
  

 

 

Tilburg University

Text segmentation with character-level text embeddings

Chrupała, Grzegorz

Publication date:
2013

Document Version
Publisher's PDF, also known as Version of record

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Chrupała, G. (2013). Text segmentation with character-level text embeddings. Paper presented at Workshop on
Deep Learning for Audio, Speech and Language Processing, ICML 2013, Atlanta, United States.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. May. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tilburg University Repository

https://core.ac.uk/display/420824619?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://research.tilburguniversity.edu/en/publications/371727ab-8c89-4b2a-928c-80d9d6f16ff6


Text segmentation with character-level text embeddings

Grzegorz Chrupa la g.chrupala@uvt.nl

Tilburg Center for Cognition and Communication, Tilburg University, 5000 LE Tilburg, The Netherlands

Abstract

Learning word representations has recently
seen much success in computational linguis-
tics. However, assuming sequences of word
tokens as input to linguistic analysis is of-
ten unjustified. For many languages word
segmentation is a non-trivial task and natu-
rally occurring text is sometimes a mixture of
natural language strings and other character
data. We propose to learn text representa-
tions directly from raw character sequences
by training a Simple Recurrent Network to
predict the next character in text. The net-
work uses its hidden layer to evolve abstract
representations of the character sequences it
sees. To demonstrate the usefulness of the
learned text embeddings, we use them as
features in a supervised character level text
segmentation and labeling task: recognizing
spans of text containing programming lan-
guage code. By using the embeddings as fea-
tures we are able to substantially improve
over a baseline which uses only surface char-
acter n-grams.

1. Introduction

The majority of representations of text used in com-
putational linguistics are based on words as the small-
est units. Automatically induced word representations
such as distributional word classes or distributed low-
dimensional word embeddings have recently seen much
attention and have been successfully used to provide
generalization over surface word forms (Collobert &
Weston, 2008; Turian et al., 2010; Chrupa la, 2011; Col-
lobert et al., 2011; Socher et al., 2012; Chen et al.,
2013).

In some cases, however, words may be not the most
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appropriate atomic unit to assume as input to linguis-
tic analysis. In polysynthetic and agglutinative lan-
guages orthographic words are typically too large as a
basic unit, as they often correspond to whole English
phrases or sentences. Even in languages where the
word is approximately the right level of granularity we
often encounter text which is a mixture of natural lan-
guage strings and other character data. One example
is the type of text used for the experiments in this
paper: posts on a question-answering forum, written
in English, with segments of programming language
example code embedded within the text.

In order to address this issue we propose to induce text
representations directly from raw character strings.
This sidesteps the issue of what counts as a word and
whether orthographic words are the right level of gran-
ularity. At the same time, we can elegantly deal with
character data which contains a mixture of languages,
or domains, with differing characteristics. In our par-
ticular data, it would not be feasible to use words as
the basic units. In order to split text from this domain
into words, we first need to segment it into fragments
consisting of natural language versus fragments con-
sisting of programming code snippets, since different
tokenization rules apply to each type of segment.

Our representations correspond to the activation of
the hidden layer in a simple recurrent neural network
(SRN) (Elman, 1990; 1991). The network is sequen-
tially presented with raw text and learns to predict
the next character in the sequence. It uses the units
in the hidden layer to store a generalized representa-
tion of the recent history. After training the network
on large amounts on unlabeled text, we can run it on
unseen character sequences, record the activation of
the hidden layer and use it as a representation which
generalizes over text strings.

We test these representations on a character-level se-
quence labeling task. We collected a large number
of posts to a programming question-answering forum
which consist of English text with embedded code sam-
ples. Most of these code segments are delimited with
HTML tags and we use this markup to derive labels for
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supervised learning. As a baseline we train a Condi-
tional Random Field model with character n-gram fea-
tures We then compare to it the same baseline model
enriched with features derived from the learned SRN
text representations. We show that the generalization
provided by the additional features substantially im-
proves performance: adding these features has similar
effect to quadrupling the amount of training data given
to the baseline model.

