are interested in ensuring that the feature

extractor network extracts features whose similarity structure reflects that of the latent factors in

the CFS layer. Unlike conventional graph Laplacian losses that regularise higher-level features

with a graph built on lower-level features (Belkin et al, 2006; Zhu, 2005), we do the reverse and

regularise the feature extractor ΦM to reflect the similarity structure in fff C. This is particularly

important for applications where the target problem is retrieval, because deep features fff = ΦM(·)

are used as an image representation.

The proposed graph loss is expressed as

Tr( fff T
∆ fffC

fff ), (5.2)

where ∆ fffC
is the graph Laplacian (Cai et al, 2010b) built on the common space features fff C.

Summary We unify the proposed model architecture θ := {θM,θC,θS} with source {XS,YS}

and target {XT} data for UDA multi-view problems under the multi-task learning framework.

This decomposes into a standard supervised term (with source data only) and data-driven priors

for the CFS layer and feature extraction module. They correspond to supervised loss `sup(XS,YS;θ),

unsupervised factorisation loss (Eq. 5.1) and the graph loss (Eq. 5.2) respectively. Taking all

terms into account, the final optimisation objective is,

`(θ) =`sup(XS,YS;θ)+βMTr( fff T
∆ fffC

fff )

−βC
1
N

N

∑
i=1

< fff C,i, log( fff C,i)> .
(5.3)

where βC and βM are balancing hyper-parameters. In order to select βC and βM, the model is first

run by setting all weights to 1; after the first few iterations, the value of each loss is checked. We

then set the two hyper-parameters to rescale the losses to a similar range so that all three terms

contribute approximately equally to the training.

Mini-batch Organisation Deep Neural Networks (DNNs) are usually trained with SGD mini-

batch optimisation, but Eq. 5.3 is expressed in a full-batch fashion. Converting Eq. 5.3 to mini-

batch optimisation is straightforward. However, it is worth mentioning the mini-batch schedul-

ing: each mini-batch contains samples from both source and target domains. The supervised loss
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is applied only to source samples with corresponding supervision, the entropy and graph losses

are applied to both, and the graph is built per-mini-batch. In this work, the number of source and

target samples are equally balanced in a mini-batch.

5.2 Results and Analysis on Common Factorised Space Model

The proposed model is evaluated on multiple visual applications. First, CFSM on unsupervised

domain adaptive (UDA) multi-view learning is evaluated (Section 5.2.1). Second, the relevant

semi-supervised disjoint label space transfer learning (semi-supervised DLSTL) recognition ex-

periment (Luo et al, 2017) is launched (Section 5.2.2). Moreover, the CFSM copes with the

conventional UDA setting (Section 5.2.3). All these scenarios can be handled using CFSM with

minor modifications. The effectiveness of CFSM is demonstrated by its superior performance

compared to the existing work. Finally, insights are provided through ablation study and visuali-

sation analysis.

5.2.1 Unsupervised Domain Adaptive Multi-View Learning

Person Re-ID The person re-identification (Re-ID) problem is to match person detections

across camera views. Annotating person image identities in every camera in a camera network

for training supervised models is infeasible. This motivates the topical UDA person Re-ID prob-

lem of adapting a Re-ID model trained on one dataset with annotation to a new dataset without

annotation. Although they are evaluated with retrieval metrics, contemporary Re-ID models are

trained using identity prediction (classification) losses. This means that UDA person Re-ID fol-

lows the UDA multi-view setting, as the label spaces (person identities) are different in different

Re-ID datasets, and the target dataset has no labels.

Two highly contested large-scale benchmarks for UDA person Re-ID: Market-1501 (Zheng

et al, 2015) and DukeMTMC-reID (Zheng et al, 2017), are adopted. ImageNet pre-trained

Resnet50 (He et al, 2016a) is used as the feature extractor ΦM. Cross-entropy loss with label

smoothing and triplet loss are used for the source domain as supervised learning objectives. We

set dC = 2048,βM = 2.0,βC = 0.01. Adam optimiser is used with learning rate 3.5e−4. Each

dataset in turn is treated as source/target. Rank 1 (R1) accuracy and mean Average Precision

(mAP) results on the target datasets are used as evaluation metrics.

In Table 5.1, the proposed CFSM outperforms the state-of-the-art alternatives purpose-designed
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M2D D2M

R1 mAP R1 mAP

UMDL (Peng et al, 2016) 18.5 7.3 34.5 12.4

PTGAN (Wei et al, 2018) 27.4 - 38.6 -

PUL (Fan et al, 2018b) 30.0 16.4 45.5 20.5

CAMEL (Yu et al, 2017a) - - 54.5 26.3

TJ-AIDL (Wang et al, 2018) 44.3 23.0 58.2 26.5

SPGAN (Deng et al, 2018) 46.4 26.2 57.7 26.7

MMFA (Lin et al, 2018) 45.3 24.7 56.7 27.4

CFSM 49.8 27.3 61.2 28.3

Table 5.1: Unsupervised domain adaptive (UDA) person Re-ID (%). M2D indicates Market-
1501 as the source domain and DukeMTMC-reID as the target one, vice versa. Target Dataset
Performance is reported.

for the UDA person Re-ID. Note that TJ-AIDL (Wang et al, 2018) and MMFA (Lin et al, 2018)

exploit attribute labels to help alignment and adaptation. The proposed method automatically

discovers latent factors with no additional annotation. However, CFSM improves at least 3.0%

over TJ-AIDL and MMFA on the R1 accuracy of both settings.

FG-SBIR Fine-grained Sketch Based Image Retrieval (SBIR) focuses on matching a sketch

with its corresponding photo (Sangkloy et al, 2016). As demonstrated in (Sangkloy et al, 2016),

object category labels play an important role in retrieval performance, so existing studies make a

closed world assumption, i.e., all testing categories overlap with training categories. However, if

deploying SBIR in a real application such as e-commerce (Yu et al, 2016), one would like to train

the SBIR system once on some source object categories, and then deploy it to provide sketch-

based image retrieval of new categories without annotating new data and re-training for the target

object category. Unsupervised adaptation to new categories without sketch-photo pairing labels

is therefore another example of the UDA multi-view learning problem. Comparing to Re-ID,

where instances are person images in different camera views, instances in SBIR are either photos

or hand-drawn sketches of objects.

