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Abstract

Deep Convolutional Neural Networks (DCNNs) com-
monly use generic ‘max-pooling’ (MP) layers to extract
deformation-invariant features, but we argue in favor of a
more refined treatment. First, we introduceepitomic con-
volution as a building block alternative to the common
convolution-MP cascade of DCNNs; while having identi-
cal complexity to MP, Epitomic Convolution allows for pa-
rameter sharing across different filters, resulting in faster
convergence and better generalization. Second, we intro-
duce a Multiple Instance Learning approach to explicitly
accommodate global translation and scaling when training
a DCNN exclusively with class labels. For this we rely on
a ‘patchwork’data structure that efficiently lays out all im-
age scales and positions as candidates to a DCNN. Fac-
toring global and local deformations allows a DCNN to
‘focus its resources’ on the treatment of non-rigid defor-
mations and yields a substantial classification accuracy im-
provement. Third, further pursuing this idea, we develop
an efficient DCNN sliding window object detector that em-
ploys explicit search over position, scale, and aspect ratio.
We provide competitive image classification and localiza-
tion results on the ImageNet dataset and object detection
results on the Pascal VOC 2007 benchmark.

1. Introduction

Deep learning offers a powerful framework for learn-
ing increasingly complex representations for visual recog-
nition tasks. The work of Krizhevsky et al. [18] convinc-
ingly demonstrated that deep neural networks can be very
effective in classifying images in the challenging Imagenet
benchmark [5], significantly outperforming computer vi-
sion systems built on top of engineered features like SIFT
[22]. Their success spurred a lot of interest in the machine
learning and computer vision communities. Subsequent
work has improved our understanding and has refined cer-
tain aspects of this class of models [39]. A number of differ-

Figure 1. Epitomes representa setof small images through a com-
mon data structure: The epitome is a single, larger image which
can produce several smaller filters by picking a position andcrop-
ping a small window. While epitomes where originally employed
for generative image modelling, in this work we propose to use
epitomes as an efficient method for parameter sharing in Deep
Learning: Epitomes are used in hierarchical networks, and their
parameters are learned discriminatively through back-propagation.

ent studies have further shown that the features learned by
deep neural networks are generic and can be successfully
employed in a black-box fashion in other datasets or tasks
such as image detection [4,9,26,30,32,39].

The deep learning models that so far have proven most
successful in image recognition tasks, e.g. [21,33,34], are
feed-forward convolutional neural networks trained in a su-
pervised fashion to minimize a regularized training set clas-
sification error by back-propagation. Their recent success
is partly due to the availability of large annotated datasets
and fast GPU computing, and partly due to some important
methodological developments such as dropout regulariza-
tion and rectifier linear activations [18]. However, the key
building blocks of deep neural networks for images have
been around for many years [19]: (1) Deep Convolutional
Neural Networks (DCNNs) with small receptive fields that
spatially share parameters within each layer. (2) Gradual
abstraction and spatial resolution reduction after each con-
volutional layer as we ascend the network hierarchy, typi-
cally via max-pooling [15,31]

This paper examines several aspects of invariance to de-
formations in the context of DCNNs for visual recognition.
We treat both locally defined (non-rigid) and global defor-
mations, demonstrating that a more refined treatment yields
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improved classification performance.
Our first main contribution is to build a deep neural net-

work around the epitomic representation [17]. The image
epitome, illustrated in Figure1, is a data structure appro-
priate for learning translation-aware image representations,
naturally disentagling appearance and position modeling of
visual patterns. While originally developped for generative
image modelling, we show here that the epitome data struc-
ture can be used to train DCCNs discrimatively.

For this, we substitute every pair of convolution and
max-pooling layers typically used in DCNNs with an ‘Epit-
omic Convolution’ layer. As illustrated in Fig.2, Epito-
mic Convolution in an input-centered dual alternative to the
filter-centered standard max-pooling. Namely, rather than
searching in the input image (or layer) for the strongest re-
sponse of a filter, we search across the set of filters encap-
suled in a epitome for the strongest response to an image
patch. Our Epitomic Convolution is designed to have the
same computational and model complexity as Max-Pooling,
while similar filters to share parameters.

We use a dictionary of ‘mini-epitomes’ at each network
layer: each mini-epitome is only slightly larger than the cor-
responding input data patch, just enough to accomodate for
the desired extent of position invariance. For each input
data patch, the mini-epitome layer outputs a single value
per mini-epitome, which is the maximum response across
all filters in the mini-epitome. In [28] we discuss another
deep epitomic network variant built on top of large epito-
mes which learns topographically organized features.

Our second main contribution is to explicitly deal with
object scale and position when applying DCNNs to image
classification. We show that this can be done efficiently us-
ing a patchwork data structure in a principled, consistent
manner during both training and testing. While fusing clas-
sification results extracted from multiple image windows is
standard practice, we show that when incorporating multi-
ple windows during training in a Multiple Instance Learning
(MIL) framework we obtain substantially larger gains.

Finally, we explore to what extent we can push scale and
position search towards developing efficient and effective
sliding window object detectors on top of DCNNs. We ac-
celerate sliding window detection by introducing a simple
method to reduce the effective size and receptive field of a
DCNN pre-trained on ImageNet and show that by perform-
ing an explicit search over position, scale, and aspect ratios
we can obtain results that are comparable to the current-
state-of-the-art while being substantially simpler and easier
to train, as well as more efficient.

