10 research outputs found

    Π”Π΅Ρ„ΠΎΡ€ΠΌΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ прСобразования ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ ΠΈ ΠΈΡ… ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΈ Π°ΡƒΠ³ΠΌΠ΅Π½Ρ‚Π°Ρ†ΠΈΠΈ Π΄Π°Π½Π½Ρ‹Ρ… для обучСния Π³Π»ΡƒΠ±ΠΎΠΊΠΈΡ… Π½Π΅ΠΉΡ€ΠΎΠ½Π½Ρ‹Ρ… сСтСй

    Get PDF
    The paper focuses on the improvement of the quality of learning for deep neural networks for a small data set in a classification task. One of the possible approaches to improve the quality of learning is researched which is based on the use of data augmentation (artificial reproduction of the data set) by image warping. The presented mathematical model and fast algorithm for warping make it possible to transform the original image while preserving its structural basis. The proposed algorithm is used to augment image data sets containing a small number of training samples. The augmentation consists of two stages including horizontal mirroring and warping of each of the samples. The effectiveness of such augmentation is tested through the training of neural networks of various types: convolutional neural networks (CNN) of a standard architecture and deep residual networks (DRN). A specific feature of the implemented approach for the solution of the problem under consideration consists in the refusal to use pre-trained neural networks with a large number of layers as well as further transfer learning, since their application incurs costs in terms of the computational resources. The paper shows that the efficiency of image classification when implementing the proposed method of augmenting training data on small and medium-sized data sets increases to statistically significant values of the metric used.ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½Ρ‹ исслСдования возмоТностСй Π°ΡƒΠ³ΠΌΠ΅Π½Ρ‚Π°Ρ†ΠΈΠΈ (искусствСнного размноТСния) ΠΎΠ±ΡƒΡ‡Π°ΡŽΡ‰ΠΈΡ… Π΄Π°Π½Π½Ρ‹Ρ… Π² Π·Π°Π΄Π°Ρ‡Π΅ классификации с использованиСм Π΄Π΅Ρ„ΠΎΡ€ΠΌΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ ΠΎΠ±Ρ€Π°Π±Π°Ρ‚Ρ‹Π²Π°Π΅ΠΌΡ‹Ρ… ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ. ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½Ρ‹ матСматичСская модСль ΠΈ Π±Ρ‹ΡΡ‚Ρ€ΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠΉ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ выполнСния Π΄Π΅Ρ„ΠΎΡ€ΠΌΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ прСобразования изобраТСния, ΠΏΡ€ΠΈ использовании ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… исходноС ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ прСобразуСтся с сохранСниСм своСй структурной основы ΠΈ отсутствиСм ΠΊΡ€Π°Π΅Π²Ρ‹Ρ… эффСктов. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½Ρ‹ΠΉ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ для Π°ΡƒΠ³ΠΌΠ΅Π½Ρ‚Π°Ρ†ΠΈΠΈ Π½Π°Π±ΠΎΡ€ΠΎΠ² ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ Π² Π·Π°Π΄Π°Ρ‡Π΅ классификации, содСрТащих ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ нСбольшоС количСство ΠΎΠ±ΡƒΡ‡Π°ΡŽΡ‰ΠΈΡ… ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠ². АугмСнтация исходной Π²Ρ‹Π±ΠΎΡ€ΠΊΠΈ осущСствляСтся Π² Π΄Π²Π° этапа, Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‰ΠΈΡ… Π·Π΅Ρ€ΠΊΠ°Π»ΡŒΠ½ΠΎΠ΅ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΠΈ Π΄Π΅Ρ„ΠΎΡ€ΠΌΠΈΡ€ΡƒΡŽΡ‰Π΅Π΅ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ исходного изобраТСния. Для ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΊΠΈ эффСктивности ΠΏΠΎΠ΄ΠΎΠ±Π½ΠΎΠΉ Ρ‚Π΅Ρ…Π½ΠΈΠΊΠΈ Π°ΡƒΠ³ΠΌΠ΅Π½Ρ‚Π°Ρ†ΠΈΠΈ Π² ΡΡ‚Π°Ρ‚ΡŒΠ΅ проводится ΠΎΠ±ΡƒΡ‡Π΅Π½ΠΈΠ΅ Π½Π΅ΠΉΡ€ΠΎΠ½Π½Ρ‹Ρ… сСтСй – классификаторов Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠ³ΠΎ Π²ΠΈΠ΄Π°: свСрточных сСтСй стандартной Π°Ρ€Ρ…ΠΈΡ‚Π΅ΠΊΡ‚ΡƒΡ€Ρ‹ (convolutional neural network, CNN) ΠΈ сСтСй с остаточными связями (deep residual network, DRN). ΠžΡΠΎΠ±Π΅Π½Π½ΠΎΡΡ‚ΡŒΡŽ Ρ€Π΅Π°Π»ΠΈΠ·ΡƒΠ΅ΠΌΠΎΠ³ΠΎ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Π° ΠΏΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ рассматриваСмой Π·Π°Π΄Π°Ρ‡ΠΈ являСтся Ρ‚Π°ΠΊΠΆΠ΅ ΠΎΡ‚ΠΊΠ°Π· ΠΎΡ‚ использования ΠΏΡ€Π΅Π΄ΠΎΠ±ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… Π½Π΅ΠΉΡ€ΠΎΠ½Π½Ρ‹Ρ… сСтСй с большим количСством слоСв ΠΈ дальнСйшим пСрСносом обучСния, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ΠΈΡ… ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ нСсСт Π·Π° собой Π·Π°Ρ‚Ρ€Π°Ρ‚Ρ‹ с Ρ‚ΠΎΡ‡ΠΊΠΈ зрСния ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΠΎΠ³ΠΎ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ рСсурса. Показано, Ρ‡Ρ‚ΠΎ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ классификации ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ ΠΏΡ€ΠΈ Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Π°ΡƒΠ³ΠΌΠ΅Π½Ρ‚Π°Ρ†ΠΈΠΈ ΠΎΠ±ΡƒΡ‡Π°ΡŽΡ‰ΠΈΡ… Π΄Π°Π½Π½Ρ‹Ρ… Π½Π° Π²Ρ‹Π±ΠΎΡ€ΠΊΠ°Ρ… ΠΌΠ°Π»ΠΎΠ³ΠΎ ΠΈ срСднСго объСма ΠΏΠΎΠ²Ρ‹ΡˆΠ°Π΅Ρ‚ΡΡ Π΄ΠΎ статистичСски Π·Π½Π°Ρ‡ΠΈΠΌΡ‹Ρ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΠΎΠΉ ΠΌΠ΅Ρ‚Ρ€ΠΈΠΊΠΈ