There are 125 object classes in the Sketchy dataset (Sangkloy et al, 2016). We randomly split

75 classes as a labelled source domain and use the remaining 50 classes to define an unlabelled

target domain with disjoint label space. ImageNet pre-trained Inception-V3 (Szegedy et al, 2016)

is used as the feature extractor ΦM. Cross-entropy and triplet loss are used for source supervision.
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We set dC = 512,βM = 10−3,βC = 0.1. Adam optimiser with learning rate 10−4 is used. As a

baseline, Source Only is the direct transfer alternative that uses the same architecture but trains

on the source labelled data only, and is applied directly to the target without adaptation. The

retrieval performance on unseen classes (tar. cls.) are reported. Results are averaged over 10

random splits. As shown in Table 5.2, the proposed CFSM improves the retrieval accuracy on

unseen cases by 2.48%.

Source only CFSM

tar. cls. 23.74±0.24 26.22±0.25

Table 5.2: SBIR: Sketch-photo retrieval results (%). Averaged Rank 1 accuracy and standard
error.

5.2.2 Semi-supervised Disjoint Label Space Transfer Learning

Dataset and Settings We follow the semi-supervised DLSTL recognition experiment of (Luo

et al, 2017) where again two digit datasets, SVHN and MNIST, are used. Images of digits 0 to 4

from SVHN are fully labelled as source data while images of digits 5 to 9 from MNIST are target

data. The target dataset has sparse labels (l labels per class) and unlabelled images available.

Thus a classifier χT after the CFS layer ΦC is also added for the target categories.

The feature extractor architecture ΦM is exactly the same as in (Luo et al, 2017) for fair

comparison. CFSM on source data is pre-trained as initialisation, and then train it with both

source and target data using only loss in Eq. 5.3. We set dC = 10,βM = βC = 0.01. The learning

rate is 0.001 and the Adam (Kingma and Ba, 2014) optimiser is used.

Results The results for several degrees of target label sparsity l = 2,3,4,5 (corresponding to

10,15,20,25 labelled samples, or 0.034%,0.050%,0.066%,0.086% of total target training data

respectively), are reported in Table 5.3. Results are averaged over ten random splits as in (Luo

et al, 2017). Besides the FT matching nets (Vinyals et al, 2016) and state-of-the-art LET results

from (Luo et al, 2017), two baselines are run: Train Target: Training CFSM architecture from

scratch with partially labelled target data only, and FT Target: The standard pre-train/fine-tune

pipeline, i.e., pre-train on the labelled source, and fine-tune on the labelled target samples only.

As shown in Table 5.3, the performances of baseline models are significantly lower than

LET and the proposed CFSM. The Train Target baseline performs poorly as it is hard to achieve

good performance with few target samples and no knowledge transfer from source. The Fine-
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l = 2 l = 3 l = 4 l = 5

Train Target 66.5±1.7 77.2±1.1 83.0±0.9 88.3±1.1

FT Target 69.8±1.6 79.1±1.2 84.5±0.8 89.3±0.9

FT matching nets (Vinyals et al, 2016) 64.5±1.9 75.5±2.4 79.3±1.3 82.7±1.1

LET (Luo et al, 2017) 91.7±0.7 93.6±0.6 94.2±0.6 95.0±0.4

CFSM 93.5±0.5 94.8±0.5 95.5±0.3 96.7±0.2

Table 5.3: Semi-supervised DLSTL image categorisation results (%), with mean classification
accuracy and standard error for SVHN (0-4)→MNIST (5-9).

Tune Target baseline performs poorly as the annotation here is too sparse for effective fine-

tuning on the target problem. Fine-Tune matching nets follows the 5-way (l− 1)-shot learning

with sparsely labelled target data only, but no improvement is shown over the other baselines.

Our proposed CFSM consistently outperforms the state-of-the-art LET alternative. For example,

under the most challenging setting (l = 2), CFSM is 1.8% higher than LET on mean accuracy

and 0.2% lower on standard error.

5.2.3 Unsupervised Domain Adaptation

Dataset and Settings We evaluate the conventional UDA setting from (Ganin et al, 2016)

where SVHN (Netzer et al, 2011) is the labelled source dataset and MNIST (LeCun et al, 1998)

is the unlabelled target. For fair comparison an identical feature extractor network is use to (Luo

et al, 2017). Our CFSM is pre-trained on the source dataset with cross-entropy supervision and

dC = 50, followed by joint training on source and target with our regularisers as in Eq. 5.3. Since

the label space is shared in UDA, entropy loss is also applied on the softmax classification of the

target (Long et al, 2016). βM = 0.001 and βC = 0.01 are set.

Results Our method is compared with two baselines. Source only: Supervised training on the

source and directly apply to target data. Joint FT: Model is initialised with source pre-train, and

fine-tuning on both domains with supervised loss for source and semi-supervised entropy loss

for target.

As shown in Table 5.4, CFSM boosts the performance on both baselines with clear margin

(25.5% and 9.3% v.s. Source only and Joint FT respectively). Moreover, it is 5.5% higher than

LET (Luo et al, 2017), the nearest competitor and only alternative that also addresses the DLSTL

setting.
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Method Accuracy

Domain Confusion (Tzeng et al, 2015) 68.1

Gradient Reversal (Ganin et al, 2016) 73.9

ADDA (Tzeng et al, 2017) 76.0

LET (Luo et al, 2017) 81.0

Res-para (Rozantsev et al, 2018) 84.7

Asym. tri-train (Saito et al, 2017) 85.0

Source only 61.0

Joint FT 77.2

CFSM 86.5

Table 5.4: Unsupervised domain adaptation results. Classification accuracy (%) on
SVHN→MNIST transfer.

5.2.4 Further Analysis

Ablation Study Unsupervised domain adaptive (UDA) person Re-ID is chosen as the main

benchmark for an ablation study. Firstly because it is a challenging and realistic large-scale prob-

lem in the UDA multi-view setting, and secondly because it provides a bidirectional evaluation

for more comprehensive analysis.

The following ablated variants are proposed and compared with the full CFSM. Source Only:

The proposed architecture is learned with source data and supervised losses only. Source+Regs:

The regularisers, unsupervised factorisation and graph losses can be added with source dataset

only. CFSM−Graph: Our method without the proposed graph loss. CFSM+ClassicGraph: Re-

placing our proposed graph loss with a conventional Laplacian graph (i.e., graphs constructed

in lower-level feature space extracted by ΦM to regularise the proposed CFS). AE: Other regu-

larisers such as feature reconstruction as in autoencoder (AE) is used to provide the prior term

p(θ |X). The deep features fff are reconstructed using the outputs of CFS layer as hidden repre-

sentations. In this case both source and target data are used and the reconstruction error provides

the regularisation loss. The results are shown in Table 5.5. Firstly, by comparing the variants

that use source data only (Source Only and Source+Regs) with the joint training methods, they

are consistently inferior. This illustrates that it is crucial to leverage target domain data for adap-

tation. Secondly, CFSM and its variants consistently achieve better results than AE, illustrating

that our unsupervised factorisation loss and graph losses provide better regularisation for cross-

domain/cross-task adaptation. The effectiveness of our graph loss is illustrated by two compar-
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M2D D2M

