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Abstract 

Semiconductor manufacturing, characterised by its complex 

processes, demands efficient anomaly detection (AD) systems for 

quality assurance. This study extends from previous work utilising 

unsupervised Convolutional AutoEncoders for AD in 

Semiconductor batch manufacturing by applying the technique to 

a novel dataset supplied by a local Semiconductor Manufacturer. 

Our method uses an approach that employs 1-dimensional 

Convolutional Autoencoders (1d-CAE) to improve AD 

performance and interpretability through the numerical 

decomposition of reconstruction errors. Identifying anomalies this 

way allows engineering resources to explain anomalies more 

effectively than traditional methods. We validate our approach 

with experiments, demonstrating its performance in accurately 

detecting anomalies while providing insights into the nature of 

these irregularities. The experiments also demonstrate the impact 

of training setup on detection capability, outlining an efficient 

framework for determining an optimal hyperparameter set-up in 

an industrial dataset. The proposed unsupervised learning 

approach with AE reconstruction error improves model 

explainability, which is expected to be beneficial for deployment in 

semiconductor manufacturing, where interpretable and 

trustworthy results are critical for solution adoption by process 

engineering teams.  

Keywords – Anomaly Detection, Semiconductor Manufacturing, 

Convolutional AutoEncoder, Explainable Reconstruction Error  

I. INTRODUCTION 

 Semiconductor manufacturing, evolving rapidly, 

challenges the limits of traditional Machine Learning (ML) 

in process control [1]. Industrial practitioners increasingly 

turn to Deep Learning (DL) for more robust performance in 

managing complex processes. Fault Detection and 

Classification (FDC), or Anomaly Detection (AD), is pivotal 

in identifying irregular equipment conditions using time-

series sensor data generated during semiconductor wafer 

processing. In this context, semiconductor processes, 

characterised by their multi-re-entrant, batch nature and 

variability due to consumable parts, demand advanced 

control mechanisms [2].  

Batch manufacturing, with its diverse product mixes and 

recipe variations, makes maintaining numerous process 

sensors impractical. The shift towards a more automated and 

self-regulating AI-driven process control system is critical to 

augment existing engineering expertise. The increasing data 

volume and complexity in the semiconductor industry 

outpace the available resources for effective control and 

monitoring. The definition of AI in this context covers ML 

and the more recent DL advances in the area. Traditional ML 

is where data is manually pre-processed, features engineered 

and optimal features selected by a human in the loop, with 

established workflows that heavily leverage empirical 

knowledge and subject matter expertise.  

II. RELATED WORK 

 In [3], we have demonstrated that the 1-dimensional 

Convolutional Autoencoders (1d-CAE) approach applied to 

the Tennesse Eastman process and the LAM 9600-Etcher 

publically available industry datasets is an effective anomaly 

detector. However, these datasets are limited when 

attempting to capture the complexity of modern 

Semiconductor multi-modal batch processes. Comparisons 

have been made to show [4] that a Traditional ML approach 

is viable. However, when a representative feature space is 

created through the aggregation of time-series signals, 

information loss is likely, therefore decreasing the capacity 

of an algorithm to detect potential future anomalies within the 

aggregated feature space [5]. However, in these instances, the 

modelled domain space is reduced through data aggregation, 

feature engineering and feature removal through a selection 

process. DL has been demonstrated to outperform traditional 

ML approaches and even human-level performance [6]. 

Although there are several fields of interest within DL, 

AutoEncoders (AE’s) are effective in unsupervised AD [7] 

and dimensionality reduction [8], [9]. AE’s with Dense layers 

have been applied for AD [10] in batch manufacturing. 

However, Dense AE’s are rigid in their network architecture, 

potentially reducing the network's ability to capture time-

based feature variation, resulting in less accurate models [11]. 

An alternative approach is a Convolutional AutoEncoder 

(CAE), created by stacking several non-linear layers that 

enable the network to extract hierarchical high-level features. 

Convolutional layers reduce the feature space through 

Pooling or increased kernel strides [11] and have been shown 

to perform well as feature extractors [8]. A 2d-convolutional 

layer is preferred if data is related across the x-axis and y-axis 

[12]. Conversely, where inputs have only one axis of 

information dependence, a 1d-convolutional layer is more 
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suited to the input data shape [11]. 1d-CAEs are proficient 

extractors of high-level features along a single input axis [13]. 

For manufacturing use cases, the 1d-convolutional kernel is 

applied along the time-dependent axis, with the remaining 

axis containing input sensors [14]. Maggipinto et al. [15] 

have implemented a hybrid approach where the 1d-CAE is 

used as a feature extractor for traditional ML AD algorithms. 