We quantitatively evaluate the proposed models primar-
ily in image classification experiments on the Imagenet
ILSVRC-2012 large-scale image classification task. We
train the model by error back-propagation to minimize the
classification loss, similarly to [18]. We have experimented

with deep mini-epitomic networks of different architec-
tures (Class A, B, and C). We have carried out the bulk
of our comparisons between epitomes and max-pooling us-
ing comparable mid-sized networks having 6 convolutional
and 3 fully connected layers whose structure closely follows
that in [32] (Class-A). In these evaluations the deep epito-
mic network achieves 13.6% top-5 error on the validation
set, which is 0.6% better than the corresponding conven-
tional max-pooled convolutional network whose error rate
is 14.2%, with both networks having the same computa-
tional cost. Note that the error rate of the original model
in [18] is 18.2%, using however a smaller network. We have
also more recently experimented with larger deep mini-
epitomic networks (Class-B), which have the same number
of levels but more neurons per layer than those in Class-
A. The plain deep epitomic net in Class-B achieves an er-
ror rate of 11.9%. When accompanied with explicit scale
and position search (patchwork variant), its error drops fur-
ther down to 10.0%. Finally, following [33], we have most
recently experimented with a very deep epitomic network
with 13 convolutional and 3 fully connected layers (Class-
C). This achieves an even lower error rate of 10.0% (with-
out scale and position search). All these performance num-
bers refer to classification with a single network. We also
find that the proposed epitomic model converges faster, es-
pecially when the filters in the dictionary are mean- and
contrast-normalized, which is related to [39]. We have
found this normalization to also accelerate convergence of
standard max-pooled networks.

In [28] we further report additional sets of experiments.
First, we show that a deep epitomic network trained on Im-
agenet can be effectively used as black-box feature extrac-
tor for tasks such as Caltech-101 image classification. Sec-
ond, we report excellent image classification results on the
MNIST and CIFAR-10 benchmarks with smaller deep epit-
omic networks trained from scratch on these small-image
datasets.

Related work Our model builds on the epitomic image
representation [17], which was initially geared towards im-
age and video modeling tasks. Single-level dictionaries of
image epitomes learned in an unsupervised fashion for im-
age denoising have been explored in [1,3]. Recently, single-
level mini-epitomes learned by a variant of K-means have
been proposed as an alternative to SIFT for image classi-
fication [29]. To our knowledge, epitomes have not been
studied before in conjunction with deep models or learned
to optimize a supervised objective.

The proposed epitomic model is closely related to max-
out networks [12]. Similarly to epitomic matching, the re-
sponse of a maxout layer is the maximum across filter re-
sponses. The critical difference is that the epitomic layer
is hard-wired to model position invariance, since filters ex-
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(a) (b)
Figure 2. (a) Standard max-pooled convolution: For each filter we
look for its best match within a small window in the data layer. (b)
Proposed epitomic convolution (mini-epitome variant): For input
data patches sparsely sampled on a regular grid we look for their
best match in each mini-epitome.

tracted from an epitome share values in their area of overlap.
This parameter sharing significantly reduces the number of
free parameters that need to be learned. Maxout is typically
used in conjunction with max-pooling [12], while epitomes
fully substitute for it. Moreover, maxout requires random
input perturbations with dropout during model training, oth-
erwise it is prone to creating inactive features. On the con-
trary, we have found that learning deep epitomic networks
does not require dropout in the convolutional layers – simi-
larly to [18], we only use dropout regularization in the fully
connected layers of our network.

Other variants of max pooling have been explored be-
fore. Stochastic pooling [38] has been proposed in con-
junction with supervised learning. Probabilistic pooling
[20] and deconvolutional networks [40] have been proposed
before in conjunction with unsupervised learning, avoid-
ing the theoretical and practical difficulties associated with
building probabilistic models on top of max-pooling. While
we do not explore it in this paper, we are also very interested
in pursuing unsupervised learning methods appropriate for
the deep epitomic representation.

2. Deep Epitomic Convolutional Networks

2.1. Mini-Epitomic deep networks

We first describe a single layer of the mini-epitome vari-
ant of the proposed model, with reference to Fig.2. In stan-
dard max-pooled convolution, we have a dictionary ofK
filters of spatial sizeW ×W pixels spanningC channels,
which we represent as real-valued vectors{wk}Kk=1 with
W ·W · C elements. We apply each of them in a convo-
lutional fashion to everyW ×W input patch{xi} densely
extracted from each position in the input layer which also
hasC channels. A reduced resolution output map is pro-
duced by computing the maximum response within a small
D×D window of displacementsp ∈ Ninput around po-
sitions i in the input map which areD pixels apart from
each other. The output map{zi,k} of standard max-pooled
convolution has spatial resolution reduced by a factor ofD
across each dimension and will consist ofK channels, one

for each of theK filters. Specifically:

(zi,k, pi,k)← max
p∈Nimage

x
T
i+pwk (1)

wherepi,k points to the input layer position where the max-
imum is attained (argmax).

