6 research outputs found

    A Real-Time Ball Detection Approach Using Convolutional Neural Networks

    Get PDF
    Ball detection is one of the most important tasks in the context of soccer-playing robots. The ball is a small moving object which can be blurred and occluded in many situations. Several neural network based methods with different architectures are proposed to deal with the ball detection. However, they are either neglecting to consider the computationally low resources of humanoid robots or highly depend on manually-tuned heuristic methods to extract the ball candidates. In this paper, we propose a new ball detection method for low-cost humanoid robots that can detect most soccer balls with a high accuracy rate of up to 97.17%. The proposed method is divided into two steps. First, some coarse regions that may contain a full ball are extracted using an iterative method employing an efficient integral image based feature. Then they are fed to a light-weight convolutional neural network to finalize the bounding box of a ball. We have evaluated the proposed approach using a comprehensive dataset and the experimental results show the efficiency of our method

    Automated methods for tuberculosis detection/diagnosis : a literature review

    Get PDF
    Funding: Welcome Trust Institutional Strategic Support fund of the University of St Andrews, grant code 204821/Z/16/Z.Tuberculosis (TB) is one of the leading infectious causes of death worldwide. The effective management and public health control of this disease depends on early detection and careful treatment monitoring. For many years, the microscopy-based analysis of sputum smears has been the most common method to detect and quantify Mycobacterium tuberculosis (Mtb) bacteria. Nonetheless, this form of analysis is a challenging procedure since sputum examination can only be reliably performed by trained personnel with rigorous quality control systems in place. Additionally, it is affected by subjective judgement. Furthermore, although fluorescence-based sample staining methods have made the procedure easier in recent years, the microscopic examination of sputum is a time-consuming operation. Over the past two decades, attempts have been made to automate this practice. Most approaches have focused on establishing an automated method of diagnosis, while others have centred on measuring the bacterial load or detecting and localising Mtb cells for further research on the phenotypic characteristics of their morphology. The literature has incorporated machine learning (ML) and computer vision approaches as part of the methodology to achieve these goals. In this review, we first gathered publicly available TB sputum smear microscopy image sets and analysed the disparities in these datasets. Thereafter, we analysed the most common evaluation metrics used to assess the efficacy of each method in its particular field. Finally, we generated comprehensive summaries of prior work on ML and deep learning (DL) methods for automated TB detection, including a review of their limitations.Publisher PDFPeer reviewe

    Deep Learning for Semantic Segmentation on Minimal Hardware

    Get PDF
    © Springer Nature Switzerland AG 2019Deep learning has revolutionised many fields, but it is still challenging to transfer its success to small mobile robots with minimal hardware. Specifically, some work has been done to this effect in the RoboCup humanoid football domain, but results that are performant and efficient and still generally applicable outside of this domain are lacking. We propose an approach conceptually different from those taken previously. It is based on semantic segmentation and does achieve these desired properties. In detail, it is being able to process full VGA images in real-time on a low-power mobile processor. It can further handle multiple image dimensions without retraining, it does not require specific domain knowledge to achieve a high frame rate and it is applicable on a minimal mobile hardware
    corecore