Zhang et al. [16] adopt 1d-convolutional layers for 

unsupervised feature extraction for other models. It is 

observed that 1d-convolutional layers achieve high 

performance for feature extraction [11] in classification 

frameworks. A significant limitation of AD in Semiconductor 

manufacturing with high-yield processes is the lack of 

labelled data. A limitation of implementing the conventional 

ML or black box DL techniques is the further abstraction 

from the raw time-series data that decreases the 

interpretability of predictions.  

III. PROPOSED APPROACH 

In the following section, we outline the challenges in the 

scenario captured within the novel dataset, accompanied by 

various experimental results. The objective is to detect 

abnormal equipment behaviour by analysing data collected 

during processing. However, the problem's difficulty 

compounds in the production environment for the following 

reasons.  

A. Data Availability 

The access to practical datasets in the public domain from 

private manufacturers limits the potential for 

experimentation. The dataset has 26 sensors from 3 separate 

equipment groups with 3,645 observations. Within the 

dataset are 54 synthetically generated fails accompanied by 

failure labels and the sensors within which the fails occur. 

The synthetic fails were generated using various magnitudes 

of either Oscillation, Spike or Step functions from the typical 

sensor operating point. The mean process duration is 480 

samples, with variation in process duration introduced 

through varied consumable age and equipment performance 

during regular equipment lifecycles. Introducing this novel 

dataset to open access attempts to remove the obstacle of 

limited data. 

B. Parallel Processing Paths 

 The occurrence of multiple tools completing the same 

process can be referred to as multipath processing and is 

common in Semiconductor manufacturing to ensure stable 

cycle time and availability. The qualified equipment is 

‘matched’ in the ideal process operation scenario, meaning 

their processing input parameters are nearly identical. 

However, this is unrealistic given the inherent variation 

introduced by incoming materials, consumable ageing and 

equipment configuration. The challenge of non-stationarity 

affects algorithm performance over time and can cause the 

rate of false positives to increase or require the re-training of 

models. As processes execute in parallel, the number of 

samples available for training on a given equipment 

configuration is sometimes small, forcing the implementation 

to leverage data from the same process recipe on a different 

equipment set. The study addresses this through the variation 

across experiments of the training data composition and 

impact on reconstruction ability.   

C. Configuration Management 

 Furthermore, in cases with significantly different 

processing equipment, increased configuration effort is 

needed in the form of more models, as a single model cannot 

account for all variations observed at the equipment process 

level. The required model coverage is high so that the 

maximum operational value can be extracted from the time 

series data. The training, deploying and managing 1,000’s to 

100,000’s models in production is challenging. A method to 

automate the deployment standardisation and optimisation is 

needed to streamline value capture within Semiconductor 

Fabs. An established hyperparameter optimisation approach 

is preferred to random or grid search methods to improve 

deployment efficiency. The study presents the method of 

hyperparameter optimisation suited to automated production 

deployment. 

D. Multi-Modal Batch Processing 

Fig 1. illustrates a sample of the raw time series process 

data highlighting that each sensor has a prescribed shape 

outlining the multi-modal process operating scenario. Each 

sensor measures a separate process parameter and, therefore, 

has its scale corresponding to the relative unit of 

measurement (UoM). UoMs are omitted from the dataset in 

the interest of anonymity. The multivariate example in this 

dataset is analogous to most batch-processing semiconductor 

processes where a prescribed recipe has defined duration and 

changes in operation function throughout. Examples of this 

modal change can be observed in Fig. 1 through the 

difference in the magnitude of the sensors during the 

execution of the process duration. The obstacle to overcome 

here is that, in some cases, traditional ML techniques require 

homogeneity in the data populations, which is not aligned 

with the data in this scenario. A 1d-CAE has been 

demonstrated in the related work to be an excellent 

unsupervised feature extractor, thus allowing the entire time 

series duration to be modelled within the same training 

schedule. The ability to train the entire trace with a single 

model decreases the required configuration count and the 

various modes of operation within which anomalies can be 

detected.  