In the proposed epitomic convolution scheme we replace
the filters with larger mini-epitomes{vk}Kk=1

of spatial size
V ×V pixels, whereV = W +D − 1. Each mini-epitome
containsD2 filters{wk,p}

K
k=1 of sizeW×W , one for each

of theD×D displacementsp ∈ Nepit in the epitome. We
sparselyextract patches{xi} from the input layer on a reg-
ular grid with strideD pixels. In the proposed epitomic
convolution model we reverse the role of filters and input
layer patches, computing the maximum response over epit-
omic positions rather than input layer positions:

(yi,k, pi,k)← max
p∈Nepitome

x
T
i wk,p (2)

wherepi,k now points to the position in the epitome where
the maximum is attained. Since the input position is fixed,
we can think of epitomic matching as an input-centered dual
alternative to the filter-centered standard max-pooling.

Computing the maximum response over filters rather
than image positions resembles the maxout scheme of [12],
yet in the proposed model the filters within the epitome are
constrained to share values in their area of overlap.

Similarly to max-pooled convolution, the epitomic con-
volution output map{yi,k} hasK channels and is subsam-
pled by a factor ofD across each spatial dimension. Epit-
omic convolution has the same computational cost as max-
pooled convolution. For each output map value, they both
require computingD2 inner products followed by finding
the maximum response. Epitomic convolution requiresD2

times more work per input patch, but this is exactly com-
pensated by the fact that we extract input patches sparsely
with a stride ofD pixels.

Similarly to standard max-pooling, the main computa-
tional primitive is multi-channel convolution with the setof
filters in the epitomic dictionary, which we implement as
matrix-matrix multiplication and carry out on the GPU, us-
ing the cuBLAS library.

It is noteworthy that conventional max-pooled convolu-
tion can be cast as special case of epitomic convolution.
More specifically, we can exactly replicate max-pooled con-
volution with filters of sizeW×W andD×D max-pooling
using as epitomes zero-padded versions of the original fil-
ters (with padding equal toD − 1 pixels on each side of
the filter) and epitomic filter size equal toW + D − 1. In
that sense, epitomic convolution is a generalization of max-
pooling.

To build a deep epitomic model, we stack multiple epit-
omic convolution layers on top of each other. The output of
each layer passes through a rectified linear activation unit



(a) (b)
Figure 3. Filters at the first convolutional layer of: (a) ProposedEpitomic model with 96 mini-epitomes, each having size12×12 pixels.
(b) BaselineMax-Pool model with 96 filters of size8×8 pixels each.

yi,k ← max(yi,k + βk, 0) and fed as input to the subse-
quent layer, whereβk is the bias. Similarly to [18], the final
two layers of our network for Imagenet image classifica-
tion are fully connected and are regularized by dropout. We
learn the model parameters (epitomic weights and biases for
each layer) in a supervised fashion by error back propaga-
tion. We present full details of our model architecture and
training methodology in the experimental section.

2.2. Optional mean and contrast normalization

Motivated by [39], we have explored the effect of filter
mean and contrast normalization on deep epitomic network
training. More specifically, we considered a variant of the
model where the epitomic convolution responses are com-
puted as:

(yi,k, pi,k)← max
p∈Nepitome

x
T
i w̄k,p

‖w̄k,p‖λ
(3)

where w̄k,p is a mean-normalized version of the filters
and‖w̄k,p‖λ , (w̄T

k,pw̄k,p + λ)1/2 is their contrast, with
λ = 0.01 a small positive constant. This normalization
requires only a slight modification of the stochastic gradi-
ent descent update formula and incurs negligible computa-
tional overhead. Note that the contrast normalization ex-
plored here is slightly different than the one in [39], who
only scale down the filters whenever their contrast exceeds
a pre-defined threshold.

We have found the mean and contrast normalization of
Eq. (3) to significantly accelerate training not only of epito-
mic but also max-pooled convolutional nets.

2.3. Image Classification Experiments

Image classification tasks We have performed most of
our experimental investigation with epitomes on the Ima-
genet ILSVRC-2012 dataset [5], focusing on the task of im-
age classification. This dataset contains more than 1.2 mil-
lion training images, 50,000 validation images, and 100,000
test images. Each image is assigned to one out of 1,000 pos-
sible object categories. Performance is evaluated using the
top-5 classification error. Such large-scale image datasets
have proven so far essential to successfully train big deep
neural networks with supervised criteria.

Network architecture and training methodology For
our Imagenet experiments, we compare the proposed deep
epitomic networks with deep max-pooled convolutional
networks. For fair comparison, we use as similar architec-
tures as possible, involving in both cases six convolutional
layers, followed by two fully-connected layers and a 1000-
way softmax layer. We use rectified linear activation units
throughout the network. Similarly to [18], we apply local
response normalization (LRN) to the output of the first two
convolutional layers and dropout to the output of the two
fully-connected layers. This is the Class-A of the models
we considered.

The architecture of our baselineMax-Pool network is
specified on Table1. It employs max-pooling in the con-
volutional layers 1, 2, and 6. To accelerate computation,
it uses an image stride equal to 2 pixels in the first layer.
It has a similar structure with the Overfeat model [32], yet
significantly fewer neurons in the convolutional layers 2 to
6. Another difference with [32] is the use of LRN, which to
our experience facilitates training.

