61 research outputs found

    Evidence Transfer for Improving Clustering Tasks Using External Categorical Evidence

    Full text link
    In this paper we introduce evidence transfer for clustering, a deep learning method that can incrementally manipulate the latent representations of an autoencoder, according to external categorical evidence, in order to improve a clustering outcome. By evidence transfer we define the process by which the categorical outcome of an external, auxiliary task is exploited to improve a primary task, in this case representation learning for clustering. Our proposed method makes no assumptions regarding the categorical evidence presented, nor the structure of the latent space. We compare our method, against the baseline solution by performing k-means clustering before and after its deployment. Experiments with three different kinds of evidence show that our method effectively manipulates the latent representations when introduced with real corresponding evidence, while remaining robust when presented with low quality evidence

    Supervised Encoding for Discrete Representation Learning

    Full text link
    Classical supervised classification tasks search for a nonlinear mapping that maps each encoded feature directly to a probability mass over the labels. Such a learning framework typically lacks the intuition that encoded features from the same class tend to be similar and thus has little interpretability for the learned features. In this paper, we propose a novel supervised learning model named Supervised-Encoding Quantizer (SEQ). The SEQ applies a quantizer to cluster and classify the encoded features. We found that the quantizer provides an interpretable graph where each cluster in the graph represents a class of data samples that have a particular style. We also trained a decoder that can decode convex combinations of the encoded features from similar and different clusters and provide guidance on style transfer between sub-classes

    Anomaly Detection in Batch Manufacturing Processes Using Localized Reconstruction Errors From 1-D Convolutional AutoEncoders

    Get PDF
    Multivariate batch time-series data sets within Semiconductor manufacturing processes present a difficult environment for effective Anomaly Detection (AD). The challenge is amplified by the limited availability of ground truth labelled data. In scenarios where AD is possible, black box modelling approaches constrain model interpretability. These challenges obstruct the widespread adoption of Deep Learning solutions. The objective of the study is to demonstrate an AD approach which employs 1-Dimensional Convolutional AutoEncoders (1d-CAE) and Localised Reconstruction Error (LRE) to improve AD performance and interpretability. Using LRE to identify sensors and data that result in the anomaly, the explainability of the Deep Learning solution is enhanced. The Tennessee Eastman Process (TEP) and LAM 9600 Metal Etcher datasets have been utilised to validate the proposed framework. The results show that the proposed LRE approach outperforms global reconstruction errors for similar model architectures achieving an AUC of 1.00. The proposed unsupervised learning approach with AE and LRE improves model explainability which is expected to be beneficial for deployment in semiconductor manufacturing where interpretable and trustworthy results are critical for process engineering teams

    A Deep Learning-Based Aesthetic Surgery Recommendation System

    Get PDF
    We propose in this chapter a deep learning-based recommendation system for aesthetic surgery, composing of a mobile application and a deep learning model. The deep learning model built based on the dataset of before- and after-surgery facial images can estimate the probability of the perfection of some parts of a face. In this study, we focus on the most two popular treatments: rejuvenation treatment and eye double-fold surgery. It is assumed that the outcomes of our history surgeries are perfect. Firstly a convolutional autoencoder is trained by eye images before and after surgery captured from various angles. The trained encoder is utilized to extract learned generic eye features. Secondly, the encoder is further trained by pairs of image samples, captured before and after surgery, to predict the probability of perfection, so-called perfection score. Based on this score, the system would suggest whether some sorts of specific aesthetic surgeries should be performed. We preliminarily achieve 88.9 and 93.1% accuracy on rejuvenation treatment and eye double-fold surgery, respectively

    Anomaly Detection in Batch Manufacturing Processes using Localised Reconstruction Errors from 1-Dimensional Convolutional AutoEncoders

    Get PDF
    Multivariate batch time-series data sets within Semiconductor manufacturing processes present a difficult environment for effective Anomaly Detection (AD). The challenge is amplified by the limited availability of ground truth labelled data. In scenarios where AD is possible, black box modelling approaches constrain model interpretability. These challenges obstruct the widespread adoption of Deep Learning solutions. The objective of the study is to demonstrate an AD approach which employs 1-Dimensional Convolutional AutoEncoders (1d-CAE) and Localised Reconstruction Error (LRE) to improve AD performance and interpretability. Using LRE to identify sensors and data that result in the anomaly, the explainability of the Deep Learning solution is enhanced. The Tennessee Eastman Process (TEP) and LAM 9600 Metal Etcher datasets have been utilised to validate the proposed framework. The results show that the proposed LRE approach outperforms global reconstruction errors for similar model architectures achieving an AUC of 1.00. The proposed unsupervised learning approach with AE and LRE improves model explainability which is expected to be beneficial for deployment in semiconductor manufacturing where interpretable and trustworthy results are critical for process engineering teams

    Convolutional AutoEncoders for Anomaly Detection in Semiconductor Manufacturing

    Get PDF
    Semiconductor manufacturing, characterised by its complex processes, demands efficient anomaly detection (AD) systems for quality assurance. This study extends from previous work utilising unsupervised Convolutional AutoEncoders for AD in Semiconductor batch manufacturing by applying the technique to a novel dataset supplied by a local Semiconductor Manufacturer. Our method uses an approach that employs 1-dimensional Convolutional Autoencoders (1d-CAE) to improve AD performance and interpretability through the numerical decomposition of reconstruction errors. Identifying anomalies this way allows engineering resources to explain anomalies more effectively than traditional methods. We validate our approach with experiments, demonstrating its performance in accurately detecting anomalies while providing insights into the nature of these irregularities. The experiments also demonstrate the impact of training setup on detection capability, outlining an efficient framework for determining an optimal hyperparameter set-up in an industrial dataset. The proposed unsupervised learning approach with AE reconstruction error improves model explainability, which is expected to be beneficial for deployment in semiconductor manufacturing, where interpretable and trustworthy results are critical for solution adoption by process engineering teams
    • …
    corecore