E. Prediction Explainability 

Decreased transparency in ML and DL models is seen as 

a barrier to adoption within manufacturing; more specifically, 

when predictions are not interpretable, the intended DL 

consumer has little context to evaluate or resolve an identified 

fault. It is important to note that for interpretability in the 

 
 

Fig.1 – Raw time series sensor traces from a sample of sensors 

demonstrating the multi-modal aspect of batch semiconductor 

processes alongside the various UOMs and shapes that occur 



context of Semiconductor FDC, the objective is not to 

uncover the purpose of each neuron or model parameter 

concerning the prediction but instead the ‘mechanistic 

explanation’ of a network input to output so that users can 

correlate predictions made onto actions to be taken [17]. The 

proposed 1d-CAE algorithm implements a reconstruction-

based approach where the original input time series trace 

predictions are point-by-point predictions. The preservation 

of the actual and predicted time series facilitates the 

decomposition of error across both the time-dependent and 

sensor channels to identify sources of error. The 

decomposition directs engineering resources to potential 

focus areas within the time series traces that can rectify 

anomalous behaviour.  

IV. EXPERIMENTAL DESIGN 

Training the AE on known good process operation, also 

known as a ‘Golden Fingerprint’, effectively creates a 

novelty boundary outside which unknown faults are expected 

to be detected. The main assumption within this framework 

is that the ‘Golden Fingerprint’ is an adequately 

representative sample that encompasses all ‘acceptable’ 

process variation. Within future fault situations, an error rate 

exists large enough to perturb the result outside the defined 

novelty boundary.  

A. Hyperparameter Optimisation 

A critical aspect of deploying deep learning models 

effectively is fine-tuning hyperparameters. Manual 

hyperparameter tuning can be time-consuming and 

suboptimal, necessitating the exploration of automated 

techniques. The Keras Tuner with Hyperband optimisation is 

a tool for automating the process of hyperparameter tuning in 

deep learning models [18], specifically designed to work with 

the Keras deep learning framework. It combines the Keras 

Tuner, a library for hyperparameter optimisation, with the 

Hyperband algorithm, an efficient method for exploring 

hyperparameter configurations [19]. To streamline the model 

development process in a production manufacturing 

environment, the Keras-Tuner with Hyperband optimisation 

is preferred to random or grid search approaches as the 

process to find optimal configuration setups for large-scale 

deployments can be automated. Hyperband is an optimisation 

algorithm that outperforms traditional methods such as Grid 

Search and Random Search regarding hyperparameter tuning 

in machine learning. Table I outlines the search space for the 

tuner to evaluate. In particular, the parameters were chosen to 

facilitate the evaluation of filter number, layer number, kernel 

size and loss function on the modelling architecture given the 

semiconductor dataset.   

B. Experiment Definition 

 Utilising the Keras-Tuner with Hyperband optimisation 

pipeline are three experiments within this study. In [3], we 

have demonstrated that 1d-CAE networks perform well for 

multivariate manufacturing anomaly detection. The study 

aims to introduce the dataset and baseline the results using 

the 1d-CAE framework from a reconstruction perspective. 

Table II lists the description of the three separate experiments 

applied to the novel semiconductor dataset. Experiment 

E0001 is designed to produce results from the standard 

practice of splitting by time and not considering the impact of 

equipment mix in the training data. E0002 simulates a 

scenario where only data is available for one equipment 

group but predictions are required for other similar, 

potentially unmatched equipment sets, a form of transfer 

learning. Finally, E0003 is designed to test the impact of 

equally distributed training observations by equipment group 

compared to the mixed distribution seen in E0001. Following 

the data split, the Hyperband Keras-Tuner is applied to the 

training data of each given experimental setup. After the tuner 

trials, the optimal settings of the 10 top hyperparameter 

setups are selected. These selections are then loaded 

sequentially to collect training and test data for each 

modelling setup to determine mean and standard deviation 

performance for each configuration setup. The reasoning 

behind choosing the top 10 is to provide a distribution of 

performances and the optimal setup parameters for 

comparison. 

C. Reconstruction Error Based Anomaly Detection 

 Reconstruction error-based anomaly detection is the 

approach where an algorithm, in this case, an autoencoder, 

attempts to learn latent representations of the data from which 

it can reconstruct an output from a given input [3]. The 

comparison of input and output determines the accuracy of 

the reconstruction. In cases where the reconstruction error is 

small, the observation is more likely to be a member of the 

training data and normal. Conversely, a large reconstruction 

error suggests that the observation is not similar to the good 

historical period of operation and is likely anomalous and 

therefore requiring engineering review. Primarily, the sensor 

data and associated faults in the main do not have reliable 

TABLE II – EXPERIMENTAL DESCRIPTION SHOWING THE 
BREAKDOWN OF TRAINING AND TEST SPLIT BY 

EQUIPMENT GROUP 

 

Experiment 

No. 