R1 mAP R1 mAP

Source Only 39.2 20.2 54.4 23.0

Source+Regs 41.6 21.2 55.8 24.0

AE 43.6 22.8 56.4 24.9

CFSM−Graph 46.8 25.6 60.0 27.6

CFSM+ClassicGraph 47.4 26.1 59.0 27.0

CFSM 49.8 27.3 61.2 28.3

Table 5.5: Ablation study on UDA person Re-ID. Target performance (%) is reported.

isons: (1) CFSM−Graph is worse than CFSM, showing the contribution of the graph loss; and

(2) replacing our graph loss with the conventional Laplacian graph loss (CFSM+ClassicGraph)

shows worse results than ours, justifying our choice of regularisation direction. Finally, apply-

ing our regularisers to the source only (Source+Regs) still improves the performance slightly on

target dataset vs Source Only.

Visualisation Analysis To understand the impact of unsupervised factorisation loss, Figure 5.2

illustrates the distribution of target CFS activations in the semi-supervised DLSTL setting (SVHN

→ MNIST). The left plot shows the activations without any such loss, leading to a distribution

of moderate predictions peaked around 0.5. In contrast, the right plot shows the activation dis-

tribution on the target dataset of CFSM. It is shown that our regulariser has indeed induced the

target dataset to represent images with a low–entropy near-binary code. We also compare train-

ing a source model by adding low-entropy CFS loss, and then applying it to the target data. This

leads to a low-entropy representation of the source data, but the middle plot shows that when

transferred to the target dataset or adaptation the representation becomes high-entropy. That is,

joint training with our losses is crucial to drive the adaptation that allows target dataset to be

represented with near-binary latent factor codes.

Qualitative Analysis The discovered latent attributes are qualitatively visualised. For each

element in fff C, images in both source and target domains are ranked by their activation. Person

images corresponding to the highest ten values of a specific fff C are recorded. Figure 5.3 shows

two example factors with images from the source (first row) and target (second row) dataset. We

can see that the first example in Figure 5.3(a) is a latent attribute for the colour ‘red’ covering both

people’s bags and clothes. The second example in Figure 5.3(b) is a higher-level latent attribute
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Figure 5.2: CFS activations distribution on target data. Left: Train on source with supervised
loss. Middle: Train on source with both supervised and low-entropy CFS losses. Right: CFSM,
jointly trained on source and target.

that is selective for both females, as well as textured clothes and bag-carrying. Importantly, these

factors have become selective for the same latent factors across datasets, although the target

dataset has no supervision (i.e., UDA multi-view learning).

(a)

(b)

Figure 5.3: Images selected by two latent factors: (a) red and (b) female/textured/bag-carrying.
In each case the top row is the source (Market) data and the bottom row is the target (Duke) data.

5.3 Stochastic Inference for Deep Clustering

In this section, a novel unsupervised domain adaptive multi-view learning algorithm is proposed

based on learning a joint feature embedding that encourage the target domain data to form clus-

ters. The key component is a new deep clustering method called Stochastic Inference for Deep
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Clustering (SIDC) for the target domain. It jointly learns representation and clustering by treat-

ing cluster assignment as a random, rather than deterministic, variable in order to alleviate com-

pounding errors at early training. Furthermore, a new triplet loss for target data is also formulated

based on the learned cluster centres and stochastic assignments. The proposed method is applied

on a challenging UDA multi-view task, the unsupervised domain adaptive (UDA) person Re-ID

to be specific, and achieves state-of-the-art performance. Moreover, our SIDC is effective on its

own on the conventional data clustering task.

5.3.1 Overview

Problem Setting For unsupervised domain adaptive person Re-ID, we have a labelled source

domain S where a dataset contains both person images XS and their identity labels YS; we also

assume that for a target domain/dataset, only person images XT are available without identity

labels. The objective is to improve matching performance on the target domain by transferring

knowledge from the source domain via a shared feature embedding space learned with both XS

and XT . Our multi-task joint feature learning model is a deep convolutional neural network

(CNN) composed of modules (sub-networks) that are either shared across domains or domain-

specific (see Figure 5.4).

Shared Modules A CNN feature extractor ΦM is used to extract the appearance representation

fff ∈ Rd f of an input person image x. ΦM is shared across source and target domains, and fff =

ΦM(x) will also serve as the final feature for cross-camera matching at testing time. An encoding

layer Φenc then encodes fff into a hidden feature hhh ∈ Rdh , with hhh = Φenc( fff ), before a decoding

network Φdec is used to reconstruct the CNN feature, that is, f̂ff = Φdec(Φenc( fff ))≈ fff .

Domain-Specific Modules To make use of the source dataset labels for feature learning, a

person identity classifier Φcls(hhh) is applied to the hidden encoding hhh to predict person identities

YS for source data XS only. Via back-propagation, this ensures that the feature extractor ΦM

and encoder Φenc combined learn a feature representation that is discriminative for the source

domain identities. More importantly, this representation must be effective for the target data XT .

To that end, our Stochastic Inference for Deep Clustering (SIDC) is formulated on the hidden

representation hhh for the target domain data only. This introduces no new parameters besides the

set of k cluster centres ψψψ = [µµµ1, ...,µµµk], ψψψ ∈ Rdh×k. Moreover, a triplet loss based on the tuples

composed of the clusters ψψψ and target training samples is employed. Our model is explained in

detail in Section 5.3.2.
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Figure 5.4: Illustration of the proposed multi-task joint feature learning framework for UDA
person Re-ID. ‘∗’ indicates the reparameterisation trick is applied in order to backpropagate
through the stochastic sampling zzz∼ Cat(sss).

Summary The proposed model is trained on both source and target data in a multi-task learn-

ing procedure with four losses: a supervised loss `S on the source domain, both the unsupervised

SIDC loss `SIDC for clustering and triplet loss `Tri are based on the stochastic inference of un-

labelled XT , and a standard unsupervised autoencoder reconstruction loss `rec that is applied on

both domains to regularise the clustering. θ is used to summarise the trainable parameters in ΦM,

Φenc, Φdec and Φcls, and ψψψ to denote the new cluster centre parameters unique to the novel SIDC

component. The overall loss is:

Lθ ,ψψψ = `S(XS,YS)+α`SIDC(XT )+ γ`Tri(XT )+β`rec(XS,XT ), (5.4)

where α , γ and β are weighting parameters. For the supervised source-domain specific loss

`S, both cross entropy with label smoothing (Szegedy et al, 2016) and mini-batch hard triplet

loss (Hermans et al, 2017) are used. For mini-batch construction, each mini-batch contains an

equal number of samples from both datasets. The whole pipeline is illustrated in Figure 5.4.