2. Simple Recurrent Networks

Text-representations based on recurrent networks will
be discussed in full detail elsewhere. Here we provide
a compact overview of the aspects most relevant to the
text segmentation task.

Simple recurrent neural networks (SRNs) were first in-
troduced by Elman (1990; 1991). The units in the hid-
den layer at time t receive incoming connections from
the input units at time t and also from the hidden
units at the previous time step t−1. The hidden layer
then predicts the state of the output units at the next
time step t + 1. The weights at each time step are
shared. The recurrent connections endow the network
with memory which allows it to store a representation
of the history of the inputs received in the past.

We denote the input layer as w, the hidden layer as s
and the output layer as y. All these layers are indexed
by the time parameter t: the input vector to the net-
work at time t is w(t), the state of the hidden layer is
s(t) and the output vector is y(t).

The input vector w(t) represents the input element at
current time step, in our case the current character.
The output vector y(t) represents the predicted prob-
abilities for the next character in the sequence.

The activation of a hidden unit is a function of the
current input and the state of the hidden layer at the
previous time step: t− 1:

sj(t) = f

(
I∑

i=1

wi(t)Uji +

J∑
l=1

sj(t− 1)Wjl

)
(1)

where f is the sigmoid function:

f(a) =
1

1 + exp(−a)
, (2)

and Uji is the weight between input component i and
hidden unit j, while Wjl is the weight between hidden
unit l and hidden unit j.

The components of the output vector are defined as:

yk(t) = g

 J∑
j=1

sj(t)Vkj

 , (3)

where g is the softmax function over the output com-
ponents:

g(z) =
exp(z)∑
z′ exp(z′)

, (4)

and Vkj is the weight between hidden unit j and output
unit k.

SRN weights can be trained using backpropagation
through time (BPTT) (Rumelhart et al., 1986). With
BPTT a recurrent network with n time steps is treated
as a feedforward network with n hidden layers with
weights shared at each level, and trained with stan-
dard backpropagation.

BPTT is known to be prone to problems with ex-
ploding or vanishing gradients. However, as shown by
(Mikolov et al., 2010), for time-dependencies of mod-
erate length they are competitive when applied to lan-
guage modeling. Word-level SRN language models are
state of the art, especially when used in combination
with n-grams.

Our interest here, however, lies not so much in us-
ing SRNs for language modeling per se, but rather in
exploiting the representation that the SRN develops
while learning to model language. Since it does not
have the capacity to store explicit history statistics
like an n-gram model, it is forced to generalize over
histories. As we shall see, the ability to create such
generalizations has uses which go beyond predicting
the next character in a string.

3. Recognizing and labeling code
segments

We argued in the Section 1 that there are often cases
where using words as the minimum units of analysis is
undesirable or inapplicable. Here we focus on one such
scenario. Documents such as emails in a software de-
velopment team or bug reports in an issue tracker are
typically mostly written in a natural language (e.g.
English) but have also embedded within them frag-
ments of programming source code, as well as other
miscellaneous non-linguistic character data such as er-
ror messages, stack traces or program output. Fre-
quently these documents are stored in a plain text for-
mat, and the boundaries between these different text
segment, while evident to a human, are not explicitly
indicated. When processing such documents it would
be useful to be able to preprocess them and recognize
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Java - Convert String to enum

up vote319down votefavorite

60

Say I have an enum which is just
public enum Blah {
  A, B , C, D
}
and I would like to find the enum value of a string 
of for example "A" which would be Blah.A. How 
would it be possible to do this?
Is the Enum.ValueOf() the method I need? If 
so, how would I use this?
java enums

Figure 1. Example Stackoverflow post.
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Figure 2. Example sequence labeling derived from the ex-
ample Stackoverflow post.

and label non-linguistic segments as such. We develop
such a labeler by training it on a large set of documents
where segments are explicitly marked up.