The architecture of the proposedEpitomic network is



Layer 1 2 3 4 5 6 7 8 Out

Type conv + conv + conv conv conv conv + full + full + full
lrn + max lrn + max max dropout dropout

Output channels 96 192 256 384 512 512 4096 4096 1000
Filter size 8x8 6x6 3x3 3x3 3x3 3x3 - - -
Input stride 2x2 1x1 1x1 1x1 1x1 1x1 - - -
Pooling size 3x3 2x2 - - - 3x3 - - -

Table 1. Architecture of the baselineMax-Pool convolutional network (Class-A).

specified on Table2. It has exactly the same number of neu-
rons at each layer as theMax-Pool model but it uses mini-
epitomes in place of convolution + max pooling at layers
1, 2, and 6. It uses the same filter sizes with theMax-Pool
model and the mini-epitome sizes have been selected so as
to allow the same extent of translation invariance as the cor-
responding layers in the baseline model. We use input im-
age stride equal to 4 pixels and further perform epitomic
search with stride equal to 2 pixels in the first layer to also
accelerate computation.

We have also tried variants of the two models above
where we activate the mean and contrast normalization
scheme of Section2.2 in layers 1, 2, and 6 of the network.

We followed the methodology of [18] in training our
models. We used stochastic gradient ascent with learn-
ing rate initialized to 0.01 and decreased by a factor of 10
each time the validation error stopped improving. We used
momentum equal to 0.9 and mini-batches of 128 images.
The weight decay factor was equal to5× 10−4. Impor-
tantly, weight decay needs to be turned off for the layers that
use mean and contrast normalization. Training each of the
three models takes two weeks using a single NVIDIA Ti-
tan GPU. Similarly to [4], we resized the training images to
have small dimension equal to 256 pixels while preserving
their aspect ratio and not cropping their large dimension.
We also subtracted for each image pixel the global mean
RGB color values computed over the whole Imagenet train-
ing set. During training, we presented the networks with
220×220 crops randomly sampled from the resized image
area, flipped left-to-right with probability 0.5, also inject-
ing global color noise exactly as in [18]. During evaluation,
we presented the networks with 10 regularly sampled im-
age crops (center + 4 corners, as well as their left-to-right
flipped versions).

Weight visualization We visualize in Figure3 the layer
weights at the first layer of the networks above. The net-
works learn receptive fields sensitive to edge, blob, texture,
and color patterns.

Classification results We report at Table3 our results on
the Imagenet ILSVRC-2012 benchmark, also including re-
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sults previously reported in the literature [18,32,39]. These
all refer to the top-5 error on the validation set and are ob-
tained with a single network. Our best result at 13.6% with
the proposedEpitomic-Normnetwork is 0.6% better than
the baselineMax-Pool result at 14.2% error. The improved
performance that we got with theMax-Pool baseline net-
work compared to Overfeat [32] is most likely due to our
use of LRN and aspect ratio preserving image resizing.

Further experimental results with the epitomic model on
the Caltech-101 task and on the MNIST and CIDAR-10
datasets are described in [28].

Mean-contrast normalization and convergence speed
We comment on the learning speed and convergence prop-
erties of the different models we experimented with on Im-
agenet. We show in Figure4 how the top-5 validation er-
ror improves as learning progresses for the different mod-
els we tested, with or without mean+contrast normalization.
For reference, we also include a corresponding plot we re-
produced for the original model of Krizhevsky et al. [18].
We observe that mean+contrast normalization significantly
accelerates convergence of both epitomic and max-pooled
models, without however significantly influencing the final
model quality. The epitomic models converge faster and are
stabler during learning compared to the max-pooled base-
lines, whose performance fluctuates more.



Layer 1 2 3 4 5 6 7 8 Out

Type epit-conv epit-conv conv conv conv epit-conv full + full + full
+ lrn + lrn dropout dropout

Output channels 96 192 256 384 512 512 4096 4096 1000
Epitome size 12x12 8x8 - - - 5x5 - - -
Filter size 8x8 6x6 3x3 3x3 3x3 3x3 - - -
Input stride 4x4 3x3 1x1 1x1 1x1 3x3 - - -
Epitome stride 2x2 1x1 - - - 1x1 - - -

Table 2. Architecture of the proposedEpitomic convolutional network (Class-A).

Previous literature Class-A Class-B Class-C
Model Krizhevsky Zeiler-FergusOverfeat Max-Pool Max-Pool Epitomic Epitomic Epitomic Epitomic

[18] [39] [32] + norm + norm +norm +norm
Top-5 Error 18.2% 16.0% 14.7% 14.2% 14.4% 13.7% 13.6% 11.9% 10.0%

Table 3. Imagenet ILSVRC-2012 top-5 error on validation set. All performance figures are obtained with a single network,averaging
classification probabilities over 10 image crops (center + 4corners, as well as their left-to-right flipped versions). Classes B and C refer to
respectively larger and deeper models.

Experiments with larger and deeper epitomic networks
We have also experimented with larger (Class-B) and very
deep (Class-C) versions of the proposed deep epitomic net-
works. The large Class-B network has the same number
of levels but more neurons per layer than the networks in
Class-A. It achieves an error rate of 11.9%.