The intuition here is that we want to train a feature extractor fff = ΦM(·) that simultaneously:

(i) supports accurate person Re-ID in the source domain where identities are known (`S), and

also (ii) is adapted to the target domain in the sense of cleanly grouping people into clusters
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(`SIDC). Each of the learned clusters ideally should contain one unique identity. In practice,

however since no assumption is made on the number of identities in XT , we only assume that the

discovered clusters loosely correspond to the actual person identities. It should show that simply

requiring the target domain data to support a good clustering structure provides strong cues for

unsupervised domain adaptation.

5.3.2 Stochastic Inference for Deep Clustering

Loss Formulation An existing approach to deep clustering like (Yang et al, 2017a) would

(using our notation) use `rec and `SIDC to define an optimisation where the loss is:

min
θ ,ψψψ,zzz

||Φenc( fff )−ψψψzzz||+ || fff −Φdec(Φenc( fff ))||

s.t. 111T zzz = 1,zzz ∈ {0,1}k

(5.5)

where zzz is a hard cluster indicator and the reconstruction term prevents trivial solutions1. How-

ever, this cannot be trained jointly end-to-end because hard assignment of clusters prevents back-

propagation into the feature extractor – hence the alternating optimisation proposed by (Yang

et al, 2017a). It also suffers from compounding errors for the same reason. Our SIDC provides

an end-to-end trainable solution for clustering that is resistant to reinforcing errors.

Our approach is built upon a probabilistic clustering assumption where a data point is more

likely to belong to a closer centre. Therefore, the assignment of each data point hhh (in the autoen-

coder space defined previously) to a cluster is treated as a random variable that will be inferred

with a stochastic sampling process.

Firstly, a probability vector sss(hhh,ψψψ) = [s1, . . . , sk] is defined to quantify the probability of

association, or soft assignment, of the data point hhh to each of the k clusters.

si =
exp(−d(hhh,µµµ i))

∑
k
j=1 exp(−d(hhh,µµµ j))

, (5.6)

where d(hhh,µµµ i) is the squared Euclidean distance between hhh and cluster centre µµµ i.

In the forward pass, this distribution is sampled in order to stochastically assign hhh to a cluster:

zzz∼ Cat(sss), (5.7)

where Cat(sss) indicates the categorical distribution parameterised by sss and zzz is a one-hot sample

from sss.
1Typical trivial solutions include that all hhh become zero vectors (Yang et al, 2017a) and/or all data

points are assigned to one cluster.
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This sampling process is used to define a loss that prefers configurations where zzz and sss are

more similar. That is, where sss tends to be one-hot. This in turn corresponds to situations where

clusters are well separated from each other and each data point hhh is close to its nearest cluster

centre. Specifically `SIDC is defined as:

`SIDC = KL(zzz||sss) =
k

∑
j=1

z j log
z j

s j
. (5.8)

If the learned representation hhh comes from a clustering-friendly (Yang et al, 2017a) space

where target data naturally forms tight and well-separable clusters, then sss (Eq. 5.6) can clearly

become close to one-hot. While if the space is not clustering-friendly, sss will be far from one-hot.

Thus training the feature extractor ΦM(·) and encoder Φenc(·) to optimise `SIDC will promote a

cluster friendly embedding space hhh.

Note that unlike deterministic approaches such as (Xie et al, 2016a), which iteratively in-

crease the strength of soft predictions to match the current most likely prediction, our SIDC

approach pulls Cat(sss) in different directions on different iterations due to the stochastic sampling

zzz∼Cat(sss). This randomness helps the training escape from situations of reinforcing error, by ex-

ploring the different possible assignments – especially for low-confidence points (see Figure 5.6

for a visualisation).

A Differentiable Approximation The problem with using the loss defined in Eq. 5.8 as ob-

jective is that the gradients cannot be back-propagated through the stochastic sampling layer

(Eq. 5.7). To overcome this problem, the Gumbel-Softmax reparameterisation trick (Jang et al,

2017; Maddison et al, 2017) is employed. As the replacement of zi, its differentiable approxima-

tion yi is used, defined as,

yi =
exp((gi + logsi)/τ)

∑
k
j=1 exp((g j + logs j)/τ)

(5.9)

where gi is i.i.d sampled from Gumbel(0,1) distribution2 and τ is a temperature factor that tunes

how closely the softmax function approximates the non-differential argmax function. τ = 0.1 for

all experiments. Using Eq. 5.9, the `SIDC loss in Eq. 5.8 is expressed as

`SIDC = KL(yyy||sss) =
k

∑
j=1

y j log
y j

s j
. (5.10)

Triplet Loss for Unlabelled Target Data A target sample hhhtp is assigned to a cluster centre

µµµztp
,ztp ∈ {1, ...,k} in ψψψ based on the stochastic inference (Eq. 5.7) and they form a positive pair

2To sample Gumbel(0,1) distribution, a random number r is draw from the uniform distribution [0,1]
and then compute g =− log(− log(r)).
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{µµµztp
,hhhtp}. The cluster centre µµµztp

is then used as an anchor to retrieve the hard negative (Her-

mans et al, 2017) target sample hhhtn within each mini-batch, where tn = argmint d(µµµztp
,hhht), s.t. zt 6=

ztp . And the triplet loss for the tuple (µµµztp
,hhhtp ,hhhtn) is,

`Tri = [m+d(µµµztp
,hhhtp)−d(µµµztp

,hhhtn)]+ (5.11)

where m≥ 0 is the margin value. This clustering-specific triplet loss is designed to further make

each cluster compact and farther away from other clusters.

Reconstruction Loss With the clustering loss alone, (i.e., Eq. 5.10), deep models may produce

trivial solutions as discussed in (Yang et al, 2017a). To alleviate this problem, clustering loss

should be combined with a reconstruction loss. The loss `rec is applied to both source and target

Re-ID datasets,

`rec = || fff −Φdec(Φenc( fff ))||1, (5.12)

which is a L1 loss.

5.4 Results and Analysis on Stochastic Inference for Deep Clustering

5.4.1 Experimental Settings

Datasets Three large-scale person Re-ID benchmarks, Market-1501 (Zheng et al, 2015), CUHK03

(Li et al, 2014) and DukeMTMC-reID (Zheng et al, 2017) are used for UDA Re-ID evaluation.

