research

NILC_USP: aspect extraction using semantic labels

Abstract

This paper details the system NILC USP that participated in the Semeval 2014: Aspect Based Sentiment Analysis task. This system uses a Conditional Random Field (CRF) algorithm for extracting the aspects mentioned in the text. Our work added semantic labels into a basic feature set for measuring the efficiency of those for aspect extraction. We used the semantic roles and the highest verb frame as features for the machine learning. Overall, our results demonstrated that the system could not improve with the use of this semantic information, but its precision was increased.FAPES

    Similar works