Inspired by the success of the top-performing methods
in this year’s Imagenet competition, we have also very re-
cently experimented with a very deep network having 13
convolutional and 3 fully connected layers, which roughly
follows the architecture of the 16 layer net in [33]. Our
Class-C deep epitomic network achieves 10.0% error rate
in the Imagenet task. The state-of-art 16 layer net in
[33] (without multi-scale training/testing) achieves an even
lower 9.0% error rate, but using a more sophisticated pro-
cedure for aggregating the results of multiple image crops
(in place of our simple 10-view testing procedure). As ex-
tra evidence to the improved robustness of training our deep
epitomic networks, it is noteworthy to mention that we man-
aged to train our very deep epitomic net starting from a ran-
dom initialization, while [33] had to bootstrap their very
deep networks from shallower ones.

3. Explicit Scale and Position Search in DCNNs

The effects of object translation and scaling impede
the training of accurate classifiers from datasets that lack
bounding box annotations - as is the case in the ImageNet
classification Challenge. The Epitomic Convolution/Max-
Pooling modules allow us to extract an image representation
that is invariant to signal deformations taking place at the
pooling region’s scale; when used in alternation with fea-
ture downsampling (‘striding’) this can result in invariance
to increasingly large-scale signal transformations, eventu-

ally dealing with global position and scale changes.
A better treatment of deformations can be achieved by

factoring deformations into local (non-rigid) and global
(translation/scale) changes. We can then simulate the effect
of the latter during training and testing, by transforming the
input images, obtaining us an additional hold on the prob-
lem. We now describe how this idea can be exploited in the
setting of Multiple Instance Learning (MIL).

3.1. MIL-based training of DCNNs

Considering a binary classification problem withN
image-label pairsS = {(Xi, yi)}, i = 1, . . . , N , training
aims at minimizing the following criterion:

C(f,S) =
N∑

i=1

l(yi, f(Xi)) +R(f), (4)

wheref is the classifier,l(y, f(X)) is the loss function and
R is a regularizer.

Dataset augmentationamounts to turning an imageXi

into a set of imagesXi = {X1
i , . . . , X

K
i } by transform-

ing Xi synthetically; e.g. consideringT translations and
S scalings yields a set withK = TS elements. The most
common approach to using Dataset augmentation consists
in treating each element ofXi as a new training sample,
i.e. substituting the lossl(y, f(Xi)) in by the sum of the
classifier’s loss on all images:

L(yi,Xi)
.
=

K∑

k=1

l(yi, f(X
k
i )). (5)

This corresponds to the dataset augmentation technique use
e.g. in [14]. A recently introduced alternative is the ‘sum-
pooling’ technique used in [33], which can be understood



as using the following loss:

L(yi,Xi) = l(yi,
1

K

K∑

k=1

f(Xk
i )), (6)

which averages the classifier’s score over translated ver-
sions of the input image. The summation used in both of
these approaches favors classifiers that consistently score
highly on positive samples, irrespective of the object’s posi-
tion and scale - this is when the loss is minimized. As such,
these classifiers can be seen as pursuing the invariance off .

There is however a tradeoff between invariance and clas-
sification accuracy [36]. Even though pursuing invariance
accounts for the effects of transformations, it does not make
the classification task any easier: the training objective aims
at a classifier that would allow all transformed images to
make it through its ‘sieve’. Understandably, a classifier that
only considers centered objects of a fixed scale can acchieve
higher accuracy: this would allow us to devotes all mod-
elling resources to the treatment of local deformations.

For this, we let our classifier ‘choose’ its preferred trans-
formation In particular, we define the loss function to be:

L(yi,Xi) = l(yi,max
k

f(Xk
i )), (7)

which amounts to letting the classifier choose the transfor-
mation that maximizes its response on a per-sample basis,
and then accordingly penalizing that response. In particu-
lar the loss function requires that the classifier’s response
is large on at least one position for a positive sample - and
small everywhere for a negative.

This idea amounts to the simplest case of Multiple In-
stance Learning [6]: Xi can be seen as abag of features
and the individual elements ofXi can be seen asinstances.
For the particular case of the hinge loss function, this would
lead us to the latent-SVM training objective [2,8].

Using this loss function during training amounts to treat-
ing the object’s position and scale as a latent variable,
and performing alternating optimization over the classifier’s
score function. During testing we perform a search over
transformations and keep the best classifier score, which can
be understood as maximizing over the latent transformation
variables. The resulting scoreF (Xi) = maxk f(X

k
i ) is

transformation-invariant, but is built on top of a classifier
tuned for a single scale- and translation- combination. The
MIL setting allows us to train and test our classifiers consis-
tently, using the same set of image translations and scalings.

3.2. Efficient Convolutional Implementation

We now turn to practical aspects of integrating MIL into
DCNN training. DCNNs are commonly trained with in-
put images of a fixed size,q × q. For an arbitrarily-sized
input imageI, if we denote byI(x, y, s) its image pyra-
mid, naively computing the maximization in Eq.7 would

Model Epitomic Epitomic
(Class-B) (patchwork)

Top-5 Error 11.9% 10.0%
Table 4. Imagenet ILSVRC-2012 top-5 error on validation set. We
compare the Class-B mean and contrast normalized deep epitomic
network of Table3 with its Patchwork fine-tuned version that also
includes scale and position search.