Market-1501 has 12,936 training and 19,732 testing images of 1,501 different identities cap-

tured by 6 cameras. We use the standard train/test split in (Zheng et al, 2015) with 751 PIDs in

the training set and the remaining 750 PIDs for testing. DukeMTMC-reID is a subset of the

Duke dataset (Ristani et al, 2016) for person Re-ID purposes. We follow the protocol in (Zheng

et al, 2017) where 16,522 images of 702 PIDs are used as the training set, and the other 702

PIDs are in testing set. CUHK03 contains 14,096 images of 1,467 PIDs, where 767 PIDs are in

the training set and the remaining 700 people are in the testing set. The detected person bound-

ing boxes are used following (Zhong et al, 2017). Two UDA Re-ID settings have been used in

existing studies; both of them are thus adopted. Setting 1: Market-1501 and DukeMTMC-reID

are used, one as source and the other as target, resulting in two directions of transfer. Setting 2:

all three benchmarks are used with one as source and the other two as target, giving six transfer

directions in total. So Setting 1 is a subset of Setting 2. Under both settings, the training splits

of both the source and target (unlabelled) are used for training and the test split of the target for

testing.
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Data Augmentation The input person images are all fixed at size 256×128. Random horizon-

tal flips are used during training. The mini-batch size is 64 with half of the images from source

and the others from target.

Model Architecture Similar to most existing UDA person Re-ID models, a ResNet-50 based

backbone is used. Specifically, ResNet-50 with instance normalisation (Pan et al, 2018) is used

as the feature extractor ΦM for the appearance feature fff ∈ R2048. The encoder Φenc is a fully

connected layer projecting fff into the hidden space hhh ∈ R512. The decoder Φdec then decodes

hhh to reconstruct fff with a 1024D intermediate layer. The PID classifier Φcls for source dataset

projects hhh into the label space. k = 1,200 clusters are used as default for all UDA person Re-ID

experiments, regardless what the true target training identity numbers are. This is unlike PUL

(Fan et al, 2018b) which sets k to be almost identical to the true identity number in each target

dataset. The impacts of different ks on performance are also studied (see Sec. 5.4.3).

Optimisation During pre-training, the mapping network ΦM is initialised with ImageNet-

pretrained weights, and then fine-tuned. Other components are trained from scratch. No cluster-

ing is applied yet at this stage (i.e., α and γ are 0) and β is fixed at 0.1 in Eq. 5.4. Initial learning

rate is 3.5×10−4. Adam (Kingma and Ba, 2014) optimiser is used and trained with 80,000 iter-

ations. Our clustering loss `SIDC and triplet loss `Tri are then applied to the target data and jointly

fine-tuned along with the rest of the model and other losses. Loss balancing hyper-parameters α ,

γ and β are fixed at 0.01, 0.01 and 1.0 respectively. The margin m of triplet loss `Tri is fixed at

0.2. Learning rate is set to 1.0× 10−4 with 50,000 training iterations. The sensitivity of model

against the hyper-parameters is also studied (see Sec. 5.4.3).

Evaluation Metrics The top Ranked matching accuracy (Rank 1) and mean average precision

(mAP) are used.

5.4.2 Results

Results under Setting 1 Table 5.6 compares our model with existing state-of-the-art alter-

natives under Setting 1. The following specific observations are made: (1) Our model beats

the existing models by a significant margin under both transfer directions, e.g., 12.3% on mAP

over the nearest competitor CFSM (Section 5.1) for M→D. (2) Unsurprisingly, the hand-crafted

feature based UMDL (Peng et al, 2016) is the weakest. (3) TJ-AIDL (Wang et al, 2018) and

MMFA (Lin et al, 2018) are the two feature alignment based methods. Despite both requiring

additional attribute labels from the source domain, their performance is significantly lower than
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M→D D→M

R1 mAP R1 mAP

UMDL (Peng et al, 2016) 18.5 7.3 34.5 12.4

PTGAN (Wei et al, 2018) 27.4 - 38.6 -

PUL (Fan et al, 2018b) 30.0 16.4 45.5 20.5

TJ-AIDL (Wang et al, 2018) 44.3 23.0 58.2 26.5

SPGAN (Deng et al, 2018) 46.4 26.2 57.7 26.7

MMFA (Lin et al, 2018) 45.3 24.7 56.7 27.4

HHL (Zhong et al, 2018) 46.9 27.2 62.2 31.4

CFSM (Section 5.1) 49.8 27.3 61.2 28.3

SIDC 61.3 39.6 69.2 37.9

Table 5.6: UDA Re-ID results (%) under Setting 1. M→D indicates Market-1501 as source
dataset and DukeMTMC-reID as target, and vice versa. Target dataset performance is reported.

ours. (4) Among the three models that employ GAN-based image synthesis, PTGAN (Wei et al,

2018) and SPGAN (Deng et al, 2018) attempt to transfer the image style from source to target.

The results show that this cross-domain style alignment is clearly inferior to the latest image

synthesis-based method HHL (Zhong et al, 2018), which synthesises images across target cam-

era views (sub-domains) only. Importantly, like our model, HHL does source-target joint feature

learning. However, our model, without needing the tricky GAN training and using a simple

clustering learning objective, is superior to all three GAN-based models. (5) Both PUL (Fan

et al, 2018b) and our model follow a clustering paradigm for UDA person Re-ID. However, the

proposed SIDC significantly improves the performance over PUL (Fan et al, 2018b). Without

multi-task learning and relying on hard deterministic cluster assignment, PUL is clearly ineffec-

tive. (6) The best results reported so far are obtained by CFSM, which also benefits from joint

feature learning. However there is still a massive gap between its performance and ours, indicat-

ing that discovering identities by clustering is more effective than discovering latent attributes.

Results under Setting 2 As shown in Table 5.7, only three competitors reported results under

this setting. Since Setting 1 is a subset of Setting 2, only the transfer directions not in Setting 1 are

reported in Table 5.7. Again, our model outperforms the compared models significantly under all

directions. For instance, compared with the nearest competitor HHL (Zhong et al, 2018), under

C→M the proposed SIDC improves the mAP by 16.4%.
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C→M C→D M→C D→C

R1 mAP R1 mAP R1 mAP R1 mAP

PUL 41.9 18.0 23.0 12.0 7.6 7.3 5.6 5.2

SPGAN 42.3 19.0 - - - - - -

HHL 56.8† 29.8† 42.7† 23.4† - - - -

SIDC 71.2/74.4† 41.9/46.2† 45.5/47.6† 25.2/28.5† 22.9 24.0 21.0 22.5

Table 5.7: UDA Re-ID results (%) under Setting 2. C, M, and D refer to CUHK03, Market-
1501 and DukeMTMC-reID respectively. † indicates the HHL protocol whereby both CUHK03
training and test splits are used as source data.

