477 research outputs found

    Comprehensive Brain Tumour Characterisation with VERDICT-MRI: Evaluation of Cellular and Vascular Measures Validated by Histology

    Get PDF
    The aim of this work was to extend the VERDICT-MRI framework for modelling brain tumours, enabling comprehensive characterisation of both intra- and peritumoural areas with a particular focus on cellular and vascular features. Diffusion MRI data were acquired with multiple b-values (ranging from 50 to 3500 s/mm2), diffusion times, and echo times in 21 patients with brain tumours of different types and with a wide range of cellular and vascular features. We fitted a selection of diffusion models that resulted from the combination of different types of intracellular, extracellular, and vascular compartments to the signal. We compared the models using criteria for parsimony while aiming at good characterisation of all of the key histological brain tumour components. Finally, we evaluated the parameters of the best-performing model in the differentiation of tumour histotypes, using ADC (Apparent Diffusion Coefficient) as a clinical standard reference, and compared them to histopathology and relevant perfusion MRI metrics. The best-performing model for VERDICT in brain tumours was a three-compartment model accounting for anisotropically hindered and isotropically restricted diffusion and isotropic pseudo-diffusion. VERDICT metrics were compatible with the histological appearance of low-grade gliomas and metastases and reflected differences found by histopathology between multiple biopsy samples within tumours. The comparison between histotypes showed that both the intracellular and vascular fractions tended to be higher in tumours with high cellularity (glioblastoma and metastasis), and quantitative analysis showed a trend toward higher values of the intracellular fraction (fic) within the tumour core with increasing glioma grade. We also observed a trend towards a higher free water fraction in vasogenic oedemas around metastases compared to infiltrative oedemas around glioblastomas and WHO 3 gliomas as well as the periphery of low-grade gliomas. In conclusion, we developed and evaluated a multi-compartment diffusion MRI model for brain tumours based on the VERDICT framework, which showed agreement between non-invasive microstructural estimates and histology and encouraging trends for the differentiation of tumour types and sub-regions

    Current State-of-the-Art of AI Methods Applied to MRI

    Get PDF
    Di Noia, C., Grist, J. T., Riemer, F., Lyasheva, M., Fabozzi, M., Castelli, M., Lodi, R., Tonon, C., Rundo, L., & Zaccagna, F. (2022). Predicting Survival in Patients with Brain Tumors: Current State-of-the-Art of AI Methods Applied to MRI. Diagnostics, 12(9), 1-16. [2125]. https://doi.org/10.3390/diagnostics12092125Given growing clinical needs, in recent years Artificial Intelligence (AI) techniques have increasingly been used to define the best approaches for survival assessment and prediction in patients with brain tumors. Advances in computational resources, and the collection of (mainly) public databases, have promoted this rapid development. This narrative review of the current state-of-the-art aimed to survey current applications of AI in predicting survival in patients with brain tumors, with a focus on Magnetic Resonance Imaging (MRI). An extensive search was performed on PubMed and Google Scholar using a Boolean research query based on MeSH terms and restricting the search to the period between 2012 and 2022. Fifty studies were selected, mainly based on Machine Learning (ML), Deep Learning (DL), radiomics-based methods, and methods that exploit traditional imaging techniques for survival assessment. In addition, we focused on two distinct tasks related to survival assessment: the first on the classification of subjects into survival classes (short and long-term or eventually short, mid and long-term) to stratify patients in distinct groups. The second focused on quantification, in days or months, of the individual survival interval. Our survey showed excellent state-of-the-art methods for the first, with accuracy up to ∼98%. The latter task appears to be the most challenging, but state-of-the-art techniques showed promising results, albeit with limitations, with C-Index up to ∼0.91. In conclusion, according to the specific task, the available computational methods perform differently, and the choice of the best one to use is non-univocal and dependent on many aspects. Unequivocally, the use of features derived from quantitative imaging has been shown to be advantageous for AI applications, including survival prediction. This evidence from the literature motivates further research in the field of AI-powered methods for survival prediction in patients with brain tumors, in particular, using the wealth of information provided by quantitative MRI techniques.publishersversionpublishe

    Quantitative Magnetic Resonance Imaging of Tissue Microvasculature and Microstructure in Selected Clinical Applications

    Get PDF
    This thesis is based on four papers and aims to establish perfusion and diffusion measurements with magnetic resonance imaging (MRI) in selected clinical applications. While structural imaging provides invaluable geometric and anatomical information, new disease relevant information can be obtained from measures of physiological processes inferred from advanced modelling. This study is motivated by clinical questions pertaining to diagnosis and treatment effects in particular patient groups where inflammatory processes are involved in the disease. Paper 1 investigates acquisition parameters in dynamic contrast enhanced (DCE)-MRI of the temporomandibular joint (TMJ) with possible involvement of juvenile idiopathic arthritis. High level elastic motion correction should be applied to DCE data from the TMJ, and the DCE data should be acquired with a sample rate of at least 4 s. Paper 2 investigates choices of arterial input functions (AIFs) in dynamic susceptibility contrast (DSC)-MRI in brain metastases. AIF shapes differed across patients. Relative cerebral blood volume estimates differentiated better between perfusion in white matter and grey matter when scan-specific AIFs were used than when patient-specific AIFs and population-based AIFs were used. Paper 3 investigates DSC-MRI perfusion parameters in relation to outcome after stereotactic radiosurgery (SRS) in brain metastases. Low perfusion prior to SRS may be related to unfavourable outcome. Paper 4 applies free water (FW) corrected diffusion MRI to characterise glioma. Fractional anisotropy maps of the tumour region were significantly impacted by FW correction. The estimated FW maps may also contribute to a better description of the tumour. Although there are challenges related to post-processing of MRI data, it was shown that the advanced MRI methods applied can add to a more accurate description of the TMJ and of brain lesions.Doktorgradsavhandlin