Figure 5. We use the image patchwork technique to efficientlyim-
plement scale and position search in DCNN training: an image
pyramid is unfolded into a image ‘patchwork’, where slidinga
fixed-size window amounts to search over multiple positionsand
scales. The maximum of the classifier’s score on all such windows
is efficiently gathered by max-pooling the DCNN’s top-layerre-
sponses, and is used to accommodate scale and position changes
during both training and testing.

require to cropping manyq× q boxes fromI(x, y, s), eval-
uatingf on them, yieldingf(x, y, s), and then penalizing
l(y,maxx,y,s f(x, y, s)) during training (we ignore down-
sampling and boundary effects for simplicity). Doing this
would require a large amount of GPU memory, communi-
cation and computation time. Instead, by properly modify-
ing the input and architecture of our network we can share
computation to efficently implement exhaustive search dur-
ing training and testing.

For this, we first draw inspiration from the ‘image patch-
work’ technique introduced in [7] and exploited in DCNNs
by [10]. The technique consists in embedding a whole im-
age pyramidI(x, y, s), into a single, larger, patchwork im-
ageP (x′, y′); any position(x′, y′) in P corresponds to a
(x, y, s) combination inI. This was originally conceived as
a means of accelerating multi-scale FFT-based convolutions
in [7] and convolutional feature extraction in [10]. Instead
we view it a stepping stone to implementing scale and posi-
tion search during DCNN training.

In particular, we treat the last, fully-connected, layers of
a DCNN as1 × 1 convolution kernels; we can then obtain
thef(x, y, s) score described above by providingP as input
to our network, since the output of our network’s final layer
at any position(x′, y′) will correspond to the output corre-
sponding to aq × q square cropped around(x, y, s). This
allows us to incorporate themax operation used in MIL’s
training criterion, Eq.7, as an additional max-pooling layer
situated on top of the network’s original score function.



This makes it possible to efficiently incorporate global scale
and position search in a seamless manner within DCNN
training.

3.3. Image Classification Results

We have experimented with the scheme outlined above
in combination with our Deep Epitomic Network (Class-
B variant) presented in the previous Section. We use a
720×720 patchwork formed from 6 different image scales
(square boxes with size 400, 300, 220, 160, 120, and 90
pixels). We have resized all train/test images to square size,
changing their aspect ratio if needed. We have initialized
this scale/position search net with the parameters of our
standard Class-B epitomic net. We fine-tuned the network
parameters for about an epoch on the Imagenet train set,
following the training methodology outlined earlier.

We have obtained a substantial further decrease in the
testing error rates, cutting the top-5 error rate from 11.9%
down to 10.0%, as shown in Table 4. This reduction in error
rate is competitive with the best reduction obtained by more
complicated techniques involving many views for evalua-
tion [33,33], while also allowing for consistent end-to-end
training and testing.

The network outlined above also provides cues for the
scale and position of the dominant object in the image. A
simple fixed mapping of the “argmax” patchwork position
in the last max-pooling layer (computed by averaging the
bounding box positions in the training set) yields 48.3% er-
ror rate in the Imagenet 2012 localization task without in-
curring any extra computation.

4. Sliding Window Object Detection with DC-
NNs

The success of explicit position and scale search in
image classification suggests using DCNNs for sliding-
window detection; even though for pedestrians excellent re-
sults have been reported in [25] recent works on combining
convolutional networks [32], or sliding window detectors
with CNN features [10,27] still lag behind the current state-
of-the-art techniques [9,13,24].

Starting from the RCNN work of [9], all such techniques
compute DCNN features ‘on-demand’ for a set of 1000-
2000 image regions delivered by selective search [35], and
apply a separately trained SVM detection on top. This ap-
proach has recently been shown to deliver compelling de-
tection results; most recently, [9] have shown that com-
bining RCNNs with the network of [33] pushes the mean
AP performance on Pascal VOC 2007 to66% (62% with-
out bounding box regression), but at the cost of 60 seconds
per image (acceleration techniques such as Spatial Pyramid
Pooling [13] can still be applied, though).

Despite the performance gap of sliding window detec-
tion to RCNNs, we consider sliding window detection sim-

pler, and potentially more amenable to analysis and im-
provement.

4.1. Explicit search over aspect ratios

Our basic object detection system uses as input to a
DCNN an image patchwork that includes 11 scales loga-
rithmically sampled, from 2 times down to 1/6 of the image
size. Unlike recent works [10,27] that only operate with the
first five, ‘convolutional’ layers of a deeper network, in our
case we set the fully-connected layers operate convolution-
ally, and use the DCNN class scores for proposing square
bounding boxes as object detection proposals. This pro-
cesses a typical PASCAL VOC 2007 image in less than 1
sec on a Titan Tesla K40.