Ablation Study Our model is based on multi-task feature learning with the novel SIDC loss

`SIDC serving for the stochastic clustering objective with probabilistic cluster assignment. The

learned cluster centres ψψψ enable the proposed clustering-specific triplet loss `Tri for the target

domain and a reconstruction loss `rec for both domains. In this experiment, their contributions

are evaluated to our final model performance. A few variants of our full model are considered.

Direct Transfer (DT): without multi-task learning, only the source dataset is used for learning a

feature extractor, which is then used directly for the target domain. Auto-encoder Transfer (AE

Transfer): now we add `rec and remove `SIDC and `Tri, i.e., the unlabelled target data is still used

during training, but instead of for clustering, for self-reconstruction purpose only. DCN (Yang

et al, 2017a): The deep model (including `rec), and cluster centres and cluster assignments are

optimised alternatively based on hard deterministic inference. DEC (Xie et al, 2016a) + AE:

`SIDC is replaced with the soft deterministic clustering objective DEC (Xie et al, 2016a) which

enables end-to-end training. AE architecture (`rec) is used and without `Tri. SIDC w/o `Tri: Our

full model with the triplet loss `Tri is disabled. SIDC: the full model as in Eq. 5.4. Table 5.8

shows the gap between ours and DT is massive, demonstrating that unsupervised transfer learn-

ing using the target data is crucial. Importantly, all components in our model contribute to the

improvement. Specifically, AE Transfer with reconstruction loss `rec improves performance by

jointly learning with the source and target data. DCN (Yang et al, 2017a) yields the worst results

among the deep clustering methods compared due to its hard deterministic inference and alternat-

ing optimisation. DEC (Xie et al, 2016a) is better thanks to the soft deterministic inference and

end-to-end training. However, with stochastic inference for clustering (`SIDC), the model (SIDC

w/o `Tri) boosts the results significantly. It thus shows clearly that our SIDC loss is superior

to the existing deterministic clustering losses. Moreover, the triplet loss `Tri further boosts the
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M→D D→M C→M C→D M→C D→C

R1 mAP R1 mAP R1 mAP R1 mAP R1 mAP R1 mAP

DT 40.5 22.1 49.3 21.6 54.3 27.6 31.5 15.0 9.8 11.1 8.7 7.8

AE Transfer 50.0 28.9 61.7 29.1 60.9 30.0 36.7 18.1 10.9 11.7 8.6 10.0

DCN 52.0 30.6 59.1 27.7 62.5 31.9 35.7 17.5 14.1 15.6 11.4 12.4

DEC + AE 53.2 30.8 63.5 31.8 64.3 34.2 37.0 18.7 14.3 15.2 12.9 13.2

SIDC w/o `Tri 60.1 38.5 68.2 36.7 70.0 39.8 42.4 22.7 21.4 22.4 19.5 20.7

SIDC 61.3 39.6 69.2 37.9 71.2 41.9 45.5 25.2 22.9 24.0 21.0 22.5

Table 5.8: Ablation study on UDA person Re-ID under Setting 2. C, M and D refer to CUHK03,
Market-1501, and DukeMTMC-reID respectively.

performance by 1∼ 3% (SIDC v.s. SIDC w/o `Tri).

5.4.3 Further Analysis

Effectiveness of Stochastic Inference Table 5.8 above shows quantitatively that the proposed

clustering loss `SIDC plays a key role in our model and it clearly outperforms the deterministic

counterpart DEC (Xie et al, 2016a). We hypothesise that our SIDC loss can better group the target

data into clusters than DEC (Xie et al, 2016a) because of the stochastic inference. To validate

this, we first show some qualitative results in Figure 5.5. It can be seen clearly that, compared

with the DT baseline, test images belonging to different target identities become much more

separable in the multi-task feature space fff after introducing either clustering loss. In addition, it

is clear that different identities become more distinguishable using our SIDC loss, explaining the

superior performance in Table 5.8.

(a) DT (b) DEC (c) SIDC

Figure 5.5: t-SNE map of deep features fff . Different colours represent different PIDs. With
Market-1501 as source, (a) shows the target (DukeMTMC-reID) samples in the direct transfer
(DT) setting. (b) shows the target features extracted from DEC (Xie et al, 2016a) + AE model
and (c) are from SIDC (w/o `Tri for fair comparison) under the M→D setting. Best viewed in
colour.
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To further illustrate that the better feature learning is indeed caused by better clustering, the

embedding space hhh learned by these two clustering losses are compared, as shown in Figure 5.6.

It shows that the initial clustering provided after the first stage of model training using only the

supervised loss `S and the reconstruction loss `rec (see optimisation details in Sec. 5.4.1) is noisy

(different identities are assigned to the same clusters). With stochastic inference, SIDC is able to

progressively recover from the wrong clustering assignment and form clean clusters. In contrast,

even with the softened deterministic assignment, DEC got stuck with the bad initialisation and

never recovered.

Initial

DEC

SIDC

Middle

Middle

Final

Final

Figure 5.6: An illustration of the clusters formed by DEC (Xie et al, 2016a) + AE and our
SIDC at different training stages. Different shapes indicate different cluster memberships, while
different colours indicate different person identities. The cluster centres are depicted in black.
Two identities (red and green respectively) from DukeMTMC-reID under the M→D setting are
shown here in 2D obtained by t-SNE.

Impact of Cluster Number In all experiments so far, the number of clusters are empirically

set and fixed at 1,200, without any dataset-specific tuning. The impact of varying the number of

cluster centres k is evaluated in this experiment under the M→D setting. Here the DukeMTMC-

reID dataset is the target, whose training split has 702 person identities. Figure 5.7 shows that the

performance on the target test set peaks at k = 1000. Interestingly setting k to the true identity

number does not yield the best result. On the one hand, when k is much smaller than the ground-

truth PID number, the performance degradation is severe. On the other hand, the performance

becomes stable when k is much bigger. This is explainable: when k is too small, inevitably

different identities will be assigned to the same clustering which will have a detrimental effect

on the learned feature space. It is also not ideal when k is too big as the same identities will
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Figure 5.7: Impact of the cluster number k on our model. k is manually set. M→D setting is used
and performance (both Rank1 accuracy and mAP) on DukeMTMC-reID is shown.

be allocated to multiple clusters. The good news is that our model seems to be insensitive to

that. This result suggests that in practice, it is advisable to over-estimate identity number in the

unlabelled target training set.