    A Double Siamese Framework for Differential Morphing Attack Detection

    Get PDF
    Face morphing and related morphing attacks have emerged as a serious security threat for automatic face recognition systems and a challenging research field. Therefore, the availability of effective and reliable morphing attack detectors is strongly needed. In this paper, we proposed a framework based on a double Siamese architecture to tackle the morphing attack detection task in the differential scenario, in which two images, a trusted live acquired image and a probe image (morphed or bona fide) are given as the input for the system. In particular, the presented framework aimed to merge the information computed by two different modules to predict the final score. The first one was designed to extract information about the identity of the input faces, while the second module was focused on the detection of artifacts related to the morphing process. Experimental results were obtained through several and rigorous cross-dataset tests, exploiting three well-known datasets, namely PMDB, MorphDB, and AMSL, containing automatic and manually refined facial morphed images, showing that the proposed framework was able to achieve satisfying results

    Morphing Attack Detection -- Database, Evaluation Platform and Benchmarking

    Full text link
    Morphing attacks have posed a severe threat to Face Recognition System (FRS). Despite the number of advancements reported in recent works, we note serious open issues such as independent benchmarking, generalizability challenges and considerations to age, gender, ethnicity that are inadequately addressed. Morphing Attack Detection (MAD) algorithms often are prone to generalization challenges as they are database dependent. The existing databases, mostly of semi-public nature, lack in diversity in terms of ethnicity, various morphing process and post-processing pipelines. Further, they do not reflect a realistic operational scenario for Automated Border Control (ABC) and do not provide a basis to test MAD on unseen data, in order to benchmark the robustness of algorithms. In this work, we present a new sequestered dataset for facilitating the advancements of MAD where the algorithms can be tested on unseen data in an effort to better generalize. The newly constructed dataset consists of facial images from 150 subjects from various ethnicities, age-groups and both genders. In order to challenge the existing MAD algorithms, the morphed images are with careful subject pre-selection created from the contributing images, and further post-processed to remove morphing artifacts. The images are also printed and scanned to remove all digital cues and to simulate a realistic challenge for MAD algorithms. Further, we present a new online evaluation platform to test algorithms on sequestered data. With the platform we can benchmark the morph detection performance and study the generalization ability. This work also presents a detailed analysis on various subsets of sequestered data and outlines open challenges for future directions in MAD research.Comment: This paper is a pre-print. The article is accepted for publication in IEEE Transactions on Information Forensics and Security (TIFS

    DeepFakes and Beyond: A Survey of Face Manipulation and Fake Detection

    Full text link
    The free access to large-scale public databases, together with the fast progress of deep learning techniques, in particular Generative Adversarial Networks, have led to the generation of very realistic fake content with its corresponding implications towards society in this era of fake news. This survey provides a thorough review of techniques for manipulating face images including DeepFake methods, and methods to detect such manipulations. In particular, four types of facial manipulation are reviewed: i) entire face synthesis, ii) identity swap (DeepFakes), iii) attribute manipulation, and iv) expression swap. For each manipulation group, we provide details regarding manipulation techniques, existing public databases, and key benchmarks for technology evaluation of fake detection methods, including a summary of results from those evaluations. Among all the aspects discussed in the survey, we pay special attention to the latest generation of DeepFakes, highlighting its improvements and challenges for fake detection. In addition to the survey information, we also discuss open issues and future trends that should be considered to advance in the field
    corecore