50 research outputs found

    Text segmentation with character-level text embeddings

    Get PDF
    Learning word representations has recently seen much success in computational linguistics. However, assuming sequences of word tokens as input to linguistic analysis is often unjustified. For many languages word segmentation is a non-trivial task and naturally occurring text is sometimes a mixture of natural language strings and other character data. We propose to learn text representations directly from raw character sequences by training a Simple recurrent Network to predict the next character in text. The network uses its hidden layer to evolve abstract representations of the character sequences it sees. To demonstrate the usefulness of the learned text embeddings, we use them as features in a supervised character level text segmentation and labeling task: recognizing spans of text containing programming language code. By using the embeddings as features we are able to substantially improve over a baseline which uses only surface character n-grams.Comment: Workshop on Deep Learning for Audio, Speech and Language Processing, ICML 201

    The Expressive Power of Word Embeddings

    Full text link
    We seek to better understand the difference in quality of the several publicly released embeddings. We propose several tasks that help to distinguish the characteristics of different embeddings. Our evaluation of sentiment polarity and synonym/antonym relations shows that embeddings are able to capture surprisingly nuanced semantics even in the absence of sentence structure. Moreover, benchmarking the embeddings shows great variance in quality and characteristics of the semantics captured by the tested embeddings. Finally, we show the impact of varying the number of dimensions and the resolution of each dimension on the effective useful features captured by the embedding space. Our contributions highlight the importance of embeddings for NLP tasks and the effect of their quality on the final results.Comment: submitted to ICML 2013, Deep Learning for Audio, Speech and Language Processing Workshop. 8 pages, 8 figure

    Boosting Named Entity Recognition with Neural Character Embeddings

    Full text link
    Most state-of-the-art named entity recognition (NER) systems rely on handcrafted features and on the output of other NLP tasks such as part-of-speech (POS) tagging and text chunking. In this work we propose a language-independent NER system that uses automatically learned features only. Our approach is based on the CharWNN deep neural network, which uses word-level and character-level representations (embeddings) to perform sequential classification. We perform an extensive number of experiments using two annotated corpora in two different languages: HAREM I corpus, which contains texts in Portuguese; and the SPA CoNLL-2002 corpus, which contains texts in Spanish. Our experimental results shade light on the contribution of neural character embeddings for NER. Moreover, we demonstrate that the same neural network which has been successfully applied to POS tagging can also achieve state-of-the-art results for language-independet NER, using the same hyperparameters, and without any handcrafted features. For the HAREM I corpus, CharWNN outperforms the state-of-the-art system by 7.9 points in the F1-score for the total scenario (ten NE classes), and by 7.2 points in the F1 for the selective scenario (five NE classes).Comment: 9 page

    NILC_USP: aspect extraction using semantic labels

    Get PDF
    This paper details the system NILC USP that participated in the Semeval 2014: Aspect Based Sentiment Analysis task. This system uses a Conditional Random Field (CRF) algorithm for extracting the aspects mentioned in the text. Our work added semantic labels into a basic feature set for measuring the efficiency of those for aspect extraction. We used the semantic roles and the highest verb frame as features for the machine learning. Overall, our results demonstrated that the system could not improve with the use of this semantic information, but its precision was increased.FAPES

    Polyglot: Distributed Word Representations for Multilingual NLP

    Full text link
    Distributed word representations (word embeddings) have recently contributed to competitive performance in language modeling and several NLP tasks. In this work, we train word embeddings for more than 100 languages using their corresponding Wikipedias. We quantitatively demonstrate the utility of our word embeddings by using them as the sole features for training a part of speech tagger for a subset of these languages. We find their performance to be competitive with near state-of-art methods in English, Danish and Swedish. Moreover, we investigate the semantic features captured by these embeddings through the proximity of word groupings. We will release these embeddings publicly to help researchers in the development and enhancement of multilingual applications.Comment: 10 pages, 2 figures, Proceedings of Conference on Computational Natural Language Learning CoNLL'201
    corecore