Model Robustness on Hyper Parameters There are 4 hyper-parameters in our model, namely

the loss weights α , γ , β in Eq. 5.4 and the margin m of triplet loss `Tri. The default setting for all

experiments are fixed at α = 0.01, γ = 0.01, β = 1.0 and m = 0.2. Their impact on performance

is studied in Figure 5.8. Only one hyper-parameter is varied at a time while the others are fixed

to the default values. It is shown that in general SIDC performance is stable against the four

hyper-parameters within large value ranges.
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Figure 5.8: Impact of hyper-parameters α (up-left), γ (down-left), β (up-right) and m (down-
right). DukeMTMC-reID performance (Rank1 accuracy and mAP) in M→D setting is shown.

SIDC for General Clustering Finally, we evaluate whether the proposed clustering method is

also effective when applied on its own to general data clustering tasks. The MNIST (LeCun et al,

1998) dataset, which consists of 70,000 hand-written digit images, is used. The raw pixel data, of

size 28×28 in gray scale, are used without pre-processing. No data augmentation is used during

training. The mini-batch size is 256. For clustering only, the feature extraction CNN ΦM is not

required. The images are directly fed into the encoder-decoder network (i.e., an autoencoder

(AE)). The encoder network is identical to (Xie et al, 2016a; Yang et al, 2017a) which is a 4-
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layers MLP with 500, 500, 2000 and 10 hidden neurons. The decoder is mirrored based on the

encoder architecture in order to reconstruct the input images. Clustering is performed on the

outputs of encoder with k = 10. During training, the encoder-decoder is pre-trained from scratch

on reconstruction loss only. Initial learning rate is 0.1 and pre-trained with 50,000 iterations.

Adam optimiser is used. Then the model is fine-tuned with both clustering and reconstruction

loss. The clustering loss weight is fixed at 0.01. Initial learning rate changes to 0.01 for another

50,000 iterations training. For clustering evaluation on MNIST, three standard clustering metrics

(normalised mutual information (NMI) (Cai et al, 2010a), adjusted random index (ARI) (Yeung

and Ruzzo, 2001) and clustering accuracy (ACC) (Cai et al, 2010a)) are used, following most

existing works. Higher values are preferred for all metrics.

NMI ARI ACC

k-means 0.50 0.37 0.53

AE + k-means 0.77 0.68 0.78

DEC (Xie et al, 2016a) 0.80 0.75 0.84

DCN (Yang et al, 2017a) 0.81 0.75 0.83

SIDC w/o `Tri 0.86 0.78 0.84

SIDC 0.86 0.79 0.85

Table 5.9: Clustering results on MNIST.

The results in Table 5.9 show that our models achieves the best performance. Specifically,

we note that: (1) The results of deep models (from AE+k-means to SIDC) are better than shallow

ones (k-means). This is expected as vanilla k-means is based on raw image pixels and it cannot

modify the feature space. (2) AE+k-means is inferior to other deep models since it does not

tune the feature space jointly with the clustering. (3) Although the clustering accuracy (ACC) of

SIDC (SIDC w/o `Tri) and DEC (Xie et al, 2016a) are the same, SIDC is 6% and 3% higher than

DEC (Xie et al, 2016a) on NMI and ARI respectively. Compared to DCN (Yang et al, 2017a), our

models are superior on all three metrics. (4) Our triplet loss `Tri can further improve both ARI

and ACC by 1%. These results thus further validate the effectiveness of SIDC due to its stochastic

inference based end-to-end training and probabilistic sampling based cluster assignment, which

prevent clustering error reinforcement.
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5.5 Summary

This chapter aims to handle a challenging multi-view learning task, the unsupervised domain

adaptive (UDA) multi-view learning, which has an unlabelled multi-view dataset as target domain

and labelled one as source domain. Moreover, the label spaces across domains are disjoint.

Therefore, instead of adopting the existing domain alignment methods, the multi-task learning

framework is followed. Data from both the source and target domains are exploited for learning

a shared deep feature embedding space. The contributions of the source domain come from

supervised learning, and the target domain is subjected to different unsupervised losses with

specified assumptions. Two different models are proposed based on two distinctive modelling on

the target domain.

The first model assumes that the recognition in both domains should be done in a shared

latent factor space, considering the label spaces of different datasets are disjoint. An unsuper-

vised factorisation loss is proposed to discover a common set of discriminative latent factors

between source and target datasets in a shared embedding space. Therefore, the proposed meth-

ods is called common factorised space model (CFSM). To further improve the feature learning

for cross-view recognition, the lower level deep feature should be regularised by the higher level

latent semantic feature via a novel graph-based loss. Extensive evaluations show that CFSM out-

performs a wide range of contemporary techniques on the UDA multi-view learning problems,

e.g. the UDA person Re-ID. Moreover, our CFSM is effective on different transfer learning

settings, e.g., the semi-supervised DLSTL and the conventional UDA.

The second model utilises the target domain based on the assumption that the unlabelled in-

stances should form clusters. Ideally, the data samples of the same entity/object across views

belong to the same cluster. A novel deep clustering method, called Stochastic Inference for Deep

Clustering (SIDC), is thus proposed to fulfill such assumption better. The superiority of SIDC

over the existing deep clustering methods are in three folds. Firstly, SIDC is based on the stochas-

tic cluster assignment rather than the deterministic one as in existing methods. Therefore, SIDC

is more robust to the clustering error reinforcement and premature convergence issues during

training. Secondly, the reparameterisation trick is adopted in SIDC and enables the end-to-end

joint feature learning and clustering. Finally, a novel triplet loss is proposed to enhance the model

performance on the target domain further. It is shown that the proposed method significantly out-

performs existing alternatives on the challenging UDA multi-view learning problem, i.e., the
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UDA person Re-ID. Moreover, SIDC can be used as a standalone model for general clustering

tasks, where it shows promising performance.

The second model SIDC achieves superior performance to the first one CFSM on the UDA

multi-view learning task, i.e., UDA person Re-ID, as illustrated in Table 5.6. Both models are

based on the multi-task learning framework with similar DNN architectures for learning a shared

embedding space. Therefore, such a performance gap mainly comes from the different assump-

tions they made. Comparing to the factorisation assumption in CFSM, the clustering one in SIDC

is more straightforward to reveal the intrinsic structure of the unlabelled multi-view data.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

This thesis has presented a collection of multi-view learning algorithms for understanding the

visual data contains multiple views, i.e., camera angles, modalities and datasets (domains). In

particular, a fundamental multi-view learning task, cross-view recognition, for identifying or

matching the instances of an entity across different views have been investigated and explored.

