A ResNet-based multi-path refinement CNN is used for object contour
detection. For this task, we prioritise the effective utilization of the
high-level abstraction capability of a ResNet, which leads to state-of-the-art
results for edge detection. Keeping our focus in mind, we fuse the high, mid
and low-level features in that specific order, which differs from many other
approaches. It uses the tensor with the highest-levelled features as the
starting point to combine it layer-by-layer with features of a lower
abstraction level until it reaches the lowest level. We train this network on a
modified PASCAL VOC 2012 dataset for object contour detection and evaluate on a
refined PASCAL-val dataset reaching an excellent performance and an Optimal
Dataset Scale (ODS) of 0.752. Furthermore, by fine-training on the BSDS500
dataset we reach state-of-the-art results for edge-detection with an ODS of
0.824.Comment: Keywords: Object Contour Detection, Edge Detection, Multi-Path
Refinement CN