5 research outputs found

    Deep Epitomic Convolutional Neural Networks

    Full text link
    Deep convolutional neural networks have recently proven extremely competitive in challenging image recognition tasks. This paper proposes the epitomic convolution as a new building block for deep neural networks. An epitomic convolution layer replaces a pair of consecutive convolution and max-pooling layers found in standard deep convolutional neural networks. The main version of the proposed model uses mini-epitomes in place of filters and computes responses invariant to small translations by epitomic search instead of max-pooling over image positions. The topographic version of the proposed model uses large epitomes to learn filter maps organized in translational topographies. We show that error back-propagation can successfully learn multiple epitomic layers in a supervised fashion. The effectiveness of the proposed method is assessed in image classification tasks on standard benchmarks. Our experiments on Imagenet indicate improved recognition performance compared to standard convolutional neural networks of similar architecture. Our models pre-trained on Imagenet perform excellently on Caltech-101. We also obtain competitive image classification results on the small-image MNIST and CIFAR-10 datasets.Comment: 9 page

    Good Practice in CNN Feature Transfer

    Full text link
    The objective of this paper is the effective transfer of the Convolutional Neural Network (CNN) feature in image search and classification. Systematically, we study three facts in CNN transfer. 1) We demonstrate the advantage of using images with a properly large size as input to CNN instead of the conventionally resized one. 2) We benchmark the performance of different CNN layers improved by average/max pooling on the feature maps. Our observation suggests that the Conv5 feature yields very competitive accuracy under such pooling step. 3) We find that the simple combination of pooled features extracted across various CNN layers is effective in collecting evidences from both low and high level descriptors. Following these good practices, we are capable of improving the state of the art on a number of benchmarks to a large margin

    Untangling Local and Global Deformations in Deep Convolutional Networks for Image Classification and Sliding Window Detection

    Get PDF
    Deep Convolutional Neural Networks (DCNNs) commonly use generic `max-pooling' (MP) layers to extract deformation-invariant features, but we argue in favor of a more refined treatment. First, we introduce epitomic convolution as a building block alternative to the common convolution-MP cascade of DCNNs; while having identical complexity to MP, Epitomic Convolution allows for parameter sharing across different filters, resulting in faster convergence and better generalization. Second, we introduce a Multiple Instance Learning approach to explicitly accommodate global translation and scaling when training a DCNN exclusively with class labels. For this we rely on a `patchwork' data structure that efficiently lays out all image scales and positions as candidates to a DCNN. Factoring global and local deformations allows a DCNN to `focus its resources' on the treatment of non-rigid deformations and yields a substantial classification accuracy improvement. Third, further pursuing this idea, we develop an efficient DCNN sliding window object detector that employs explicit search over position, scale, and aspect ratio. We provide competitive image classification and localization results on the ImageNet dataset and object detection results on the Pascal VOC 2007 benchmark.Comment: 13 pages, 7 figures, 5 tables. arXiv admin note: substantial text overlap with arXiv:1406.273

    ImageNet Large Scale Visual Recognition Challenge

    Get PDF
    The ImageNet Large Scale Visual Recognition Challenge is a benchmark in object category classification and detection on hundreds of object categories and millions of images. The challenge has been run annually from 2010 to present, attracting participation from more than fifty institutions. This paper describes the creation of this benchmark dataset and the advances in object recognition that have been possible as a result. We discuss the challenges of collecting large-scale ground truth annotation, highlight key breakthroughs in categorical object recognition, provide a detailed analysis of the current state of the field of large-scale image classification and object detection, and compare the state-of-the-art computer vision accuracy with human accuracy. We conclude with lessons learned in the five years of the challenge, and propose future directions and improvements.Comment: 43 pages, 16 figures. v3 includes additional comparisons with PASCAL VOC (per-category comparisons in Table 3, distribution of localization difficulty in Fig 16), a list of queries used for obtaining object detection images (Appendix C), and some additional reference
    corecore