Different cross-view recognition settings can be described under two criteria, the number of

views and the annotations available for the views. We concentrate on three widely used settings:

(1) Two-view data with labels. (2) Generalised multi-view data with labels. (3) Unsupervised

domain adaptive (UDA) multi-view learning with target multi-view dataset unlabeled. These

problems are inherently challenging due to intrinsic visual ambiguities and the significant ap-

pearance variations across views. Therefore, the advanced deep neural network (DNN) models

are adopted in the proposed methods. Specifically,

1. Chapter 3 Scalable Deep Canonical Correlation Analysis: Canonical Correlation Anal-

ysis (CCA) objective aims to maximise the correlation of the corresponding instances

across views. Existing deep CCA models directly optimise the CCA objective with ex-

act decorrelation, which is computationally expensive and truncate the gradient flows for

deep model training. A novel Deep CCA model, Soft CCA, is proposed to overcome these

problems. Soft CCA is based on a soft decorrelation version, Stochastic Decorrelation

Loss (SDL). SDL enables the CCA objective to be expressed as a loss to be minimised by
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gradient descent rather than as an eigen-decomposition problem. As a result, Soft CCA is

compatible with the gradient-based end-to-end optimisation and more scalable than exist-

ing deep CCA models. The effectiveness of Soft CCA is demonstrated on the supervised

two-view datasets. Moreover, SDL applies to various tasks and models and is superior to

alternative decorrelation losses.

2. Chapter 4 Deep Factorisation for Multi-View Learning: Existing deep multi-view learn-

ing methods rely on either deep feature from a single semantic level or additional attribute

annotations. In contrast, a novel deep architecture, Multi-Level Factorisation Net (MLFN),

can automatically discover the view-invariant latent factors with no attribute labels. For in-

dividual input, the discriminative latent factors dynamically identified by different levels

of MLFN blocks correspond to specified semantic levels. The higher level latent semantics

are modelled by the MLFN block closer to the top. A compact multi-level representation

is obtained by aggregating the discriminative semantic information at all levels of MLFN.

It can be efficiently fused with the deep feature to complement final representation. Ex-

tensive experiments show the superiority of MLFN on not only the supervised multi-view

learning but also the objective categorisation.

3. Chapter 5 Unsupervised Domain Adaptive Multi-View Learning: Unsupervised do-

main adaptive (UDA) multi-view learning is a challenging setting with an unlabelled multi-

view dataset as the target domain. A supervised multi-view source dataset with the rele-

vant task is incorporated in the model training to improve the target performance. More

importantly, the label spaces across domains are assumed to be disjoint. Existing domain

alignment methods are based on a different assumption, the shared label space. Therefore,

domain alignment methods are not suitable for UDA multi-view learning problems. In this

thesis, the multi-task learning framework is adopted for UDA multi-view learning. It aims

to learn a shared feature embedding space with domain-specific contributions. Supervised

learning is applied to the labelled source data, while different unsupervised losses can be

used for the unlabelled target data based on the assumptions made. Specifically, two novel

models are proposed with distinctive assumptions.

The first model assumes there is a shared latent factor space for both domains, and the

recognition is performed in this space to guide the discriminative knowledge transfer across

domains. Moreover, each latent factor should be interpreted as a discriminative latent at-
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tribute. To this end, the latent factor representations from the common space are subjected

to an unsupervised factorisation loss to produce the low-entropy, i.e., near binary, codes.

Therefore, the proposed method is called common factorised space model (CFSM). More-

over, a novel graph Laplacian-based loss is proposed to encourage the feature-extractor to

learn representations that respect the common space manifold from higher-level to improve

deep feature learning. The effectiveness of CFSM is demonstrated not only on the UDA

multi-view learning but also different transfer learning tasks.

The second model is built on a clustering assumption: the instances from the unlabelled

multi-view dataset (target domain) form tight clusters. Each cluster potentially contains

the cross-view samples of an object/instance. Specifically, a novel deep clustering method,

called Stochastic Inference for Deep Clustering (SIDC), is proposed to serve the clustering

purpose. The cluster assignment in SIDC is a stochastic process by sampling from a cate-

gorical distribution. It is more robust to the compounding errors that lead to a sub-optimal

solution than existing deep clustering based on deterministic assignment. The performance

of SIDC also benefit from its end-to-end optimisation which is enabled by the reparame-

terisation trick. Moreover, a novel triplet loss is derived based on the clustering outcomes

to further improve the performance. SIDC achieves the state-of-the-art performance on a

challenging UDA multi-view learning problem, i.e., the UDA person Re-ID. It is also an

effective method on the conventional clustering task.

These models are originally proposed for several representative multi-view data settings

and primarily evaluated on the corresponding cross-view recognition visual understanding tasks.

They also have potentials and benefits for dealing with other relevant tasks in computer vision

and machine learning, as demonstrated by the experiments. More discussions about the future

research directions and work are detailed below.

6.2 Future Work

The potential research directions for future work are summarised as follows to end this thesis.

The main concentration is to extend the two models, Multi-Level Factorisation Net (MLFN) from

Chapter 4 and Stochastic Inference for Deep Clustering (SIDC) from Chapter 5.

MLFN is capable of automatically discovering and dynamically identifying the discrimina-

tive latent factors appeared in each visual input. Such learned latent factors can be treated as
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latent attributes. MLFN also provides a compact feature to encode such factors from all lev-

els. Therefore, a comprehensive latent attribute representation is acquired. Comparing with the

manually annotated attributes, the latent attribute representation from MLFN can be obtained at

a low price since the training and inference of MLFN require no attribute label. Moreover, the

manually labelled attributes are biased to the describable visual factors while the MLFN latent

attribute representation encodes the discriminative characteristics from multiple levels. They can

be complementary to each other. Therefore, the MLFN latent attribute representation can be used

as an alternative or a complement to the expensive attribute labels for a wide range of computer

vision tasks such as zero-shot learning (Lampert et al, 2013; Romera-Paredes and Torr, 2015)

and semantic human parsing (Takagi et al, 2017; Xiao Wang, 2019).

SIDC is an effective model for UDA multi-view learning problems based on a simple and

straightforward clustering assumption on the unlabelled multi-view dataset. Two lines of exten-

sion work can be considered. One is to concern the more challenging unsupervised multi-view

learning setting with an unlabelled multi-view dataset only, e.g., unsupervised person Re-ID (Li

et al, 2018a). SIDC is also applicable to these problems since its clustering assumption is still

reasonable under the new setting. However, without the supervision from the source domain,

the more advanced deep clustering models are thus required to compensate. To this end, the

other concern is to develop the SIDC further. One limitation of SIDC is the number of clusters

k is manually set and fixed for training. Setting an appropriate k is crucial to the model perfor-

mance. Inspired by the DBSCAN (Ester et al, 1996), different clusters can be decided based on

the sample distribution density in a non-parametric way. The cluster number k is an outcome

of DBSCAN and no need to be set beforehand. Therefore, combining SIDC with the idea of

density-based clustering can potentially overcome such limitation.
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