7 research outputs found

    Refactoring for parameterizing Java classes

    Get PDF
    Type safety and expressiveness of many existing Java libraries and theirclient applications would improve, if the libraries were upgraded to definegeneric classes. Efficient and accurate tools exist to assist clientapplications to use generics libraries, but so far the libraries themselvesmust be parameterized manually, which is a tedious, time-consuming, anderror-prone task. We present a type-constraint-based algorithm forconverting non-generic libraries to add type parameters. The algorithmhandles the full Java language and preserves backward compatibility, thusmaking it safe for existing clients. Among other features, it is capableof inferring wildcard types and introducing type parameters formutually-dependent classes. We have implemented the algorithm as a fullyautomatic refactoring in Eclipse.We evaluated our work in two ways. First, our tool parameterized code thatwas lacking type parameters. We contacted the developers of several ofthese applications, and in all cases where we received a response, theyconfirmed that the resulting parameterizations were correct and useful.Second, to better quantify its effectiveness, our tool parameterizedclasses from already-generic libraries, and we compared the results tothose that were created by the libraries' authors. Our tool performed therefactoring accurately -- in 87% of cases the results were as good as thosecreated manually by a human expert, in 9% of cases the tool results werebetter, and in 4% of cases the tool results were worse

    Automated Refactoring of Legacy Java Software to Enumerated Types

    Full text link
    Modern Java languages introduce several new features that offer significant improvements over older Java technology. In this article we consider the new enum construct, which provides language support for enumerated types. Prior to recent Java languages, programmers needed to employ various patterns (e.g., the weak enum pattern) to compensate for the absence of enumerated types in Java. Unfortunately, these compensation patterns lack several highly-desirable properties of the enum construct, most notably, type safety. We present a novel fully-automated approach for transforming legacy Java code to use the new enumeration construct. This semantics-preserving approach increases type safety, produces code that is easier to comprehend, removes unnecessary complexity, and eliminates brittleness problems due to separate compilation. At the core of the proposed approach is an interprocedural type inferencing algorithm which tracks the flow of enumerated values. The algorithm was implemented as an open source, publicly available Eclipse plug-in and evaluated experimentally on 17 large Java benchmarks. Our results indicate that analysis cost is practical and the algorithm can successfully refactor a substantial number of fields to enumerated types. This work is a significant step towards providing automated tool support for migrating legacy Java software to modern Java technologies

    A heuristic-based approach to code-smell detection

    Get PDF
    Encapsulation and data hiding are central tenets of the object oriented paradigm. Deciding what data and behaviour to form into a class and where to draw the line between its public and private details can make the difference between a class that is an understandable, flexible and reusable abstraction and one which is not. This decision is a difficult one and may easily result in poor encapsulation which can then have serious implications for a number of system qualities. It is often hard to identify such encapsulation problems within large software systems until they cause a maintenance problem (which is usually too late) and attempting to perform such analysis manually can also be tedious and error prone. Two of the common encapsulation problems that can arise as a consequence of this decomposition process are data classes and god classes. Typically, these two problems occur together – data classes are lacking in functionality that has typically been sucked into an over-complicated and domineering god class. This paper describes the architecture of a tool which automatically detects data and god classes that has been developed as a plug-in for the Eclipse IDE. The technique has been evaluated in a controlled study on two large open source systems which compare the tool results to similar work by Marinescu, who employs a metrics-based approach to detecting such features. The study provides some valuable insights into the strengths and weaknesses of the two approache

    1st Workshop on Refactoring Tools (WRT'07) : Proceedings

    Get PDF

    Proceedings of the 4th International Conference on Principles and Practices of Programming in Java

    Full text link
    This book contains the proceedings of the 4th international conference on principles and practices of programming in Java. The conference focuses on the different aspects of the Java programming language and its applications

    Decoupling classes with inferred interfaces

    No full text
    Using small, context-specific interfaces in variable declarations serves the decoupling of classes and increases a program’s flexibility. To minimize its interface, a thorough analysis of the protocol needed from a variable is required. Currently available refactorings for the extraction of interfaces leave the programmer alone with the decision which methods to include or, more problematically, which to omit: they let him choose manually from the protocol of an existing type, and only then offer to use the new interface where (if) possible. To aid the programmer in defining a new interface, we have developed a new refactoring that infers it from a variable’s declaration and automatically inserts it into the code

    Decoupling classes with inferred interfaces

    No full text
    corecore