This square bounding box detector (without any bound-
ing box regression post-processing) yields a mean Average
Precision of43.0% on Pascal VOC 2007. To further ana-
lyze which of this system’s errors are due to constraining
the bounding box proposals to be square, we investigated
the system’s performance in the presence of an ‘oracle’ that
provides the optimal aspect ratio (using the ground truth an-
notations) for any given square bounding box proposal. We
found this oracle bounding box prediction to increase per-
formance to56.7%. This indicates that square box predic-
tion is insufficient for achieving competitive object detec-
tion results.

Once again, we pursue an explicit search approach to
directly estimate the aspect ratio of bounding box propos-
als without needing to resort to an oracle. We account for
aspect ratio variability by scaling the image along a single
dimension. For instance, scaling an image by.5 vertically
means that a vertically-elongated100×200 region appears
as a100×100 square region in the transformed image. Our
square detector can then find this preferable to other, differ-
ently scaled versions of the same region, and thereby hint
at the right object ratio. Aspect ratios that receive a lower
score are eliminated at the final nonmaximum suppression
stage. We account for aspect ratio during both testing and
training (see below).

We perform this operation for 5 distinct aspect ratios,
spanning the range of[1/3, 3]with a geometric progression,
as illustrated in Figure6. This is applied at the whole patch-
work level – sliding window detection on these patchworks
then amounts to a joint search over scale, position, and as-
pect ratio. This is more time-demanding (requiring 5 times
more computation) but still quite fast, requiring about 5 secs
on a Tesla K40 for an average Pascal VOC 2007 image, and
yields non-square bounding box predictions without resort-
ing to an oracle.

The related detection results are shown in Table5. As-
pect ratio search yields a very competitive mean Average
Precision score of56.4% (without any bounding box regres-
sion post-processing). This is only slightly lower than the



oracle-based score56.7%, indicating that also normalizing
for aspect ratio during training leads to better object models.

It is noteworthy that our56.4% mAP result is signifi-
cantly better than the46.9% mAP result reported very re-
cently by [37]. Our better results should be attributed to our
different training procedure (detailed below), our explicit
search over aspect ratios, and the use of a more powerful
DCNN classifier. Our system is also significantly simpler
than [37] (which also integrates deformable part models and
includes non maximum suppression during training). We
anticipate that integrating these components into our sys-
tem could further increase performance at a higher compu-
tational cost.

We observe that our system’s average performance
(56.4% mAP) is still below the one obtained by [9] when
using the network of [33] (62.2% mAP without bounding
box regression). This can be attributed to several aspects
of our system, including (i) using a smaller number of net-
work parameters (detailed below) (ii) performing the detec-
tion with smaller windows (detailed below) (iii) not using a
retraining stage with the hinge loss and hard-negative min-
ing, as [9] do, and (iv) missing out on regions found by
Selective Search. We are confident that factor (iv) is the
least important - having experimentally verified that the re-
call of bounding boxes is systematically better according to
our pyramid’s hypothesized positions, rather than the boxes
delivered by Selective Search. We are currently investigat-
ing the effects of factors (i)-(iii). Still, we consider that
our system has an edge on the efficiency side: our detec-
tor requires approximately 5 seconds to consider all posi-
tion, scale and aspect ratio combinations, while the system
of [9] with the network of [33] requires approximately 60
seconds, on identical hardware (a Tesla K40 GPU).

4.2. DCNN training for sliding window detection

We deviate from the newtork fine-tuning used in the
RCNN system [9] in two ways: firstly, we do not rely on
the Selective Search [35] region proposals to gather train-
ing samples; and, secondly, we modify the network’s struc-
ture to process smaller images, and, resultantly, include less
parameters. We detail these two modifications below.

4.2.1 Model Training

The RCNN system of [9] adapts a network trained for the
Imagenet classification task to object detection on Pascal
VOC. For this, the authors use the regions proposed by
selective search to generate positive and negative training
samples, for each of the 20 categories of Pascal VOC; if
a region has an Intersection-over-Union (IoU) above.5 for
any bounding box of a class it is declared as being a pos-
itive example for that class, or else it is a negative exam-
ple. These examples are used in a network ‘fine-tuning’

stage, which amounts to running back-propagation with
these training samples.

Rather than relying on Selective Search to provide train-
ing samples, we exploit the dense sampling of positions,
scales, and aspect ratios of our algorithm. This allows us to
use substantially cleaner examples, and train with a higher
IoU threshold for positives.

In particular, as illustrated in Figure7, we keep track of
all the windows that would be visited by our sliding window
detector; given a ground-truth bounding box, we randomly
pick 30 of those that have an IoU score above0.7 with it;
if we have less than 30, we decrease the threshold to0.6
and if we still cannot find as many we set the threshold fi-
nally to0.5. Similarily, for every positive bounding box we
sample 200 negative boxes that have an IoU score between
0.2 and0.5 - aiming at ‘teaching’ our classifier what a poor
localization looks like.

We have verified that doing this, rather than using selec-
tive search windows gives us clearly better detector scores,
both visually and quantitatively. We consider this to be
one of the advantages of using a sliding window detector,
namely that we do not need to rely on an external region
proposal module for training.

4.2.2 Re-purposing Classification Networks for Image
Detection

Herein we describe how we have re-purposed the publicly
available state-of-art 16 layer classification network of [33]
(VGG-16) into an efficient and effective component of our
sliding window detector.

