143,598 research outputs found

    Enhanced Screening in Chemically Functionalized Graphene

    Get PDF
    Resonant scatterers such as hydrogen adatoms can strongly enhance the low energy density of states in graphene. Here, we study the impact of these impurities on the electronic screening. We find a two-faced behavior: Kubo formula calculations reveal an increased dielectric function ε\varepsilon upon creation of midgap states but no metallic divergence of the static ε\varepsilon at small momentum transfer q→0q\to 0. This bad metal behavior manifests also in the dynamic polarization function and can be directly measured by means of electron energy loss spectroscopy. A new length scale lcl_c beyond which screening is suppressed emerges, which we identify with the Anderson localization length.Comment: 5 pages, 4 figure

    Dual-fermion approach to the Anderson-Hubbard model

    Get PDF
    We apply the recently developed dual fermion algorithm for disordered interacting systems to the Anderson-Hubbard model. This algorithm is compared with dynamical cluster approximation calculations for a one-dimensional system to establish the quality of the approximation in comparison with an established cluster method. We continue with a three-dimensional (3d) system and look at the antiferromagnetic, Mott and Anderson localization transitions. The dual fermion approach leads to quantitative as well as qualitative improvement of the dynamical mean-field results and it allows one to calculate the hysteresis in the double occupancy in 3d taking into account nonlocal correlations

    Localization of strongly correlated electrons as Jahn-Teller polarons in manganites

    Full text link
    A realistic modeling of manganites should include the Coulomb repulsion between ege_g electrons, the Hund's rule coupling to t2gt_{2g} spins, and Jahn-Teller phonons. Solving such a model by dynamical mean field theory, we report large magnetoresistances and spectra in good agreement with experiments. The physics of the unusual, insulating-like paramagnetic phase is determined by correlated electrons which are-due to strong correlations-easily trapped as Jahn-Teller polarons.Comment: 4 pages, 3 figure

    Customer anger and incentives for quality provision

    Get PDF
    Emotions are a significant determinant of consumer behaviour. A customer may get angry if he feels that he is being treated unfairly by his supplier and that anger may make him more likely to switch to an alternative provider. We model the strategic interaction between firms that choose quality levels and anger-prone customers who pick their supplier based on their expectations of suppliers' quality. Strategic interaction can allow for multiple equilibria including some in which no firm invests in high quality. Allowing customers to voice their anger on peer-review fora can eliminate low-quality equilibria, and may even support a unique equilibrium in which all firms choose high quality

    Orbital selective crossover and Mott transitions in an asymmetric Hubbard model of cold atoms in optical lattices

    Full text link
    We study the asymmetric Hubbard model at half-filling as a generic model to describe the physics of two species of repulsively interacting fermionic cold atoms in optical lattices. We use Dynamical Mean Field Theory to obtain the paramagnetic phase diagram of the model as function of temperature, interaction strength and hopping asymmetry. A Mott transition with a region of two coexistent solutions is found for all nonzero values of the hopping asymmetry. At low temperatures the metallic phase is a heavy Fermi-liquid, qualitatively analogous to the Fermi liquid state of the symmetric Hubbard model. Above a coherence temperature, an orbital-selective crossover takes place, wherein one fermionic species effectively localizes, and the resulting bad metallic state resembles the non-Fermi liquid state of the Falicov-Kimball model. We compute observables relevant to cold atom systems such as the double occupation, the specific heat and entropy and characterize their behavior in the different phases

    Quantum phase transition in the two-band Hubbard model

    Full text link
    The interaction between itinerant and Mott localized electronic states in strongly correlated materials is studied within dynamical mean field theory in combination with the numerical renormalization group method. A novel nonmagnetic zero temperature quantum phase transition is found in the bad-metallic orbital-selective Mott phase of the two-band Hubbard model, for values of the Hund's exchange which are relevant to typical transition metal oxides.Comment: 4 pages, 4 eps figures, revised version, to appear in Phys. Rev. Let
    • …
    corecore