32,756 research outputs found

    Object Contour and Edge Detection with RefineContourNet

    Full text link
    A ResNet-based multi-path refinement CNN is used for object contour detection. For this task, we prioritise the effective utilization of the high-level abstraction capability of a ResNet, which leads to state-of-the-art results for edge detection. Keeping our focus in mind, we fuse the high, mid and low-level features in that specific order, which differs from many other approaches. It uses the tensor with the highest-levelled features as the starting point to combine it layer-by-layer with features of a lower abstraction level until it reaches the lowest level. We train this network on a modified PASCAL VOC 2012 dataset for object contour detection and evaluate on a refined PASCAL-val dataset reaching an excellent performance and an Optimal Dataset Scale (ODS) of 0.752. Furthermore, by fine-training on the BSDS500 dataset we reach state-of-the-art results for edge-detection with an ODS of 0.824.Comment: Keywords: Object Contour Detection, Edge Detection, Multi-Path Refinement CN

    Opposite polarity field with convective downflow and its relation to magnetic spines in a sunspot penumbra

    Full text link
    We discuss NICOLE inversions of Fe I 630.15 nm and 630.25 nm Stokes spectra from a sunspot penumbra recorded with the CRISP imaging spectropolarimeter on the Swedish 1-m Solar Telescope at a spatial resolution close to 0.15". We report on narrow radially extended lanes of opposite polarity field, located at the boundaries between areas of relatively horizontal magnetic field (the intra-spines) and much more vertical field (the spines). These lanes harbor convective downflows of about 1 km/s. The locations of these downflows close to the spines agree with predictions from the convective gap model (the "gappy penumbra") proposed six years ago, and more recent 3D MHD simulations. We also confirm the existence of strong convective flows throughout the entire penumbra, showing the expected correlation between temperature and vertical velocity, and having vertical RMS velocities of about 1.2 km/s.Comment: Accepted for publication in A&A (06-March-2013). Minor corrections made in this version

    Chromospheric observations and magnetic configuration of a supergranular structure

    Full text link
    Unipolar magnetic regions are often associated with supergranular cells. The chromosphere above these regions is regulated by the magnetic field, but the field structure is poorly known. In unipolar regions, the fibrillar arrangement does not always coincide with magnetic field lines, and polarimetric observations are needed to establish the chromospheric magnetic topology. In an active region close to the limb, we observed a unipolar annular network of supergranular size. This supergranular structure harbours a radial distribution of the fibrils converging towards its centre. We observed this structure at different heights by taking data in the FeI 6301-6302 {\AA}, H-\alpha, CaII 8542 \AA\ and the CaII H&K spectral lines with the CRISP and CHROMIS instruments at the Swedish 1-m Solar Telescope. We performed Milne-Eddington inversions of the spectropolarimetric data of FeI and applied the weak field approximation to CaII 8542 \AA\ data to retrieve the magnetic field in the photosphere and chromosphere. We used magnetograms of CRISP, HINODE/SP and HMI to calculate the magnetic flux. We investigated the velocity using the line-of-sight velocities computed from the Milne-Eddington inversion and from Doppler shift of the K3_3 feature in the CaII K spectral line. To describe the typical spectral profiles characterising the chromosphere above the supergranular structure, we performed a K-mean clustering of the spectra in CaIIK. The photospheric magnetic flux is not balanced. The magnetic field vector at chromospheric heights, retrieved by the weak field approximation, indicates that the field lines within the supegranular cell tend to point inwards, and might form a canopy above the unipolar region. In the centre of the supergranular cell hosting the unipolar region, we observe a persistent chromospheric brightening coinciding with a strong gradient in the line-of-sight velocity.Comment: 12 pages, 12 figures, accepted for publication in A&

    Ellerman Bombs at high resolution: I. Morphological evidence for photospheric reconnection

    Get PDF
    High-resolution imaging-spectroscopy movies of solar active region NOAA 10998 obtained with the CRisp Imaging SpectroPolarimeter (CRISP) at the Swedish 1-m Solar Telescope show very bright, rapidly flickering, flame-like features that appear intermittently in the wings of the Balmer H-alpha line in a region with moat flows and likely some flux emergence. They show up at regular H-alpha blue-wing bright points that outline magnetic network, but flare upward with much larger brightness and distinct "jet" morphology seen from aside in the limbward view of these movies. We classify these features as Ellerman bombs and present a morphological study of their appearance at the unprecedented spatial, temporal, and spectral resolution of these observations. The bombs appear along magnetic network with footpoint extents up to 900km. They show apparent travel away from the spot along the pre-existing network at speeds of about 1 km/s. The bombs flare repetitively with much rapid variation at time scales of seconds only, in the form of upward jet-shaped brightness features. These reach heights of 600-1200km and tend to show blueshifts; some show bi-directional Doppler signature, and some seem accompanied with an H-alpha surge. They are not seen in the core of H-alpha due to shielding by overlying chromospheric fibrils. The network where they originate has normal properties. The morphology of these jets strongly supports deep-seated photospheric reconnection of emergent or moat-driven magnetic flux with pre-existing strong vertical network fields as the mechanism underlying the Ellerman bomb phenomenon.Comment: 13pages, 10 figures, 2 tables. Accepted for publication in the Astrophysical Journa
    corecore