Dense sliding window feature extraction with the hole
algorithm Dense spatial score evaluation is instrumental
in the success of our CNN sliding window detector.

As a first step to implement this, we convert the fully-
connected layers of VGG-16 into convolutional ones and
run the network in a convolutional fashion on the patch-
work. However this is not enough as it yields very sparsely
computed detection scores (with a stride of 32 pixels). To
compute scores more densely at our target stride of 8 pix-
els, we develop a variation of the method previously em-
ployed by [11, 32]. We skip subsampling after the last
two max-pooling layers in the network of [33] and mod-
ify the convolutional filters in the layers that follow them
by introducing zeros to increase their length (2× in the last
three convolutional layers and4×in the first fully connected
layer). We can implement this more efficiently by keep-
ing the filters intact and instead sparsely sample the feature
maps on which they are applied on using a stride of 2 or
4 pixels, respectively. This approach is known as the ‘hole
algorithm’ (‘atrous algorithm’) and has been developed be-
fore for efficient computation of the undecimated wavelet



Input image Patchwork,α = 0.33 Patchwork,α = 0.57

‘car’ score,α = 0.33 ‘car’ score,α = 0.57

Patchwork,α = 1 Patchwork,α = 1.73 Patchwork,α = 3.00

‘car’ score,α = 1.00 ‘car’ score,α = 1.73 ‘car’ score,α = 3.00
Figure 6. Patchwork images (even rows) and car detector scores (odd rows) used for explicit position, scale, and aspect ratio (‘alpha’)
search. We observe that the score is maximized at patchwork positions (i.e. image positions, scale, and aspect ratio combinations)
corresponding to square-shaped cars.



VOC 2007 test aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

Our work (VGG) 64.4 72.1 54.6 40.4 46.5 66.2 72.9 58.2 31.8 69.8 31.8 59.3 71.1 68.3 64.7 31.0 55.0 49.8 55.3 64.4 56.4
RCNN7 [9] (VGG) 71.6 73.5 58.1 42.2 39.4 70.7 76.0 74.5 38.7 71.0 56.9 74.5 67.9 69.6 59.3 35.7 62.1 64.0 66.5 71.2 62.2
RCNN7 [9] (UoT) 64.2 69.7 50.0 41.9 32.0 62.6 71.0 60.7 32.7 58.5 46.5 56.1 60.6 66.8 54.2 31.5 52.8 48.9 57.9 64.7 54.2
DPM [37] (UoT) 49.3 69.5 31.9 28.7 40.4 61.5 61.5 41.5 25.5 44.5 47.8 32.0 67.5 61.8 46.7 25.9 40.5 46.0 57.1 58.2 46.9

Table 5. Detection average precision (%) on the PASCAL VOC 2007 test set, using the proposed CNN sliding window detector that
performs explicit position, scale, and aspect ratio search. We compare to the RCNN architecture of [9] and the end-to-end trained DPMs
of [37]. In parenthesis we indicate the DCNN used for detection: UoT is the University of Toronto DCNN [18] and VGG is the DCNN of
Oxford’s Visual Geometry Group [33].

a b c d
Sliding window positives (left) and negatives (right) Selective search positives (left) and negatives (right).

Figure 7. Bounding boxes used for network finetuning. Our sliding window detector can use many more bounding boxes as positives (a)
and negatives (b). The training samples available from selective search (c) are fewer, forcing the training to use poorly localized positives
(d). When finetuning our network only with the latter examples performance would deteriorate.

transform [23]. We have implemented this within the Caffe
framework by adding to theim2col function (it converts
multi-channel feature maps to vectorized patches) the op-
tion to sparsely sample the underlying feature map.

Shrinking the receptive field of neural networks Most
recent DCNN-based image recognition methods rely on
networks pre-trained on the Imagenet large-scale classifi-
cation task. These networks typically have large receptive
field size,224×224 in the case of the VGG-16 net we con-
sider. We have found this receptive field size to be too large
to allow good localization accuracy (unless one uses heav-
ily zoomed-in versions of the image). Moreover, after con-
verting the network to a fully convolutional one, the first
fully connected layer has 4,096 filters of large7× 7 spa-
tial size and becomes the computational bottleneck in our
sliding window detector system.

We have addressed both of these serious practical prob-
lems by spatially subsampling the first FC layer to4× 4
spatial size. This has reduced the receptive field of the net-
work down to128×128 pixels and has reduced computation
time for the first FC layer by 3 times.

5. Conclusions

This paper examines multiple facets of invariance in the
context of deep convolutional networks for visual recog-
nition. First, we have proposed a new epitomic convolu-
tional layer which acts as a substitute to a pair of consec-
utive convolution and max-pooling layers, and shown that

it brings performance improvements and exhibits better be-
havior during training. Second, we have demonstrated that
treating scale and position as latent variables and optimizing
over them during both training and testing yields significant
image classification performance gains. Pushing scale and
position search further, we have shown promising results
which suggest that DCNNs can be efficient and effective
for dense sliding window based object detection. Further
pursuing this topic is the main direction of our future work.

Reproducibility We implemented the proposed methods
by extending the excellent Caffe software framework [16].
When this work gets published we will publicly share our
source code and configuration files with exact parameters
fully reproducing the results reported in this paper.
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