We collected questions posted to Stackoverflow.com
between February and Jun 2011. Stackoverflow is not a
pure forum: it also incorporates features of a wiki, such
that posted questions can be edited by other users and
formating, clarity and other issues can be improved.
This results in a dataset where code blocks are quite
reliably marked as such via HTML tags. Short inline
code fragments are also often marked up but much less
reliably.

Figure 1 shows an example post to the Stackoverflow
forum: it has one block code segment and two inline
segments.

We convert the marked-up text into labeled character
sequences using the BIO scheme, commonly used in
NLP sequence labeling tasks. We distinguishing be-
tween block and inline code segments. Labels starting
with B- indicate the beginning of a segment, while
the ones staring with I- stand for continuation of seg-
ments. Figure 2 shows an example. Using such labeled

data we can create a basic labeler by training a stan-
dard linear chain Conditional Random Field (we use
the Wapiti implementation of Lavergne et al. (2010)).
Our main interest here lies in determining how much
text representations learned by SRNs from unlabeled
data can help the performance of such a labeler.

4. Experimental evaluation

We create the following disjoint subsets of data from
the Stackoverflow collection:

• 465 million characters unlabeled data set for
learning text representations (called large)1

• 10 million characters training set. We use this
data (with labels) to train the CRF model. We
use it also (without the labels) to learn an alterna-
tive model of text representations (called small)

• 2 million characters labeled development set for
tuning the CRF model

• 2 million characters labeled test set for the final
evaluation

4.1. Training SRNs

As our SRN implementation we use a customized ver-
sion of Mikolov et al. (2010)’s RNNLM toolkit. We
trained two separate SRN models, large on the full
465 million-character data set and small on the 10-
million-character data set. The segmentation labels
are not used for SRN training. Input character are rep-
resented as one-hot vectors. For both models we use
400 hidden units, and 10 steps of BPTT. We trained
the large model for 6 iterations (this took almost
2 CPU-months). The small model was trained un-
til convergence, which took 13 iterations (less than a
day).

In order to understand better the nature of the learned
text embeddings we performed the following analysis:
After training the large SRN model we run it in pre-
diction mode on the initial portion of the development
data. We record the activation of the hidden layer at
each position in the text as the network is making a
prediction at this position. We then sample positions
100 characters apart, and for each of them find the
four nearest neighbors in the initial 10000 characters

1We do have the automatically derived labels for this
dataset. We did not use them for two reasons: (i) the
prohibitive RAM requirements for a CRF with such a large
amount of training examples; (ii) more importantly, we
were interested in the much more common scenario where
only a limited amount of labeled data is available.

http://stackoverflow.com
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esetMetaData();¶ };¶¶ func
gFucntions(); ¶ };¶¶ func
dlerToTabs();¶ }; ¶¶ func
} ¶ }; ¶¶ func

metaConstruct;¶¶ func

n-laptop": {"last_share": 130738
ierre-pc": {"last_share": 130744
d-laptop": {"last_share": 130744
laptop": {"last_share": 13074434
erre-pc": {"last_share": 1307441

data table has integer values a
,2,3,4,5. For all these values I
ere i can add more connections s
eating lots of private methods a
or more different data sources c

e given URL.I’d like to change t
e = SqlPersist¶¶¶When I remove t
sources explaining how to save f
basic knowledge doesn’t enable m
eDirectory, but I need to save t

Figure 3. Examples of nearest neighbors as measured by
cosine between hidden layer activation vectors.

of the development data. We use cosine of the angle
between the hidden layer activation vectors as a simi-
larity metric. Figure 3 shows four examples from the
qualitative analysis of this data: the first row in each
example is the sampled position, the next four rows are
its nearest neighbors. The activation was recorded as
the network was predicting the last character in each
row.