    An Artificial Intelligence Approach to Tumor Volume Delineation

    Get PDF
    Postponed access: the file will be accessible after 2023-11-14Masteroppgave for radiograf/bioingeniørRABD395MAMD-HELS

    Artificial Intelligence in the Radiomic Analysis of Glioblastomas: A Review, Taxonomy, and Perspective

    Get PDF
    Radiological imaging techniques, including magnetic resonance imaging (MRI) and positron emission tomography (PET), are the standard-of-care non-invasive diagnostic approaches widely applied in neuro-oncology. Unfortunately, accurate interpretation of radiological imaging data is constantly challenged by the indistinguishable radiological image features shared by different pathological changes associated with tumor progression and/or various therapeutic interventions. In recent years, machine learning (ML)-based artificial intelligence (AI) technology has been widely applied in medical image processing and bioinformatics due to its advantages in implicit image feature extraction and integrative data analysis. Despite its recent rapid development, ML technology still faces many hurdles for its broader applications in neuro-oncological radiomic analysis, such as lack of large accessible standardized real patient radiomic brain tumor data of all kinds and reliable predictions on tumor response upon various treatments. Therefore, understanding ML-based AI technologies is critically important to help us address the skyrocketing demands of neuro-oncology clinical deployments. Here, we provide an overview on the latest advancements in ML techniques for brain tumor radiomic analysis, emphasizing proprietary and public dataset preparation and state-of-the-art ML models for brain tumor diagnosis, classifications (e.g., primary and secondary tumors), discriminations between treatment effects (pseudoprogression, radiation necrosis) and true progression, survival prediction, inflammation, and identification of brain tumor biomarkers. We also compare the key features of ML models in the realm of neuroradiology with ML models employed in other medical imaging fields and discuss open research challenges and directions for future work in this nascent precision medicine area

    Artificial Intelligence in the Radiomic Analysis of Glioblastomas: A Review, Taxonomy, and Perspective

    Get PDF
    Radiological imaging techniques, including magnetic resonance imaging (MRI) and positron emission tomography (PET), are the standard-of-care non-invasive diagnostic approaches widely applied in neuro-oncology. Unfortunately, accurate interpretation of radiological imaging data is constantly challenged by the indistinguishable radiological image features shared by different pathological changes associated with tumor progression and/or various therapeutic interventions. In recent years, machine learning (ML)-based artificial intelligence (AI) technology has been widely applied in medical image processing and bioinformatics due to its advantages in implicit image feature extraction and integrative data analysis. Despite its recent rapid development, ML technology still faces many hurdles for its broader applications in neuro-oncological radiomic analysis, such as lack of large accessible standardized real patient radiomic brain tumor data of all kinds and reliable predictions on tumor response upon various treatments. Therefore, understanding ML-based AI technologies is critically important to help us address the skyrocketing demands of neuro-oncology clinical deployments. Here, we provide an overview on the latest advancements in ML techniques for brain tumor radiomic analysis, emphasizing proprietary and public dataset preparation and state-of-the-art ML models for brain tumor diagnosis, classifications (e.g., primary and secondary tumors), discriminations between treatment effects (pseudoprogression, radiation necrosis) and true progression, survival prediction, inflammation, and identification of brain tumor biomarkers. We also compare the key features of ML models in the realm of neuroradiology with ML models employed in other medical imaging fields and discuss open research challenges and directions for future work in this nascent precision medicine area

    Applications of Deep Learning to Differential Equation Models in Oncology

    Get PDF
    The integration of quantitative tools in biology and medicine has led to many groundbreaking advances in recent history, with many more promising discoveries on the horizon. Conventional mathematical models, particularly differential equation-based models, have had great success in various biological applications, including modelling bacterial growth, disease propagation, and tumour spread. However, these approaches can be somewhat limited due to their reliance on known parameter values, initial conditions, and boundary conditions, which can dull their applicability. Furthermore, their forms are directly tied to mechanistic phenomena, making these models highly explainable, but also requiring a comprehensive understanding of the underlying dynamics before modelling the system. On the other hand, machine learning models typically require less prior knowledge of the system but require a significant amount of data for training. Although machine learning models can be more flexible, they tend to be black boxes, making them difficult to interpret. Hybrid models, which combine conventional and machine learning approaches, have the potential to achieve the best of both worlds. These models can provide explainable outcomes while relying on minimal assumptions or data. An example of this is physics-informed neural networks, a novel deep learning approach that incorporates information from partial differential equations into the optimization of a neural network. This hybrid approach offers significant potential in various contexts where differential equation models are known, but data is scarce or challenging to work with. Precision oncology is one such field. This thesis employs hybrid conventional/machine learning models to address problems in cancer medicine, specifically aiming to advance personalized medicine approaches. It contains three projects. In the first, a hybrid approach is used to make patient-specific characterizations of brain tumours using medical imaging data. In the second project, a hybrid approach is employed to create subject-specific projections of drug-carrying cancer nanoparticle accumulation and intratumoral interstitial fluid pressure. In the final project, a hybrid approach is utilized to optimize radiation therapy scheduling for tumours with heterogeneous cell populations and cancer stem cells. Overall, this thesis showcases several examples of how quantitative tools, particularly those involving both conventional and machine learning approaches, can be employed to tackle challenges in oncology. It further supports the notion that the continued integration of quantitative tools in medicine is a key strategy in addressing problems and open questions in healthcare

    Mri-Based Radiomics in Breast Cancer:Optimization and Prediction

    Get PDF

    Tumor heterogeneity in glioblastoma:a real-life brain teaser

    Get PDF
    corecore