Observations Equipment Group 

Train Test Train Test 

E0001 2549 1096 0, 1, 2 0, 1, 2 

E0002 1033 1096 0 0, 1, 2 

E0003 933 1096 0, 1, 2 0, 1, 2 

 

TABLE I -  HYPERPARAMETER SEARCH SPACE FOR THE 
KERAS-TUNER USING HYPERBAND OPTIMISATION 

 
Parameter Options 

Convolutional Layers Range 1:5, interval 1 

Filter number Range 5:250, interval 25 

Kernel size Range 5:100, interval 10 

Batch Normalisation Boolean 

DropOut Boolean 

DropOut Rate 0.25, 0.5, 0.75 

Final Sigmoid Layer Kernel Range 1:100, Interval 5 

Learning Rate 1e-1, 1e-2, 1e-3, 1e-4, 1e-5 

Loss Function MSE, MAE, MSLE 

Batch Size 32, 64, 128, 256 

 



labels. The reconstruction error approach allows future 

unknown fault scenarios to be detected as it would be 

different from the training data. Secondly, within a 

manufacturing environment, identifying an anomaly and 

attempting to provide a reason for the anomalous behavoiour 

are equally important. Preserving the reconstructions 

facilitates the error decomposition to determine areas of 

potential anomalous behaviour.  

V. EXPERIMENTAL RESULTS 

 Table III presents the overall experiment summary of 

reconstruction ability based on the top 10 hyperparameter 

configurations identified through the Keras-Tuner 

Hyperband pipeline. The best-performing reconstruction 

experiment was E0001, where all three equipment types and 

all available observations were used for training and testing. 

Table III demonstrates that E0001 outperformed the other 

experiments within equipment groups and E0002, with only 

equipment group 0 generating the lowest reconstruction 

capability performance. Table III also highlights that E0003 

with the balanced equipment group number for training, 

resulting in a lower standard deviation between the top 10 

model hyperparameter configurations. When considering 

Fig.2, the mean MSE by observation number shows that 

although E0001 achieves overall lower reconstruction errors, 

there is an increase in variation in those predictions compared 

to E0003. Furthermore, the loss in prediction power of the 

model in E0002 can be seen when comparing the 

reconstruction error of training and testing observations by 

the equipment group. Fig.2 also highlights the change in 

reconstruction error by time and equipment group. E0001 

outperforms E0002 and E0003; however, E0002, with the 

limited training dataset, presents poorer overall results within 

the equipment groups 0 and 1. As the 1d-CAE approach 

leverages an unsupervised thresholding mechanism to 

determine population outliers, assigning a suitable threshold 

can be challenging. Fig. 3 presents the performance of the top 

10 hyperparameter configurations by equipment group, data 

TABLE III – THE MEAN AND STANDARD DEVIATION OF TEST DATA MEAN SQUARED ERROR OF RECONSTRUCTION ERROR OF 

THE TOP 10 HYPERPARAMETER SETTINGS BY EXPERIMENT NUMBER, DATA CATEGORY AND EQUIPMENT GROUP 
 

Mean of MSE from Reconstruction Errors 
 

Standard Deviation of MSE from Reconstruction Errors 

Equipment Group 
Experiment No 

 

Equipment Group 
Experiment No 

E0001 E0002 E0003 
 

E0001 E0002 E0003 

0 0.00048 0.00111 0.00063 
 

0 0.00039 0.00026 0.00014 

1 0.00057 0.00061 0.00066 
 

1 0.00050 0.00007 0.00026 

2 0.00056 0.00113 0.00065 
 

2 0.00044 0.00024 0.00023 

Overall 0.00054 0.00095 0.00065 
 

Overall 0.00044 0.00019 0.00021 

 

 
 

Fig. 2 – Mean Observation MSE by Experiment Number, Equipment Group and Data Category separated by Experiment Number. Smoothed lines of 

best fit are applied to each group to show a change in Mean Observation MSE by time, indicated by observation number. 



category and experiment number. The vertical axis 

corresponds to the pass rate of the observations, with the 

horizontal axis the thresholding factor applied to the 

interquartile outlier equation. E0001 outperforms the other 

setups from a median and standard deviation perspective, 

with the results from all equipment groups generating results 

with tighter distributions. Equipment group 1 generates the 

poorest results for all experimental setups, suggesting an 

underlying difference between that equipment group 

population and the others. From an explainability 

perspective, Fig.4 shows the raw traces of actual input data in 

green, predicted data in red and the error distribution in black 

for a sample of observations and sensors. The detailed 

reconstruction error can be seen in Fig.4, given the multi-

modal process for a good observation; in the scenario of 

anomalous process behaviour, the reconstruction error 

decomposition can be seen by which sensor and within which 

process duration. Table IV summarises the optimal 

hyperparameter setup by percentage occurrence within the 

top 10 setups by experiment. 90% of optimal models 

preferred a more shallow network architecture with only a 

single convolutional layer. Similarly, larger numbers of 

filters performed better than smaller setups. Both batch 

normalisation and dropout were not selected as an optimal 

model architecture, with the most common loss function 

achieving optimal reconstruction error being MSE. The 

optimal learning rate was 0.0001 or 0.001 for 100% of the 

top-performing experimental setups.  