We often find that the nearest neighbors simply share
the literal history: e.g. ¶¶ func in the first example.
However, the network is also capable of generalizing
over the surface form, as can be seen in the second
example, where the numerals in the string suffix vary.
The last two examples show an even higher level of
generalization. Here the surface forms of the strings
are different, but they are related semantically: they
all end with plural nouns and with transitive verbs
respectively.

4.2. Features

Baseline feature set We used simple character n-
gram features centered around the focus character for
our baseline labeler. Table 1 shows an example.

Augmented feature set The second feature set
is the baseline feature set augmented with features

Table 1. Features extracted from the character sequence
just¶public while focused on the character ’p’.

Unigram t ¶ p u b

Bigram ¶p pu

Trigram ¶pu
Fourgram t¶pu ¶pub
Fivegram t¶pub

Table 2. Results on the development set with baseline fea-
tures.

Label % Precision % Recall % F1
block 88.96 87.91 88.43
inline 35.87 8.88 14.23
Overall 81.54 56.80 66.96

derived from the text representations learned by the
SRN. The representation corresponds to the activa-
tion of the hidden layer. After training the network,
we freeze the weights, and run it in prediction model
on the training and development/test data, and record
the activation of the hidden layer at each position in
the string as the network tries to predict the next char-
acter.

We convert the activation vector to the binary in-
dicator features required by our CRF toolkit as fol-
lows: for each of the K = 10 most active units out
of total J = 400 hidden units, we create features
(f(1) . . . f(K)) defined as:

f(k) =

{
1 if sj(k) > 0.5

0 otherwise
(5)

where j(k) returns the index of the kth most active
unit. We set K = 10 based on preliminary experiments
which indicated that increasing this value has little
effect on performance. This is due to the fact that in
the network only few hidden units are typically active,
with the large majority of activations close to zero.

4.3. Results

Table 2 shows the results on the development set for
the model trained with baseline features. The F1 score
is computed segment-wise: any mistake in detecting
segment boundaries correctly results in a penalty.

While the performance for block segments is reason-
able, for inline segments it is very low: especially as
measured by recall. Inspecting the data we determined
that inline segment marking in Stackoverflow posts is
very inconsistent. A proper evaluation of performance
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Figure 4. Block segment performance of baseline and aug-
mented feature sets on the development set.

on inline segments would thus require very labor in-
tensive manual correction of this type of label in our
dataset. We thus focus mostly on the performance
with the much more reliable block segment labeling in
the remainder of the paper.

In order to get a picture of the influence on the per-
formance of the number of both labeled and unlabeled
examples, we trained the CRF model while repeat-
edly doubling the amount of labeled training data: we
start with 12.5% of the full 10 million characters, and
continue with 25%, 50% and 100%. We used three fea-
ture sets: the baseline features set, as well as two aug-
mented feature sets, small and large, corresponding
to the SRN being trained on 10 million and 465 million
characters respectively.

Figure 4 shows the performance on the development
set of the labeler with each of these training sets and
feature sets.

As can be appreciated from the plot, both the aug-
mented feature sets boost performance to the degree
roughly corresponding to quadrupling the amount of
labeled training examples: i.e. using the augmented
feature set with 12.5% of the labeled training exam-
ples results in an F1 score approximately the same as
using the baseline feature set with 50% of the labeled
examples.

It is also interesting that the extra features coming
from the small SRN model do no worse than the ones

Table 3. Block segment performance on final test set with
three feature sets.

Model % Precision % Recall % F1
Baseline 85.62 87.29 86.45
Small 90.28 90.42 90.35
Large 90.75 91.15 90.95

from the large model. This seems to indicate the the
performance boost from the SRN features are largely
exclusively due to these features being more expressive
and not due to the extra unlabeled text that they were
derived from.

On one hand this is good news as it means that we can
gain a large boost in performance by training an SRN
on a moderate amount of data, and spending CPU-
months on processing huge datasets is not necessary.

