24,887 research outputs found

    Deep Learning in Cardiology

    Full text link
    The medical field is creating large amount of data that physicians are unable to decipher and use efficiently. Moreover, rule-based expert systems are inefficient in solving complicated medical tasks or for creating insights using big data. Deep learning has emerged as a more accurate and effective technology in a wide range of medical problems such as diagnosis, prediction and intervention. Deep learning is a representation learning method that consists of layers that transform the data non-linearly, thus, revealing hierarchical relationships and structures. In this review we survey deep learning application papers that use structured data, signal and imaging modalities from cardiology. We discuss the advantages and limitations of applying deep learning in cardiology that also apply in medicine in general, while proposing certain directions as the most viable for clinical use.Comment: 27 pages, 2 figures, 10 table

    Fast and accurate classification of echocardiograms using deep learning

    Get PDF
    Echocardiography is essential to modern cardiology. However, human interpretation limits high throughput analysis, limiting echocardiography from reaching its full clinical and research potential for precision medicine. Deep learning is a cutting-edge machine-learning technique that has been useful in analyzing medical images but has not yet been widely applied to echocardiography, partly due to the complexity of echocardiograms' multi view, multi modality format. The essential first step toward comprehensive computer assisted echocardiographic interpretation is determining whether computers can learn to recognize standard views. To this end, we anonymized 834,267 transthoracic echocardiogram (TTE) images from 267 patients (20 to 96 years, 51 percent female, 26 percent obese) seen between 2000 and 2017 and labeled them according to standard views. Images covered a range of real world clinical variation. We built a multilayer convolutional neural network and used supervised learning to simultaneously classify 15 standard views. Eighty percent of data used was randomly chosen for training and 20 percent reserved for validation and testing on never seen echocardiograms. Using multiple images from each clip, the model classified among 12 video views with 97.8 percent overall test accuracy without overfitting. Even on single low resolution images, test accuracy among 15 views was 91.7 percent versus 70.2 to 83.5 percent for board-certified echocardiographers. Confusional matrices, occlusion experiments, and saliency mapping showed that the model finds recognizable similarities among related views and classifies using clinically relevant image features. In conclusion, deep neural networks can classify essential echocardiographic views simultaneously and with high accuracy. Our results provide a foundation for more complex deep learning assisted echocardiographic interpretation.Comment: 31 pages, 8 figure

    Future of cardiovascular diagnosis with the support of artificial intelligence

    Get PDF
    Introduction: Term Artificial inteligence was used for the first time by John McCarthy in 1956, from that time we can observe its great development, espiecially in the past decade.  Nowadays, Artificial inteligence present a great influence in every aspect of human life, also health care. In times of digitalizaton, great data bases it can enable an improvment in all aspects of healthcare system such as prevention, screening and treatment of diseases. Purpose:The main purpose of the work was to present the basic aspects related to artificial intelligence. Another important aspect of the article was to indicate the possibilities related to their use in cardiology to improve the effectiveness of doctors and make medical treatment more detailed and personalized, but also to clarify terms related do AI, such as machine learning or deep learning. Materials and methods: For the purpose of writing this article, the available literature was reviewed. Using keywords such as artificial inteligence, cardiology, machine learning, echocardiography, deep learning, data bases PubMed we ware searching for various clinical trials, meta analysis and randomized controlled trials from past 5 years. Results: According to the data published on the website of the World Health Organization (WHO), cardiovascular diseases remain the main cause of mortality worldwide.  It is the reason of the great interest in its use in cardiology. Algorithms based on artificial intelligence are also used in electrocardiography. The use of artificial intelligence can improve the estimation of cardiovascular risk. Its use in the healing process is also being investigated.  Conclusion: Artificial intelligence is used in many fields, including medicine. Its use may have a positive impact on the quality of medical care. Artificial intelligence also has numerous limitations. Due to this, it is necessary to develop and improve artificial intelligence

    Enabling automated device size selection for transcatheter aortic valve implantation

    Get PDF
    The number of transcatheter aortic valve implantation (TAVI) procedures is expected to increase significantly in the coming years. Improving efficiency will become essential for experienced operators performing large TAVI volumes, while new operators will require training and may benefit from accurate support. In this work, we present a fast deep learning method that can predict aortic annulus perimeter and area automatically from aortic annular plane images. We propose a method combining two deep convolutional neural networks followed by a postprocessing step. The models were trained with 355 patients using modern deep learning techniques, and the method was evaluated on another 118 patients. The method was validated against an interoperator variability study of the same 118 patients. The differences between the manually obtained aortic annulus measurements and the automatic predictions were similar to the differences between two independent observers (paired diff. of 3.3 +/- 16.8 mm(2) vs. 1.3 +/- 21.1 mm(2) for the area and a paired diff. of 0.6 +/- 1.7 mm vs. 0.2 +/- 2.5 mm for the perimeter). The area and perimeter were used to retrieve the suggested prosthesis sizes for the Edwards Sapien 3 and the Medtronic Evolut device retrospectively. The automatically obtained device size selections accorded well with the device sizes selected by operator 1. The total analysis time from aortic annular plane to prosthesis size was below one second. This study showed that automated TAVI device size selection using the proposed method is fast, accurate, and reproducible. Comparison with the interobserver variability has shown the reliability of the strategy, and embedding this tool based on deep learning in the preoperative planning routine has the potential to increase the efficiency while ensuring accuracy
    corecore