VI. DISCUSSION AND CONCLUSION 

 The results presented in this study offer valuable insights 

into the performance of various experiments conducted using 

the 1d-CAE approach for reconstruction and anomaly 

detection in manufacturing time series data. The experiments 

were guided by exploring hyperparameter configurations 

identified through the Keras-Tuner Hyperband pipeline. The 

analysis begins by highlighting the best-performing 

experiment, E0001, which utilised all three equipment types 

and all available observations for training and testing. E0001 

demonstrated superior reconstruction ability compared to 

other experiments within equipment groups. This 

underscores the importance of incorporating diverse 

equipment types and a comprehensive dataset for better 

reconstruction results. Fig. 3 and Table III further reveals 

interesting patterns within the experiments. While E0001 

outperforms others in terms of reconstruction, E0003, which 

employed a balanced equipment group for training, exhibited 

lower standard deviation among the top 10 model 

hyperparameter configurations. This suggests that achieving 

consistent results, as seen in E0003, may require careful 

consideration of equipment group balance in the training 

dataset. From an explainability perspective, Fig. 4 visually 

represents the model's raw reconstruction performance. It 

demonstrates the raw traces of actual input data, predicted 

data, and error distribution for a sample of observations and 

sensors. The result allows for a detailed examination of the 

 
 

Fig. 3 – Pass rate percentage distribution for top 10 model hyperparameter setups by data category and experiment number, coloured by 
equipment group.  

TABLE IV – SUMMARY OF OPTIMAL HYPERPARAMETER 

SETTINGS FOR REPEATED EXPERIMENTS 
 

Setting Optimal Setting 
%  of 

Occurence 

Convolutional Layers 1 90 

Filter number 105, 155, 205, 355 95 

Kernel size 15, 65 75 

Batch Normalisation FALSE 75 

Drop Out FALSE 90 

Final Layer Kernel 6, 51 80 

Learning Rate 0.0001, 0.001 100 

Loss Function MSE 85 

Batch Size 32 85 

 



reconstruction error, particularly in scenarios involving 

anomalous process behaviour. Pinpointing errors to specific 

sensors and process durations is crucial for effectively 

identifying and diagnosing anomalies. As the 1d-CAE 

approach employs an unsupervised thresholding mechanism 

for outlier detection, determining an appropriate threshold is 

challenging. Fig. 2 and Fig. 3examines the performance of 

the top 10 hyperparameter configurations based on 

equipment group, data category, and experiment number. 

E0001 consistently outperforms other setups in median and 

standard deviation, suggesting its robustness in outlier 

detection. However, the poorer results observed in 

Equipment Group 1 across all experiments hint at underlying 

differences in this equipment group compared to others, 

which should be explored further. In Table IV, the optimal 

network setup demonstrated through the Keras-Tuner is also 

interesting. The result that fewer layers and more filters 

yielding improved reconstruction results is counter-intuitive 

to networks that perform well in image or single mode time 

series datasets, suggesting that improved feature extraction of 

increased filter application is preferred to dimensionality 

reduction of the feature space with deeper networks made up 

of more layers.  

VII. FUTURE WORK 

The current experiment setup is limited to the 1d-CAE 

framework; future experiments should include alternative 

deep learning architectures such as transformers or 

Variational Autoencoders (VAE) that could further extract 

improved representative features from the dataset. Another 

area of exploration would be the optimisation of 

reconstruction error thresholding, which, in its current linear 

form, is not flexible to drift; therefore, a dynamic threshold 

assignment beyond rigid thresholding should be considered 

in the future,  e.g. an ensemble approach that applies a 

clustering algorithm to the latent representations of the 

autoencoder in parallel to the demonstrated thresholding 

approach.  
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Fig. 4 – Plot of actual (Green) and predicted (Red) with 

reconstruction error (Black) of time series sensor traces from a 

sample observation and set of sensors. The y-axis represents the 
magnitude of the prediction or actual value, and the x-axis 

corresponds to the duration of the process. 