On the other hand, however, we would like to get an
additional improvement from large datasets whenever
we can afford the additional CPU time. We were not
able to show this benefit for the data in this study.
Also in terms of the SRN language model quality as
evaluated on the development dataset, the much larger
amount of data did not show a substantial benefit:
model perplexity was 4.24 with the small model and
4.11 with the large model. This may be related to
temporal concept drift across the Stackoverflow posts
causing a divergence between the large dataset and the
development and test datasets. Clearly these issues
deserve to be examined more exhaustively in future.

Table 3 shows the performance on block-level segmen-
tation on the final test set when using the three feature
sets with 100% of the labeled training set. The pic-
ture is similar to what we saw when analyzing results
on development data. Here the SRN features from
large unlabeled data outperform the SRN features
from small data only slightly. Appendix A contains a
more complete set of evaluation results.

5. Related work

There is a growing body of research on using word
embeddings as features in NLP tasks. Collobert &
Weston (2008) and Collobert et al. (2011) use them
in a setting where a number of levels of linguistic an-
notation are learned jointly: part-of-speech tagging,
chunking, named-entity labeling and semantic role la-
beling. Collobert (2011) applies the same technique
to discriminative parsing. Turian et al. (2010) test
a number of word representations including embed-
dings produced by neural language models on syntactic
chunking and named entity recognition. Socher et al.
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(2011; 2012) recursively compose word embeddings to
produce distributed representations of phrases: these
in turn are tested on a number of tasks such as pre-
diction of phrase sentiment polarity or paraphrase de-
tection. Finally, Chen et al. (2013) compare a number
of word embedding types on a battery of NLP word
classifications tasks.

We are not aware of any work on character-level word
embeddings. Mikolov et al. (2012) investigate subword
level SRNs as language models, but do not discuss the
character of the learned text representations.

We also do now know of any work on learning to detect
and label code segments in raw text. However, (Bet-
tenburg et al., 2008) describe a system called infoZilla
which uses hand-written rules to extract source code
fragments, stack traces, patches and enumerations
from bug reports. In contrast, here we leverage the
Stackoverflow dataset to learn how to perform a simi-
lar task automatically.

6. Conclusion

In this study we created datasets and models for the
task of supervised learning to detect and label code
blocks in raw text. Another major contribution of
our research is to provide evidence that character-level
text embeddings are useful representations for segmen-
tation and labeling of raw text data. We also have
preliminary indications that these representations are
applicable in other similar tasks.

In this paper we have only scratched the surface and
there are many important issues that we are planning
to investigate in future work. Firstly, a version of re-
current networks with multiplicative connections was
introduced by Sutskever et al. (2011) and trained on
the text of Wikipedia. We would like to see how em-
beddings from that model perform.

Secondly, in the current paper we adopted a strictly
modular setup, where text representations are trained
purely on the character prediction task, and then used
as features in a separate supervised classification step.
This approach has the merit that the same text embed-
dings can be reused for multiple tasks. Nevertheless it
would also be interesting to investigate the behavior of
a joint model, which learns to predict characters and
their labels simultaneously.
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A. Appendix

Table 4. Evaluation results on the test set with full (10
million characters) training set and baseline featurset.

% Precision % Recall % F1
BLOCK 85.62 87.29 86.45
INLINE 36.60 10.24 16.00
Overall 78.22 57.01 65.95

Table 5. Evaluation results on the test set with full (10
million characters) training set and small featurset.

% Precision % Recall % F1
BLOCK 90.28 90.42 90.35
INLINE 34.95 11.34 17.12
Overall 80.69 59.34 68.38

Table 6. Evaluation results on the test set with full (10
million characters) training set and large featurset.

% Precision % Recall % F1
BLOCK 90.75 91.15 90.95
INLINE 35.62 11.58 17.47
Overall 81.20 59.87 68.92
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Figure 5. Block segment performance of baseline and aug-
mented feature sets on the test set.


